
R E V I E W

Exploration of Pathogenesis and Cutting-Edge 
Treatment Strategies of Sarcopenia: A Narrative 
Review
Yin Gao1,2,*, Di Liu1,2,*, Qixian Xiao1,*, Shan Huang1,2, Li Li 2, Baocheng Xie3, Limin Zhou3, Yi Qi2, 
Yanzhi Liu 1

1Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Institute of Clinical Medicine, Zhanjiang 
Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China; 2Marine Medical Research Institute of Zhanjiang, 
School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China; 3Department of Pharmacy, The 
Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, 52305, People’s Republic of China

*These authors contributed equally to this work 

Correspondence: Yanzhi Liu; Yi Qi, Email liuyanzhi@gdmu.edu.cn; qiyi7272@gdmu.edu.cn

Abstract: Sarcopenia a progressive and multifactorial musculoskeletal syndrome characterized by loss of muscle mass and function, poses 
a significant global health challenge, particularly in aging populations. Epidemiological studies reveal that sarcopenia affects approximately 
5–10% of the general population, with prevalence rates escalating dramatically after age 60 to reach 10–27% in older adults. This age- 
associated increase contributes significantly to healthcare burdens by elevating risks of disability, frailty, and mortality. Despite its profound 
impact, current clinical approaches to sarcopenia remain limited. While resistance exercise and protein supplementation form the 
cornerstone of management, their efficacy is often constrained by poor long-term adherence and variable individual responses, highlighting 
the urgent need for more comprehensive and personalized treatment strategies. The pathogenesis of sarcopenia is complex and influenced by 
various factors, including aging, inflammation, nutritional deficits, physical inactivity, and mitochondrial dysfunction. However, the precise 
molecular mechanisms underlying this condition are still not fully understood. Recent research has made significant strides in elucidating the 
intricate mechanisms contributing to sarcopenia, revealing novel insights into its molecular and cellular underpinnings. Notably, emerging 
evidence points to the pivotal role of mitochondrial dysfunction, altered myokine profiles, and neuromuscular junction degeneration in 
sarcopenia progression. Additionally, breakthroughs in stem cell therapy, exosome-based treatments, and precision nutrition offer promising 
avenues for clinical intervention. This review aims to synthesize the latest advancements in sarcopenia research, focusing on the novel 
contributions to its pathogenesis and treatment strategies. We explore emerging trends such as the role of cellular senescence, epigenetic 
regulation, and targeted therapeutic interventions that could reshape future approaches to managing sarcopenia. By highlighting recent 
breakthroughs and cutting-edge research, we hope to advance the understanding of sarcopenia and foster the translation of these findings into 
effective clinical therapies. 
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Introduction
Sarcopenia, first described by Rosenberg in 1997, is a clinical syndrome characterized by the progressive decline in 
muscle mass and function, predominantly associated with aging.1 The European Working Group on Sarcopenia in Older 
People (EWGSOP) defines sarcopenia as a gradual, generalized loss of skeletal muscle mass and strength that leads to 
reduced physical capability, diminished quality of life, and increased mortality.2 Similar definitions have been proposed 
by the International Sarcopenia Working Group, the Asian Working Group for Sarcopenia (AWGS), and the Chinese 
Society of Osteoporosis and Bone Mineral Research.3–5 The AWGS introduced regional guidelines tailored for Asian 
populations in 2014, which were updated in 2019.4,6 China currently adheres mainly to the EWGSOP definition.
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Contemporary sarcopenia diagnosis relies on a tripartite assessment framework encompassing muscle mass, muscle 
strength, and biomechanical performance. The current gold standard quantifies muscle mass index (ASMI) via dual- 
energy X-ray absorptiometry (DXA), with sex-specific thresholds defining pathology (<7.0 kg/m² males; <5.4 kg/m² 
females). Dynamometric evaluation of maximal grip strength establishes functional reserve boundaries (<26 kg males; 
<18 kg females), while ambulatory capacity is objectively measured through standardized gait analysis, where velocities 
below 0.8 m/s signify clinically relevant impairment. Diagnostic confirmation necessitates concurrent abnormalities in ≥2 
domains, as per international consensus guidelines.7 As the understanding of sarcopenia continues to evolve, the Global 
Leadership Initiative in Sarcopenia (GLIS) recently suggested that muscle mass, muscle strength, and muscle-specific 
strength should be considered the core components of sarcopenia, while impaired physical performance should be viewed 
as an outcome rather than a component of the syndrome.8 Epidemiological studies reveal that sarcopenia affects 
approximately 5–10% of the general population9 and with prevalence rates escalating dramatically after age 60 to 
reach 10–27% in older adults.10 Another report estimated that 10–16% of the global elderly population is affected by 
sarcopenia.11 A meta-analysis involving 41 studies and 34,955 participants found that the prevalence of sarcopenia 
among community-dwelling individuals was 11% in men and 9% in women.12 Systematic analysis suggest that the 
overall prevalence of sarcopenia in the elderly ranges from 5% to 37%.13 Among specific groups, prevalence rates are 
reported to be 41–59% in nursing home residents and 12.9–40.4% in community-dwelling older adults.14 Community- 
dwelling adults exhibit prevalence rates of 8–13% in men and 7–11% in women (EWGSOP/AWGS/IWGS criteria).15 

Certain populations demonstrate disproportionately elevated sarcopenia prevalence, including 40.7% in liver transplant 
recipients, 51% in male nursing home residents and 23–24% in hospitalized populations.15 These populations exhibit 
robust high-risk to sarcopenia, strongly correlating with adverse clinical outcomes such as prolonged hospitalization and 
mortality. Previous reports reveal significant variations in sarcopenia prevalence among older populations, with estimates 
ranging from 10% to 27% across studies employing different diagnostic classifications and cut-off points. Notably, 
geographical disparities emerge, with Oceania demonstrating the highest rates when applying EWGSOP criteria, while 
European populations show the lowest prevalence under EWGSOP2 guidelines. Studies reveal an 8.3% prevalence in 
Beijing16 (AWGS-2019 criteria) and a striking age-dependent increase from 1.5% (60–69 years) to 33.1% (≥80 years) in 
Chinese men.17 Age-stratified data indicate a progressive increase from around 8% in adults under 60 years to 10–27% in 
those aged 60 and above. Intriguingly, sex-specific patterns differ substantially based on diagnostic frameworks: while 
EWGSOP2 identifies higher prevalence in males, IWGS criteria conversely report elevated rates among females.2 The 
observed heterogeneity in prevalence estimates reflects methodological disparities in diagnostic frameworks. Existing 
consensus guidelines (AWGS, EWGSOP, IWGS, FNIH) demonstrate variable sensitivity profiles, with particularly 
limited detection capability for incipient sarcopenia. While advanced imaging techniques (eg, DXA/BIA) represent the 
current diagnostic gold standard, their implementation barriers in resource-constrained environments necessitate the 
development of validated, point-of-care assessment tools. This critical gap has prompted international calls for unified 
diagnostic standards to enhance early identification and targeted therapeutic interventions. In this work, we performed 
a systematic search across three major databases (PubMed, Web of Science, and Cochrane Library) for collecting 
relevant publications from January 2015 to December 2023. The inclusion criteria were peer-reviewed clinical trials, 
meta-analyses, and mechanistic studies published in English. The exclusion criteria contained case reports, non-human 
studies, and editorials. A three-phase screening process was employed, which involved title and abstract review, full-text 
evaluation, and quality assessment, with dual independent verification at each stage.

The observed heterogeneity in prevalence estimates primarily reflects methodological disparities in diagnostic 
frameworks. Existing consensus guidelines (AWGS, EWGSOP, IWGS, FNIH) demonstrate variable sensitivity profiles, 
with particularly limited detection capability for incipient sarcopenia. While advanced imaging techniques (eg, DXA/ 
BIA) represent the current diagnostic gold standard, their implementation barriers in resource-constrained environments 
necessitate the development of validated, point-of-care assessment tools. This critical gap has prompted international 
calls for unified diagnostic standards to enhance early identification and targeted therapeutic interventions.

Sarcopenia manifests as a multisystemic risk multiplier, demonstrating significant pathophysiological linkages to 
cardiovascular compromise, respiratory insufficiency, neurocognitive deterioration, frailty syndrome.18 This musculos-
keletal degeneration also substantially elevates clinical risks including injurious falls (particularly fragility fractures), 
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unplanned hospital admissions, and all-cause mortality.19 The cumulative disease burden poses significant risks to 
patients’ functional independence and psychosocial well-being. Emerging evidence positions the SarQoL® questionnaire 
as a validated multidimensional tool20 for quantifying sarcopenia-specific health-related quality of life (HRQoL) 
impairments.21 Comparative analyses reveal pronounced health-related quality of life deficits in sarcopenic populations 
versus their non-sarcopenic counterparts.22 A significantly lower HRQoL was observed for sarcopenic individuals 
compared with non-sarcopenic ones.23,24 A meta-analysis demonstrated that sarcopenia is associated with lower health- 
related quality of life measured with SarQoL. Subgroup analyses revealed substantial impact of regions, clinical settings, 
and diagnostic criteria on the difference in health-related quality of life between sarcopenic and non-sarcopenic 
individuals.24 This metric now facilitates therapeutic monitoring in clinical trials evaluating sarcopenia interventions– 
from pharmacological agents like metformin to the effect of pathophysiological states like leaky gut.25 Despite this, 
sarcopenia is still underdiagnosed and poorly managed in clinical. Standardizing diagnostic criteria and improving 
measurement techniques are crucial steps toward advancing sarcopenia management.26

The primary risk factors for sarcopenia include aging, chronic diseases, physical inactivity and malnutrition (Figure 1). 
However, a recent study suggests that the risk factors for sarcopenia in younger individuals differ somewhat from those in older 
adults. In younger populations, sarcopenia is more closely associated with metabolic and endocrine disorders, while genetic 
predisposition, physical inactivity, vitamin D deficiency, and poor nutrition are common risk factors across all age groups.27

This comprehensive review critically examines recent breakthroughs in sarcopenia research, with particular emphasis 
on mechanistic insights into disease pathogenesis and evolving therapeutic paradigms. By highlighting recent break-
throughs and cutting-edge research, we hope to advance the understanding of sarcopenia and foster the translation of 
these findings into effective clinical therapies.

Risk Factors
Aging and Sarcopenia
Muscle physical functions decline with aging, accompany with a decrease in anti-inflammatory cytokines and an accumulation of 
inflammatory factors. The inflammatory microenvironment contributes to muscle loss, atrophy, and reduced functionality. Aging 
also triggers reductions in autophagy and endogenous hormone secretion, impairing muscle growth and regeneration (Figure 2).

Figure 1 Major risk factors of sarcopenia.
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Aging-Induced Muscle Mass Decline and Fiber Degradation
Previous studies reported muscle mass declines by 1–2% annually after the age of 50,28 with higher rates observed in 
individuals over 75—ranging from 0.64–0.70% in women and 0.80–0.98% in men.29 Prolonged inactivity accelerates 
muscle atrophy, increasing the risk of sarcopenia.

Aging also affects muscle fiber composition, particularly the fast-twitch type II fibers, which are essential for power 
and speed. Type II fibers shrink in both size and number as people aging, and their functionality is compromised. Clinical 
studies show a 10–40% reduction in type II fibers among older adults compared to younger populations.30–32

Skeletal muscle harbors a specialized population of adult stem cells known as satellite cells, which predominantly 
exist in a quiescent state under homeostatic conditions. These cells exhibit limited proliferative activity, primarily 
responding to replace damaged myofibers resulting from routine physiological stress while simultaneously preserving 
the progenitor pool necessary for long-term muscle maintenance. Recent evidence indeed suggests that satellite cell 
depletion in knockout models does not significantly accelerate sarcopenia progression, indicating that impaired myor-
egeneration through type II myonecrosis may not be the primary driver of age-related muscle loss. Instead, accumulating 
data support that sarcopenia develops through multifactorial processes including neuromuscular junction remodeling with 
motor unit reorganization33 (shifting from type II to type I fiber predominance), chronic low-grade inflammation,34 and 
altered muscle protein turnover.35 While satellite cells may not be essential for maintaining muscle mass during aging 
under basal conditions, their dysfunction likely contributes to sarcopenia through paracrine mechanisms affecting the 
muscle microenvironment.36 Emerging research demonstrates that skeletal muscle exhibit altered crosstalk with immune 
cells (particularly macrophages),37 fibroblasts, and other stromal components,38 disrupting the coordinated signaling 

Figure 2 Signals and factors involved in sarcopenia development due to aging.
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required for effective muscle maintenance and repair.39,40 Epigenetic alterations in Polycomb/Trithorax group protein 
activity impair the temporal regulation of myogenic gene expression during regeneration.41 These reports suggest that 
satellite cell dysfunction in aging primarily manifests as impaired microenvironmental communication rather than an 
absolute loss of regenerative potential. (Figure 3).

Previous analysis highlight five novel hallmarks that are particularly consequential for age-related skeletal muscle 
decline: chronic low-grade inflammation, progressive neural dysfunction, extracellular matrix remodeling, diminished 
vascular perfusion, and disrupted ionic homeostasis, each representing promising therapeutic targets for sarcopenia 
intervention.39 Building upon this framework, newly work on meta-hallmarks of aging revealed the meta-hallmarks of 
aging and their intersection with cancer biology, particularly their conceptual expansion of the original hallmarks of 
aging to include impaired macroautophagy, sustained inflammaging, and gut microbiome dysbiosis - all highly relevant 
to sarcopenia pathophysiology - interact to drive muscle deterioration.42 These works collectively provide 
a comprehensive roadmap for developing targeted interventions that address both local tissue changes and organism- 
wide aging processes contributing to sarcopenia progression.

In conclusion, the combined effects of reduced muscle fiber number, atrophy, and satellite cell dysfunction are central 
contributors to sarcopenia.

Aging and Excitation-Contraction Coupling (E-CC)
Aging not only reduces muscle mass but also weakens muscle strength at both the single-fiber and whole-muscle 
levels.43,44 A key reason for this is the disruption of excitation-contraction coupling (E-CC), the process by which neural 
signals trigger muscle contractions. Impaired Ca2+ release from the sarcoplasmic reticulum (SR) is a potential mechanism 
behind this decline.45 Additionally, aging decreases the expression of the voltage-gated Ca2+ channel α1 subunit 
(Cav1.1), which is essential for E-CC. Research by Zhang et al found that genetic knockout of fast skeletal muscle 
troponin T3 (TnT3) downregulates Cav1.1. In aged sedentary mice, preventing TnT3 fragmentation led to a 20–30% 
increase in gastrocnemius muscle mass.46 These findings suggest that targeting E-CC abnormalities could help reverse 
age-related declines in muscle strength and mass.

Figure 3 Aging-induced loss of muscle mass and degeneration of muscle fibers.
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Aging and Autophagy Reduction
Aging reduces the number of MuSCs in skeletal muscle and disrupts their regulation. This results in impaired muscle 
regeneration and increased vulnerability to age-related decline.47 Autophagy plays a key role in muscle regeneration, 
supporting both stem cells and muscle fibers.48 Aged muscle stem cells often exhibit autophagy deficiencies, leading to 
elevated reactive oxygen species (ROS) levels, which impair regenerative capacity.49 Additionally, excessive ROS 
damages muscle tissue integrity, further contributing to muscle decline. A decrease in Myf5-positive cells, can lead to 
muscle defects. Research by Sakuma et al found an increase in autophagy-related molecules, such as p62/SQSTM1 and 
Beclin-1, in aged mice. However, there was no significant change in the autophagy protein LC3, suggesting a defect in 
autophagic capacity in aged mice.50 This deficiency contributes to impaired muscle regeneration, metabolic defects, and 
the progression of sarcopenia.

Aging and Inflammation
Chronic low-grade inflammation is a major driver of sarcopenia. As the body ages, increased fat tissue leads to the 
accumulation of pro-inflammatory macrophages and immune cells. This imbalance reduces anti-inflammatory cytokines 
and elevates pro-inflammatory molecules such as leptin, TNF-α, IL-1, and IL-6.50,51 Markers of inflammation, including 
C-reactive protein and erythrocyte sedimentation rate, are elevated in sarcopenic patients, particularly those with hip 
fractures.52 Pro-inflammatory cytokines accelerate muscle protein degradation, leading to a loss of muscle mass, strength, 
and function.53 The ratio of IL-6 to IL-10 is used as an indicator of inflammation in sarcopenia elderly patients.54 This 
imbalance promotes muscle degradation through pathways such as the ubiquitin-proteasome system and the lysosomal 
autophagy system. TNF-α could inhibit the Akt/mTOR pathway, triggering muscle degradation via the NF-κB signaling 
pathway.55 Therefore, chronic inflammation is a significant factor contributing to sarcopenia in the elderly.

Aging and Hormonal Decline
Hormonal changes play a key role in muscle loss with aging. Declining levels of hormones such as growth hormone, 
testosterone, thyroid hormone, and insulin-like growth factor reduce muscle regeneration and promote atrophy.56 Muscle 
loss is further exacerbated by increased catabolic signaling mediated by pro-inflammatory cytokines like TNF-α and IL- 
6.57 Hormonal deficiencies, including lower levels of insulin, estrogen, and androgens, are major contributors to the 
development of sarcopenia (Table 1).

Table 1 The Relationship Between Hormones and Sarcopenia

Hormones Relationship to Sarcopenia

Growth Hormone 

(GH)

GH can promote the increase of insulin-like growth factor 1 (IGF-1), which positively regulates the serine/threonine protein 

kinase B pathway, promotes protein synthesis, and inhibits protein degradation.58 IGF-1 induces myoblast proliferation by 
regulating the expression of Myogenic Regulatory Factor (MRF) and Pax3/7 genes, and affects muscle development during 

secondary muscle development.59

Androgens The decline in androgen levels leads to reduced skeletal muscle protein synthesis and may be one of the mechanisms of 

sarcopenia. Androgens can stimulate the mitotic activity of muscle satellite cells and influence muscle hypertrophy by 

increasing IGF-1 expression.60

Estrogens Estrogen is an antioxidant and muscle fiber membrane stabilizer that mainly enhances the sensitivity of skeletal muscle to 

anabolic stimuli, maintains skeletal muscle contractility, and resisting degenerative changes in skeletal muscle.61 Estrogen has 
a direct effect on muscle mass.

Vitamin D Prolonged low vitamin D level primarily causes type II muscle fiber atrophy, leading to decreased muscle strength and 
increased fall risk in the elderly.62

(Continued)
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Physical Inactivity and Sarcopenia
Physical inactivity is a key risk factor for sarcopenia.66 Muscle fiber decline typically begins around age 50, and 
sedentary individuals experience more pronounced reductions in muscle mass and strength than those who are physically 
active.67 Exercise activates various signaling pathways that promote muscle regeneration, enhancing both strength and 
mass.68 It has been shown to transiently elevate IL-6, which may stimulate the chronic expression of anti-inflammatory 
mediators such as IL-1 receptor antagonists and IL-10, while suppressing pro-inflammatory mediators like TNFα and IL- 
1β.69 In a study by Reid et al70 total daily sedentary time was found to be positively correlated with lower lean body mass 
percentage (−1.70% [95% CI: −2.30, −1.10]) and higher fat mass (2.92 kg [95% CI: 1.94, 3.30]) among 123 elderly 
individuals living independently. Frequent interruptions in sitting time were associated with a 45% reduction in the risk 
of pre-sarcopenia (OR = 0.55, 95% CI: 0.34, 0.91), indicating a strong association between sedentary behavior and 
greater declines in muscle mass and strength. Another cross-sectional study in a Japanese population used logistic 
regression analysis to explore the relationship between exercise habits and sarcopenia. The study considered factors such 
as skeletal muscle mass index (SMI), grip strength, walking speed, chair stand time, and single-leg standing time as 
dependent variables, while middle-aged exercise habits served as independent variables. The results showed significant 
positive correlations between middle-aged exercise habits and grip strength, walking speed, and single-leg standing time 
in older adults.71 This suggests that regular exercise during middle age acts as a protective factor against sarcopenia later 
in life. In summary, individuals who engage in less physical activity are more likely to experience reductions in muscle 
mass and strength, significantly increasing the risk of sarcopenia.

Mitochondrial Dysfunction and Oxidative Stress in Sarcopenia
Mitochondrial quantity, function, and morphology are closely linked to muscle mass and performance.72 The accumula-
tion of damaged mitochondria and impaired mitochondrial autophagy are common during aging and strongly associated 
with sarcopenia development.73

In sarcopenia, mitochondrial function declines, with reduced capacity to eliminate defective mitochondria and 
decreased adenosine triphosphate (ATP) synthesis. This results in lower ATP production and increased oxidative stress. 
These physiopathological changes are key contributors to muscle weakness and fatigue.74

As aging progresses, the mitochondrial quality-control system undergoes complex molecular changes, including 
downregulation of genes related to mitochondrial biogenesis, slowed biogenesis rates, mitochondrial DNA mutations, 
deletions, or copy number variations, and impaired mitochondrial respiratory chain function, leading to increased ROS 
production.75 Studies suggest that endurance exercise can improve muscle regeneration by modulating mitochondrial 
metabolism, which promotes satellite cell self-renewal and activation.76 Maintaining a functional mitochondrial network 
is essential for skeletal muscle health throughout life. Tamaki et al observed that mitochondrial dysfunction occurs at the 
onset of muscle mass and function decline, highlighting its central role in sarcopenia.77 Oxidative stress and mitochon-
drial dysfunction lead to DNA fragmentation,78 accelerate cellular denervation, decrease cellular regeneration and 
differentiation, and ultimately contribute to muscle loss (Figure 4).

Table 1 (Continued). 

Hormones Relationship to Sarcopenia

Thyroid Hormone 

(TH)

TH is an important regulator of muscle fibers, especially regulate fibers phenotype and muscle fibers composition. 

Hypothyroidism leads to a shift from fast to slow muscle fibers, while hyperthyroidism shifts in the opposite direction.63 

Thus, a reduction in T3 decreases the expression and activity of the signaling protein calmodulin phosphatase and its 

downstream transcription factors, leading to changes in muscle strength and function in the early stages of sarcopenia.64

Creatine Accelerate the proliferation process of satellite cells, promote the efficient repair of muscle fibers, ensure the rapid 

generation of ATP, enhance the body’s training adaptability, and indirectly reduce the degree of inflammation through the 

approach of improving muscle bioenergetics.65
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Growing evidence highlights the critical role of mitochondria in sarcopenia progression. Key features of sarcopenia 
include reduced muscle fiber diameter, decreased myosin heavy chain expression, increased activation of the ubiquitin- 
proteasome system (UPS), and elevated ROS levels.79 Mitochondria are the primary source of ROS,80 and oxidative 
phosphorylation (OXPHOS) during intense skeletal muscle contractions. With aging, mitochondrial function declines, 
leading to bioenergetic failure, increased fatigue, and excessive ROS production.81 This disrupts redox homeostasis and 
impairs cellular signaling.82 Mitochondrial quality control can be enhanced through mitophagy, the selective degradation 
of damaged mitochondria, which can be promoted by bioactive components or lifestyle interventions like exercise.83

Defective mitochondrial autophagy and the accumulation of damaged mitochondria also induce inflammation, leading 
to persistent energy imbalances and increased muscle protein catabolism, which further contribute to sarcopenia 
(Figure 5). 84 During aging, the reduced capacity of mitochondria in muscle cells is a major factor in the development 
of sarcopenia,85 and targeting mitochondrial dysfunction may offer new therapeutic approaches for treating sarcopenia.

Malnutrition and Sarcopenia
Adequate protein intake and optimal vitamin D levels are essential for maintaining skeletal muscle. Nutritional 
deficiencies, particularly low protein intake, are major contributors to muscle loss and sarcopenia.

Insufficient Protein Intake
Research indicates that muscle mass declines at rates of 3–8% per decade after age 30, accelerating to 1.1–1.4% per year 
after 50, and reaching 2.3% per year after 60. Muscle strength and power decline at a rate of 1.5% per year.86 The key 
factors behind this loss include reduced energy availability and inadequate protein intake. Protein consumption is crucial 
for preserving skeletal muscle mass, yet malnutrition is common among the elderly. In a study of 836 elderly individuals 
over 60, Hai et al87 found a strong association between poor nutritional status and sarcopenia. Aging leads to 
physiological deterioration, reduced protein intake and synthesis, and the accumulation of non-contractile proteins like 
lipofuscin and cross-linked proteins in muscle. To maintain muscle health, the elderly is recommended to consume 
1.0–1.2 g/kg of high-quality protein daily.88 Insufficient protein intake is a significant risk factor for sarcopenia.

Vitamin D Deficiency
Vitamin D deficiency is associated with reduced muscle strength, especially in the elderly, who often experience 
decreased vitamin D synthesis due to limited sun exposure and metabolic disorders. Studies have shown that treating 
muscle cells with 100 nM Vitamin D3 for 1–12 days enhances the expression of myogenic regulatory factors, promoting 
muscle fiber differentiation.89 Nakamura et al demonstrated that low vitamin D levels lead to muscle fiber reduction and 
muscle atrophy in mice.90 Vitamin D plays a critical role in muscle tone and contraction.91 Overexpression of the vitamin 
D receptor (VDR) in rats has been shown to promote muscle hypertrophy, increasing muscle cross-sectional area and 
enhancing anabolic signaling pathways such as the mTOR complex 1 (mTORC1), which stimulates protein synthesis.92 

Prolonged vitamin D deficiency primarily affects type II muscle fibers, leading to muscle atrophy, reduced strength, and 
an elevated risk of falls in the elderly.93 Harvey et al94 reported that vitamin D supplementation reduces the risk of falls 
by 8%–22%. Additionally, vitamin D has been shown to increase serum IGF-1, which may mitigate muscle atrophy by 

Figure 4 Mitochondria dysfunction and aging.
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inhibiting NF-κB and Smad signaling, thereby enhancing muscle growth.95,96 Extensive research has established 
a significant association between suboptimal serum 25-hydroxyvitamin D (25(OH)D) levels (<50 nmol/L) and impaired 
muscle protein synthesis, reduced muscle strength, and accelerated progression of sarcopenia, as documented in multiple 
clinical studies.97–100

Chronic Diseases and Sarcopenia
Many older adults suffer from chronic diseases such as chronic kidney disease, heart failure, lung dysfunction, cancer, diabetes, 
and hyperthyroidism. These conditions contribute to muscle deterioration, leading to atrophy and functional decline.101–103

Diabetes Mellitus (DM) and Dyslipidemia in Sarcopenia
High blood glucose levels are a risk factor for age-related muscle loss and dysfunction104 Insulin resistance, elevated 
glucose levels, and increased glucocorticoids accelerate muscle atrophy.

Chronic Kidney Disease and Sarcopenia
Chronic kidney disease impairs muscle precursor (satellite) cell function, reducing myogenesis and contributing to 
sarcopenia.105 Other factors, such as prolonged dialysis, comorbid diabetes, elevated phosphate levels, and malnutrition, 
further increase the prevalence of sarcopenia.106

Figure 5 Mitochondrial dysfunction in aging: ROS accumulation, inflammation, and muscle senescence.
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Cancers and Sarcopenia
In cancer patients, oncogenic drivers (eg, MYC, RAS, HIF-1α) promote tumor progression through metabolic reprogramming 
and oxidative damage.107 Concurrently, aging-associated epigenetic alterations (aberrant DNA methylation, dysregulated 
histone modifications) and genetic defects (telomere attrition, mitochondrial DNA mutations) further exacerbate genomic 
instability.42 These synergistic mechanisms not only drive tumorigenesis but also induce metabolic imbalance, directly 
impairing muscle protein homeostasis and suppressing muscle regenerative capacity, thereby accelerating the development of 
sarcopenia. Sarcopenia in this population is driven by cancer-related anorexia, malignancy, surgical stress, and the adverse 
effects of chemotherapy.108 Inflammatory cytokines triggered by cancer can induce muscle breakdown, exacerbating muscle 
loss.109 A study using tumor mouse models revealed that activation of the receptor for advanced glycation end-products 
(RAGE) by S100B induces muscle atrophy, suggesting that chronic RAGE activation in cancer patients is linked to systemic 
inflammation and muscle degradation. Anticancer treatments also worsen physical frailty, contributing to sarcopenia.110

Heart and Lung Dysfunction and Sarcopenia
In heart failure, continuous metabolic demand depletes skeletal muscle protein, increasing the risk of sarcopenia.111 In 
postoperative non-small cell lung cancer patients, obstructive ventilatory impairment (FEV1% <70%) is an independent 
risk factor for skeletal muscle loss.112

Hyperthyroidism and Sarcopenia
Hyperthyroidism is a well-known cause of sarcopenia.113 Animal studies show that hyperthyroid mice experience greater 
muscle fatigability, and the muscle mass and tone decrease in Slc16a2 knockout mice (Mct8KO), which may due to 
elevated muscle thyroid hormone levels.114,115 Clinically, hyperthyroid patients often present with exercise intolerance, 
cramps, muscle pain (myalgia), and muscle weakness, likely due to increased calcium ion circulation.116

Genetic Factors and Sarcopenia
The pathogenesis of sarcopenia is multifactorial, with genetic factors playing a key role alongside environmental influences. 
Recent studies emphasize the impact of genetic variations in structural and metabolic proteins, growth factors, hormones, and 
inflammatory cytokines.117 Heritability accounts for up to 64% of muscle strength variability in aging populations.118 Studies 
have identified the COL15A1 gene as one of the genes with shared genetic co-localization evidence related to sarcopenia, and 
increased expression of the COL15A1 contributed to sarcopenia development.119 Specific gene polymorphisms, such as in the 
ACTN3 gene, which influences fast-twitch muscle fibers, are associated with differences in muscle mass and performance in 
older adults.120 Emerging evidence underscores the critical involvement of epigenetic regulation in the pathogenesis and 
progression of sarcopenia.121 Age-related hypermethylation of DNA and elevated histone deacetylase (HDAC) activity have 
been shown to suppress myogenic gene expression and impair protein biosynthesis pathways essential for muscle 
homeostasis.122 Epigenome-wide analyses have revealed 176 differentially methylated CpG sites and 141 distinct methylomic 
regions significantly associated with sarcopenic phenotypes, with functional enrichment observed in pathways governing 
myotube fusion dynamics, mitochondrial oxidative phosphorylation, and voltage-gated calcium channels.123 Simultaneously, 
epigenetic regulators including DNA methylation and HDACs reciprocally modulate miRNA expression, forming an integrated 
regulatory network wherein miRNAs cooperate with other epigenetic factors to coordinately govern skeletal muscle develop-
ment and functional adaptation.124 Myogenic miRNAs (including the pro-myogenic miR-1/133/206 cluster and muscle-specific 
miR-208b) exert central regulatory functions in skeletal muscle development by targeting and suppressing inhibitory factors such 
as HDAC4 and Pax7, while establishing positive feedback loops with key myogenic transcription factors MyoD and MEF2.125 

These genetically related pathophysiological mechanisms interact to exacerbate muscle atrophy and increase the risk of 
sarcopenia. Clinically significant methylation alterations have been identified in sarcopenic cohorts, including 17 differentially 
methylated CpG sites and 7 differentially methylated regions (DMRs) were confirmed between patients with sarcopenia and 
control individuals; hypomethylation at specific FGF2_30 that demonstrates progressive reduction correlating with disease 
severity. Such epigenetic signatures hold promise as diagnostic biomarkers for sarcopenia risk stratification and therapeutic 
monitoring.126 Emerging therapeutic strategies focus on epigenetic reprogramming interventions targeting these dysregulated 
pathways to restore musculoskeletal integrity, offering novel approaches for sarcopenia management.127
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Hydration and Muscle–Water Balance and Sarcopenia
Hydration plays a vital role in muscle function and health. Intracellular water (ICW) and extracellular water (ECW) are 
crucial to maintaining muscle integrity. ICW supports intracellular homeostasis, protein synthesis, and metabolic 
function. ECW, distributed in interstitial spaces and blood, facilitates nutrient transport and metabolic waste 
removal.128 The balance between ICW and ECW is regulated by aquaporins, ion channels, and transporters et.al. 
Disruption of this balance can lead to muscle atrophy, reduced contractility, and weakness—hallmarks of sarcopenia.129

Neuromuscular Junction Transmission and Sarcopenia
Recent studies highlight changes in the neuromuscular junction (NMJ) as a central factor in sarcopenia pathogenesis.130 The 
NMJ, comprising presynaptic motor neuron terminals, the synaptic cleft, and postsynaptic muscle membranes, relies on 
acetylcholine (ACh) release for efficient neurotransmission. ACh binds to nicotinic acetylcholine receptors (nAChRs) on the 
muscle membrane, initiating muscle contraction.131 The C-terminal Agrin fragment(CAF) plays a crucial role in the function of 
NMJ. Studies have shown that the CAF has higher concentrations in older adults and patients with muscular dystrophy, it is 
associated with decreased muscle strength and function.132,133 CAF levels correlate with age-related sarcopenia and pathological 
conditions (eg, diabetes, chronic inflammation).134 Previous analysis demonstrated CAF has been identified as a marker for early 
diagnosis and monitoring of sarcopenia.135 The differential impact of CAF is associated with sarcopenia subtypes the primary 
(age-related) and secondary sarcopenia (eg, disuse atrophy, cachexia) demonstrated different utilization value on CAF’s 
diagnostic and prognostic utility. Exercise and pharmacological agents that may modulate CAF levels, highlighting its potential 
as a therapeutic target. As age progresses, the loss of motor neurons leads to muscle fiber denervation and NMJ fragmentation, 
impairing neurotransmission. Additionally, mitochondrial dysfunction and oxidative stress damage NMJ components.136 At the 
molecular level, the agrin-muscle-specific kinase (MuSK) pathway is critical for NMJ stability. Aging decreases agrin levels and 
MuSK activation, disrupting NMJ integrity. Similarly, the neuregulin-1 (NRG1)-ErbB2/4 signaling axis, essential for motor 
neuron and muscle fiber function, diminishes with age, contributing to NMJ degeneration.137

These findings uncover molecular mechanisms of NMJ degeneration and suggest potential therapeutic targets, such as 
agrin and MuSK regulation for sarcopenia. However, translating these insights into clinical practice requires further 
research to evaluate their safety and efficacy in humans.

Gut Microbiota and Sarcopenia
Emerging evidence has elucidated the critical involvement of gut microbiota dysbiosis in sarcopenia pathogenesis via the gut- 
muscle axis,138 with recent mechanistic investigations revealing novel therapeutic targets. Microbial-derived metabolites, 
particularly short-chain fatty acids (SCFAs)139 and quorum-sensing peptides (QSPs), have emerged as key mediators 
influencing skeletal muscle homeostasis. SCFAs, generated through bacterial fermentation of dietary fibers, exhibit dual 
regulatory functions: they promote muscle protein synthesis via mTOR pathway activation140 while simultaneously enhancing 
mitochondrial biogenesis and metabolic flexibility through AMPK/PGC-1α signaling.141 Interestingly, pediatric studies 
suggest gut microbial composition and fecal SCFA levels correlate with musculoskeletal parameters in a body fat- 
dependent manner.142 Preclinical models reveal butyrate supplementation mitigates cachexia-related muscle wasting through 
gut barrier stabilization and macrophage polarization modulation.143 Previous study systematic screening of 75 microbial 
quorum-sensing molecules identified 30 bioactive compounds affecting C2C12 myocyte dynamics, substantiating microbiota- 
derived QSPs as gut-muscle axis mediators.144 Specific QSPs, like iAM373,145 impair muscle regeneration through con-
current suppression of myogenic differentiation and activation of ubiquitin-proteasome degradation. Notably, multi-omics 
analyses demonstrate that fecal microbiota transplantation from juvenile rodents preserves gut barrier function, enhances 
mitochondrial performance, and attenuates age-related sarcopenia in senescent recipients, suggesting microbiota-modulating 
approaches may offer viable therapeutic strategies for musculoskeletal aging.146 These findings collectively underscore the 
therapeutic potential of modulating specific microbial metabolites while highlighting the need for further research to establish 
causality in human populations and develop targeted interventions.
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Sarcopenia Therapies
The primary goal in treating sarcopenia is to alleviate or reverse the decline in muscle mass and function. Traditional 
approaches have focused on nutritional interventions, exercise, and pharmacotherapy. Recently, innovative strategies 
such as stem cell and exosome therapy have been explored, offering new avenues for sarcopenia treatment. The evolving 
therapeutic approaches for sarcopenia are summarized as follows (Figure 6 and Table 2).

Exercise Intervention
Among the various sarcopenia interventions, physical activity is a cornerstone in both the prevention and treatment of 
sarcopenia. Resistance training and aerobic exercise are particularly effective in reducing the risk of chronic conditions 
and enhancing functional mobility in older adults. Current evidence indicates that individualized exercise prescriptions 
adhering to the FITT framework (Frequency, Intensity, Time, and Type) demonstrate therapeutic efficacy in ameliorating 
sarcopenia-related muscle weakness and functional decline in older adults.147 Dual-task, and power training may be 
particularly effective for reducing the C-terminal Agrin fragment—improving neuromuscular junction integrity, and 
suppressing sarcopenia progression.133 Studies have shown that aerobic exercise is mostly performed in the form of 
walking, stepping, and bicycle ergometry. For people with musculoskeletal problems, stretching of the upper, trunk, and 
lower limbs should be recommended to reduce the chance of injury in older adults.148 The most effective strategies for 
clinically meaningful increase in muscle mass of sarcopenic individuals involve either progressive resistance training 
protocols or targeted nutritional interventions combining extra energy with adequate protein intake. Current evidence 
strongly supports structured resistance exercise programs, particularly when combined with leucine-fortified essential 

Figure 6 Treatments for sarcopenia.
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amino acid supplementation or whey protein administration in cases of dietary protein inadequacy, as foundational 
therapeutic approaches for sarcopenia management.149 Importantly, comprehensive exercise interventions incorporating 
progressive resistance training as a core component demonstrate consistent efficacy in improving muscle strength and 
physical function among older adults with both frailty and sarcopenia, with meta-analytic data confirming superior 
outcomes compared to single-modality approaches.150 These multimodal strategies work synergistically by simulta-
neously stimulating muscle protein synthesis through mechanical loading while providing the necessary substrate 
availability for tissue remodeling, thereby addressing both the anabolic resistance and nutritional deficiencies character-
istic of age-related muscle loss. Resistance training, a cornerstone in managing muscle-wasting diseases,151 has been 
shown to improve muscle strength, mass, and function—key factors in mitigating sarcopenia.152 Evidence suggests that 
a resistance training regimen consisting of upper- and lower-body exercises, performed with moderate to high effort for 
1–3 sets of 6–12 repetitions, can be highly effective.153 These exercises may involve resistance machines, free weights, 
bodyweight movements, or resistance bands.154 Importantly, resistance training can be both enjoyable and tolerable for 
older adults, further reinforcing its effectiveness in sarcopenia treatment. This is exemplified by the Reablement 
Strategies targeting Sarcopenia (ReStart-S) program, a intervention specifically developed for long-term care residents. 
The ReStart-S framework integrates current evidence on sarcopenia pathophysiology with practical considerations for 
frail populations, offering healthcare providers an evidence-based template for developing tailored rehabilitation pro-
grams, have yielded promising results that warrant further investigation through large-scale randomized controlled trials 
to establish its effectiveness in mitigating age-related muscle decline.155 The epidemiological profile of sarcopenia 
demonstrates significant variability across clinical and community settings, with the highest prevalence rates consistently 
observed among institutionalized older adults in long-term care facilities. Current diagnostic criteria established by 
AWGS provide a standardized framework for classifying disease severity, enabling clinicians to distinguish between 
preclinical, established, and severe sarcopenia stages. This stratification is particularly crucial for developing targeted 
exercise interventions, as emerging evidence indicates that prescriptive parameters including intensity, frequency, and 
modality must be precisely calibrated to an individual’s diagnostic category and functional capacity to achieve optimal 
therapeutic outcomes. The ReStart-S program’s methodological framework offers particularly valuable insights into 
implementing targeted exercise interventions tailored to different stages of sarcopenia severity. Exercise interventions 
significantly improve muscle strength (SMD=0.62), muscle mass (SMD=0.28), and physical performance (gait speed 

Table 2 Advantages and Disadvantages of Sarcopenia Treatment Methods

Treatments Advantages Disadvantages

Exercise Physical exercise and physical stimulation therapies can prevent 
the onset and progression of sarcopenia by building muscle 

mass and strength and improving body function and balance.

These are mainly preventive and improvement measures with 
long treatment cycles and cannot treat cure sarcopenia.

Nutritional 

Intervention

Adequate protein intake and amino acid supplementation, 

combined with exercise therapy, can increase muscle protein 

synthesis, thereby treating sarcopenia. Supplementing calcium 
and vitamin D is crucial for musculoskeletal disorders.

The treatment duration is long, thus it can only serve as an 

adjunct therapy.

Medication Medications can enhance the proliferation and differentiation 

of muscle cells, osteoblasts, and muscle fibers, increasing 

muscle mass and strength, which in turn promotes muscle 
growth and hypertrophy.

There are numerous side effects and a lack of direct evidence 

regarding their efficacy on skeletal muscle.

Exosomes Exosomes can facilitate muscle regeneration following skeletal 
muscle injury and improve muscle protein synthesis and 

thickness.

The potential pathways for treating sarcopenia are not yet fully 
understood.

Stem Cell 

Transplantation

Modifying the internal microenvironment to promote muscle 

and nerve tissue repair and regeneration. It can restore muscle 

strength and alleviate sarcopenia.

The treatment is expensive, and may require steroid therapy 

to enhance the survival rate of cell transplants, which can be 

detrimental to patients’ health.
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+0.08 m/s, SPPB +1.2 points) in older adults with sarcopenia. High-intensity progressive resistance training (>70% 
1-RM for ≥12 weeks) demonstrates optimal efficacy, while combined training yields particularly significant functional 
benefits, with favorable safety profile (AE rate <5%).156 Importantly, These exercises are both pleasant and tolerable for 
the elderly, further strengthening their effectiveness in treating sarcopenia.157,158 Additionally, physical stimulation, such 
as Whole Body Vibration Training (WBVT), has proven beneficial in the early stages of sarcopenia. WBVT stimulates 
bone progenitor cell activity, enhances osteoblast function, and increases levels of sex hormones and cytokines, 
ultimately improving bone density and muscle function.159,160 In conclusion, physical activity and physical stimulation 
therapies, are vital components for the prevention and management of sarcopenia.

Nutritional Intervention: Protein and Vitamin D Supplementation
Protein Intake
Malnutrition, particularly inadequate protein intake, is a key contributor to sarcopenia. Insufficient dietary protein impairs 
the synthesis of muscle proteins, exacerbating muscle loss. While the current recommended dietary allowance (RDA) for 
protein in adults is 0.8 g/kg of body weight per day,161 this is often insufficient for the elderly to maintain muscle mass 
and function. Recent expert guidelines suggest that elders should consume 1.0–1.5 g/kg/day of high-quality protein, 
especially from animal sources such as eggs and meat, to support muscle hypertrophy when combined with resistance 
training.162 Higher protein intake has been linked to better physical function, with positive associations between protein 
consumption and physical activity, as well as negative correlations with sedentary behavior.163 Leucine-rich protein 
supplements, such as whey protein, can help prevent muscle loss, particularly during periods of bed rest or inactivity.164 

Given the common decline in protein intake with age,165 it is recommended that older adults aim for around 1.6 g/kg/day 
to combat sarcopenia.166 Nutrient intake can also be affected by oral health. Logistic regression analysis indicated that 
the prevalence of sarcopenia is increased among patients diagnosed with reduced oral function (odds ratio: 1.59, 95% 
confidence interval: 1.02–2.47).167 A cross-sectional study targeting community-dwelling older adults reveals that the 
prevalence of reduced oral function is 34.3% (n = 427) in the robust group and 65.2% (n = 178) in the sarcopenic 
group.168 With advancing age, poor oral health status exerts a significant negative impact on food intake, which in turn 
leads to muscle loss and a decline in muscle strength.169 It is recommended to engage in daily oral function training and 
undergo regular oral examinations to ensure adequate protein intake.170 Ensuring attention to oral health status provide 
adequate protein intake, are essential for maintaining muscle health and mitigating sarcopenia in older adults.

Vitamin D Supplementation
Vitamin D deficiency is a major risk factor for muscle atrophy, falls, and fractures in the elderly. Individuals with 
insufficient vitamin D levels often experience muscle weakness and reduced mobility. This deficiency is particularly 
common in older adults with limited sun exposure.171 Vitamin D plays a crucial role in muscle metabolism, facilitating 
calcium absorption and maintaining serum calcium and phosphate levels, which are essential for muscle function.172 

Studies suggest that vitamin D supplementation, particularly in combination with leucine, may enhance muscle function 
and physical performance by promoting protein anabolism. Maintaining optimal serum 25-hydroxyvitamin D levels 
(50–75 nmol/L) is crucial for preserving muscle strength and supporting muscle protein synthesis. It is recommended that 
older adults receive 800–1000 international units of vitamin D per day to support musculoskeletal health and reduce the 
risk of disease.173 Intervention studies indicate that daily supplementation with 1000 IU vitamin D effectively enhances 
anabolic response, muscle mass, and physical performance in community-dwelling older adults (≥60 years), particularly 
when baseline levels are deficient, with demonstrated efficacy in elevating 25(OH)D concentrations from suboptimal 
(28.1 ng/mL) to therapeutic ranges.174 Emerging evidence suggests that combined nutritional strategies incorporating 
vitamin D3 with whey protein, leucine, calcium, and structured exercise programs yield superior musculoskeletal 
outcomes compared to monotherapy approaches.173 Importantly, dose-response studies reveal a plateau effect in 
therapeutic benefits, with high-dose supplementation (3750 IU/day) showing no additional advantage over standard 
doses (600 IU/day) in overweight elderly populations (>65 years), suggesting the existence of endocrine regulatory 
mechanisms that maintain vitamin D homeostasis.175
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Contrasting these findings, recent randomized controlled trials demonstrate that pharmacological interventions using 
active vitamin D metabolites fail to produce clinically meaningful improvements in key sarcopenia parameters— 
including handgrip strength, timed-up-and-go performance, appendicular lean mass, or muscle function—among older 
adults without severe deficiency.176,177 Notably, even high-dose supplementation (2000 IU/day vitamin D3) showed no 
significant effects on lower extremity power, muscle strength, or physical performance in functionally impaired elderly 
individuals (aged 65–89). These contradictory observations highlight critical knowledge gaps regarding the therapeutic 
application of vitamin D in sarcopenia management, particularly concerning: (1) the necessity of pre-existing deficiency 
for clinical efficacy, (2) potential differential effects between native vitamin D and active analogs on vitamin D receptor 
signaling pathways in muscle tissue, and (3) the physiological importance of endogenous 1α-hydroxylation in renal and 
extrarenal tissues for optimal musculoskeletal outcomes. Resolution of these outstanding questions through carefully 
designed mechanistic studies will be essential for developing evidence-based vitamin D supplementation strategies 
tailored to specific sarcopenia phenotypes and metabolic states.

It is important to acknowledge that the Endocrine Society has recently revised its position on defining vitamin 
D status, as articulated in their latest Guideline Communication.178 After thorough evaluation of existing clinical trial 
data, the expert panel concluded that current evidence does not support establishing specific 25(OH)D thresholds that 
reliably predict clinically meaningful benefits from vitamin D supplementation. The Society explicitly withdrew its 
previous classifications of vitamin D “sufficiency” (≥30 ng/mL [75 nmol/L]) and “insufficiency” (20–30 ng/mL [50–75 
nmol/L]), citing substantial limitations in the available evidence and assigning very low certainty to these historical 
cutoffs. This paradigm shift introduces significant challenges for clinical decision-making regarding vitamin 
D supplementation in sarcopenia management. The absence of validated biochemical thresholds complicates the 
identification of patients who might benefit from intervention, particularly given the current lack of consensus on how 
to interpret serum 25(OH)D levels in the context of musculoskeletal health.

Pharmacological Treatment
Currently, the development of drugs for sarcopenia remains in its early stages. To date, no approved pharmacological 
agents specifically targeting sarcopenia have been developed, and the management of sarcopenia primarily focuses on 
strength-training exercises as well as an increased intake of energy-dense foods and a diet rich in protein.179 However, 
the “Sarcopenia Consensus” highlights several promising agents, including anabolic steroids, vitamin D, growth 
hormone, β-receptor agonists, angiotensin-converting enzyme inhibitors, myostatin inhibitors, and activin receptor 
antagonists. These drugs, though not yet widely used for sarcopenia, represent potential therapeutic avenues for future 
clinical interventions (Table 3).

Exosome Therapy
In recent years, microvesicles and exosomes have gained significant attention for their promising applications in tissue 
repair, particularly skeletal muscle regeneration.210 Exosomes secreted by skeletal muscle cells, which carry miRNAs 
and other regulatory molecules, have been identified as critical regulators of muscle homeostasis.211 For example, a study 
by Li et al212 demonstrated that exosomes from skeletal muscle cells increased muscle strength by 30% in a mouse model 
of sarcopenia, underscoring their role in regulating muscle function. Ma et al reported that the use of exosomes derived 
from human umbilical cord MSCs significantly improved grip strength and increased muscle mass in muscular dystrophy 
mice.213 Exosomes derived from adipose tissue mesenchymal stem cells (AD-MSCs) have also shown novel paracrine 
effects on skeletal muscle repair. A study revealed that these exosomes, rich in cytokines, chemokines, and growth 
factors, enhanced muscle repair by 50% in areas of muscle damage, highlighting their potential in promoting muscle 
healing.214 Recent research further suggests that exosomes can stimulate muscle regeneration following injury and 
promote muscle protein synthesis.215 Williams et al216 found that exosome treatment after exercise led to a 25% increase 
in muscle fiber size and a 20% improvement in muscle strength in aged rats, demonstrating their potential to enhance 
exercise-induced muscle health.

Although the precise mechanisms through which exosomes exert these effects are not fully understood, ongoing 
studies are uncovering their therapeutic potential in treating sarcopenia.
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Table 3 Current Status and Pros and Cons of Drug Treatments for Sarcopenia

Drugs Advantages of the Drug Current Limitations of the Drug

Testosterone Testosterone therapy(TRT) can promote protein 
synthesis by stimulating the Akt/mTORC1 pathway and 

inhibit protein degradation by suppressing FoxO- 

targeted gene expression.180 Treatment with 
testosterone in a Phase II trial improved patients’ rapid 

gait speed at 3 and 12 months and knee strength at 12 

months.181 Testosterone replacement therapy greatly 
(TRT) improves patients’ muscle mass, lean body mass 

and physical activity, as well as their quality of life.182,183

TRT improves physical performance but does not 
increase muscle strength and is associated with a range 

of adverse effects such as allergic reactions, thrombosis 

and prostate cancer.184,185

Synthetic steroids / 

Selective Androgen 

Receptor Modulators 
(SARMs)

SARM interacts with the androgen receptor and 

promotes nuclear translocation of the complex, thereby 

enhancing muscle mass.186 SARMS binding to androgen 
receptors in the prostate and seminal vesicles is partially 

agonistic, whereas it is fully agonistic in muscle and bone. 

Meanwhile, several clinical trials found that SARM 
increased muscle mass and decreased fat mass.187 

Another selective androgen receptor modulator, S42, 
promotes protein synthesis and muscle hypertrophy 

through the activation of the Akt/mTORC1/p70S6K 

signaling pathway. Additionally, S42 reduces protein 
degradation by suppressing MuRF1 and atrogin1 

expression, mitigating muscle atrophy.188

SARMs do not demonstrate superiority over 

testosterone.

Growth hormone 

(GH)

GH is essential for growth and development of 

muscle.189 GH replacement therapy promoted an 

increase in skeletal muscle protein synthesis and 
mitochondrial biogenesis pathways. At the same time, 

the expression of inhibitory factors that inhibit skeletal 

muscle regeneration and the protein degradation was 
reduced.190 Endogenous ligands for the growth hormone 

secretagogue receptor stimulate the release of growth 

hormone and IGF-1, while also inhibiting the 
inflammatory response, alleviating sarcopenia.191

GH drugs can increase muscle mass and enhance muscle 

strength; However, side effects are also evident, including 

joint pain, soft tissue edema, carpal tunnel syndrome and 
diabetes.

Active vitamin D Vitamin D interact with nuclear receptors (VDR) 
improves muscle function and mass by regulating the 

expression of target genes via VDR mediation.192 

Vitamin D supplements, either alone or in combination 
with other treatments, improved muscle mass or 

increased physical function.193 Vitamin D deficiency is 

associated with decreased muscle mass; Approximately 
50% of individuals over the age of 65 have low vitamin 

D levels.194 Vitamin D supplement increase muscle mass 

(whole body and lower extremities).

Vitamin D supplement regimens improve muscle mass 
and lower limb function in people with sarcopenia This 

health benefit cannot be attributed to vitamin D alone. 

Clinicians are advised to make judgements about the use 
of vitamin D supplements due to racial and age 

differences.195

(Continued)
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Table 3 (Continued). 

Drugs Advantages of the Drug Current Limitations of the Drug

Anti-myostatin agents The active form of muscle growth inhibitor (MSTN) 

binds to activator receptor type 2B (ActR2B), and 
thereby activates protein degradation signaling through 

Smad2/3-mediated transcription. Smad activates the 

inhibition of muscle protein synthesis by blocking Akt 
signaling. Targeting MSTN/Activin-ActR2B pathway have 

been shown to prevent loss of muscle mass and 

strength.196–198 

LY2495655 is a humanised recombinant immunoglobulin 

antibody targeting muscle growth inhibitors. Becker 

et al199 found that monthly subcutaneous injections of 
315 mg of LY over a 20-week period resulted in 

significant improvements in lean body mass and several 

tests of physical function. 
Intramuscular injection of follicle arresting hormone 

(ACE-083) can increase lean body mass and thigh muscle 

mass in postmenopausal women.200 The anti-myostatin 
ActRIIb antibody bimagrumab (BYM338) can enhance 

physical function in sarcopenia patients and increase 

muscle mass in COPD patients with cachexia.201

Muscle growth inhibitors may cause off-target effects 

including nosebleeds, bleeding gums, and skin 
vasodilation.202 Although no serious safety concerns 

arose in the trials, more research is needed to confirm 

the potential benefit of MSTM in sarcopenia patients.

β-adrenergic agonists β2 receptor agonists promote muscle growth through 

the insulin/insulin-like growth factor-1 signaling pathway, 
enhancing anti-proteolytic and hypertrophic capacity by 

mediating β2 adrenergic receptor activation and possibly 

FOR-induced protein synthesis.203 β2 adrenergic 
receptor agonists can effectively prevent skeletal muscle 

atrophy and oxidative stress in uremic mice.204 The β2 

receptor agonist clenbuterol increases skeletal muscle 
strength and mass by mediating the β-inhibin 1 signaling 

pathway.205

The effectiveness of β-adrenergic agonists in treating 

sarcopenia is currently under investigation.

Angiotensin-converting 

enzyme inhibitors

ACE inhibitors (ACEIs) increased muscle mass and grip 

strength. ACEIs not only improve mitochondrial function 

and elevate IGF-1 but also promote skeletal muscle 
glucose uptake and activate IGF-1/IGFR by 

downregulating NF-κB and FoxO.206 Activation of PKB 

by ACEIs can increase protein synthesis via mTOR- 
dependent pathways, reduce autophagy,207 and suppress 

inflammatory responses, improving skeletal muscle 

function.

The ACEI’s effects on skeletal muscle in elderly 

individuals remains lack direct evidence.

Acetylcholinesterase 

inhibitors

Reduce the muscle weakness caused by sarcopenia.208 Side - effects related to acetylcholine in aspects such as 

the gastrointestinal tract and the nervous system.

Anti-inflammatory 
therapies

Have the potential to enhance the process of muscle 
regeneration and simultaneously slow down the 

phenomenon of muscle atrophy.209

Older patients are more likely to have significant side - 
effects when using it.
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Stem Cell Therapy
Mesenchymal stem cells (MSCs) therapy offers a promising approach for substantial diseases due to their self-renew and 
differentiation potential into various somatic cells.217 Upon injury or stress, MSCs are rapidly activated and quickly 
proliferate to replenish damaged muscle cells and repair of the muscle fibers structure. Notably, MSCs not only 
proliferative and differentiation to replace myogenic cells and repair damaged structure, but also secrete paracrine 
factors that enhance MSC activity and muscle regeneration.218

MSC therapy has demonstrated potential in sarcopenia treatment. For example, Xu et al219 reported a 25% increase in 
muscle strength and 15% increase in muscle mass in sarcopenic rats treated with MSCs, highlighting their regenerative 
potential. Additionally, MSC therapy has been shown to restore mitochondrial function in aging muscles.220 Zhao et al221 

found a 40% increase in mitochondrial enzyme activity and a 30% reduction in oxidative stress markers in aged muscle tissue 
following MSC treatment, underscoring its effectiveness in addressing mitochondrial dysfunction associated with sarcopenia.

The extracellular matrix (ECM) and MSCs are crucial for muscle regeneration.222 Disruption of ECM components is 
associated with impaired muscle regeneration in sarcopenia.223 Previous study suggest that targeting ECM composition 
—such as using matrix metalloproteinase inhibitors—may improve muscle regeneration.224 Additionally, the myostatin 
signaling pathway is critical for regulating MSC activity and muscle repair. Myostatin monoclonal antibodies and 
receptor antagonists can block this pathway, promoting muscle regeneration.225 Ongoing clinical trials are evaluating 
the efficacy and safety of myostatin inhibitors in elderly sarcopenic patients.

Induced pluripotent stem cells (iPSCs) derived from reprogrammed somatic cells also offer promise, particularly for 
generating patient-specific stem cells for autologous transplantation, reducing the risk of immune rejection.226

In summary, while traditional treatments for sarcopenia remain limited, emerging evidence supports stem cell therapy 
as a viable option for enhancing muscle regeneration and restoring mitochondrial function, offering new tools for 
improved management of sarcopenia.

Critical Unmet Needs and Future Directions
Despite considerable advances in sarcopenia research, several critical challenges persist. First, the absence of universally 
accepted diagnostic criteria continues to hamper clinical translation, with current tools demonstrating variable sensitivity 
(particularly for early-stage detection) and limited feasibility in resource-constrained settings. Second, while emerging 
therapies (eg, exosome-based interventions) show preclinical promise, robust long-term efficacy and safety data from 
randomized controlled trials remain lacking—a gap further compounded by the paucity of standardized outcome 
measures. Third, the field would benefit from mechanistic studies elucidating tissue-specific responses to novel inter-
ventions across diverse patient populations. Addressing these limitations will require coordinated efforts to: (1) establish 
validated biomarkers for disease staging; (2) develop pragmatic diagnostic tools for community settings; and (3) 
implement unified endpoints in therapeutic trials.

Conclusion
The global prevalence of sarcopenia is rising with an aging population, underscoring the urgent need for effective 
prevention and treatment strategies. Its clinical manifestations are often subtle, making early detection challenging. By 
the time symptoms become noticeable, significant muscle loss and dysfunction may have already occurred, increasing the 
risk of falls, fractures, and other complications. Therefore, early screening is crucial. Despite growing awareness, 
understanding of sarcopenia remains limited, with current diagnostic methods lacking standardization and insufficient 
evidence on the safety and efficacy of pharmacological treatments.

Emerging therapies, including stem cell and exosome-based approaches, are still under investigation and subject to ongoing 
debate. While emerging therapeutic modalities—particularly stem cell-derived extracellular vesicles and engineered exosome 
platforms—show preclinical potential, their translation requires rigorous evaluation through multicenter trials addressing three 
pivotal questions: (1) long-term safety profiles in metabolically compromised aging cohorts; (2) cost-benefit ratios relative to 
conventional interventions; and (3) practical implementation barriers across diverse healthcare systems. Concurrently, diagnostic 
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standardization efforts must reconcile sensitivity (particularly for early-stage detection) with clinical feasibility, potentially 
through multimodal algorithms integrating biochemical markers with functional assessments.

In general, greater emphasis is needed on early screening and the development of comprehensive, multidisciplinary 
treatment strategies to mitigate the widespread impact of sarcopenia.
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