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Abstract: Sepsis, a lethal organ dysfunction syndrome driven by aberrant host responses to infection, intertwines excessive 
inflammatory responses and dysregulated coagulation processes in its pathophysiology. Emerging research reveals the complement 
terminal membrane attack complex C5b-9 orchestrates ultralarge von Willebrand factor (ULVWF) release from vascular endothelial 
cells (ECs) through multifaceted mechanisms: C5b-9 compromises EC membrane integrity, activates calcium influx cascades, and 
provokes NLRP3 inflammasome signaling, triggering massive exocytosis of ULVWF stored within Weibel-Palade bodies (WPBs). 
When ADAMTS13 activity falters, undegraded ULVWF complexes with platelets to spawn microthrombi, precipitating microvascular 
occlusion and multiorgan collapse. Strikingly, elevated plasma von Willebrand factor (vWF) antigen levels in sepsis patients correlate 
robustly with endothelial injury, thrombocytopenia, and mortality—underscoring C5b-9-driven vWF release as a linchpin of septic 
coagulopathy. Current therapeutic strategies targeting these pathways, including recombinant ADAMTS13 (rhADAMTS13), 
N-acetylcysteine (NAC), and complement inhibitors like eculizumab, face limitations in clinical translation, necessitating further 
validation of their efficacy. Additionally, investigating complement regulatory molecules such as CD59 may unlock novel therapeutic 
avenues. Deciphering the intricate interplay within the C5b-9-vWF axis and advancing precision therapies hold transformative 
potential for ameliorating sepsis outcomes. 
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Introduction
Sepsis is a life-threatening acute organ dysfunction syndrome resulting from the host’s dysfunctional response to infection.1 In 
the pathogenesis of sepsis, systemic inflammatory cascades upregulate tissue factor expression, triggering coagulation system 
activation while suppressing both anticoagulant mechanisms and fibrinolytic pathways. This coordinated dysregulation 
promotes platelet hyperreactivity and facilitates fibrin-rich thrombogenesis. In parallel, thrombin/Xa/fibrin complexes amplify 
inflammatory responses through protease-activated receptor (PAR) signaling, inducing endothelial glycocalyx degradation, 
impaired nitric oxide bioavailability, and activated protein C (APC) dysfunction. These pathophysiological alterations 
culminate in microcirculatory thrombosis, tissue hypoperfusion, a self-perpetuating pathological loop of inflammation- 
apoptosis crosstalk, and subsequent multiple organ dysfunction syndrome (MODS) development.2,3 Sepsis-induced shock 
and subsequent progression to MODS originate from complex pathophysiological mechanisms including microcirculatory 
failure (characterized by tissue hypoxia and resultant metabolic dysregulation), profound mitochondrial dysfunction with 
impaired cellular energy production, progressive immunosuppression accompanied by compromised host defense mechan-
isms, cross-organ propagation of inflammatory mediators through systemic cytokine storms and chemokine cascades, as well 
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as disruption of autonomic nervous system homeostasis leading to dysregulated neuroendocrine-immune axis coordination. 
These mechanisms, through a complex balance of adaptive compensation and pathological decompensation, collectively drive 
organ dysfunction.4–9 Recently, a novel coagulation pathway, the platelet microthrombus pathway theory, has emerged.10 

According to this theory, the C5b-9 complex, activated by the complement system, targets vascular endothelial cells (ECs), 
stimulating them to release von Willebrand factor (vWF), which interacts with platelets to form ultralarge von Willebrand 
factor (ULVWF) microthrombi, ultimately contributing to organ dysfunction.11 However, this theory requires further and 
more comprehensive investigation. A previous retrospective clinical study revealed that approximately 40% of non-sepsis- 
induced coagulopathy (SIC) patients with septic shock exhibited elevated vWF antibody expression, which was negatively 
correlated with platelet count reduction and associated with organ damage and increased mortality. This incidental finding 
supports the existence of the platelet-ULVWF microthrombus pathway and reinforces the “endothelial dual activation theory” 
hypothesis.10,12 This theory refers to the occurrence of endotheliopathy in sepsis, where endothelial dysfunction activates two 
independent endothelial pathways; the inflammatory pathway and the thrombotic pathway. Therefore, we hypothesize that 
C5b-9 may mediate the release of vWF from vascular ECs, thereby promoting the formation of platelet-ULVWF micro-
thrombi. Further studies are planned to validate this hypothesis and identify new therapeutic targets for preventing micro-
thrombus formation in sepsis.

The Role of the C5b-9 Complex in the Complement System During Sepsis
Formation of C5b-9 in the Complement System
The complement system is a crucial component of the human innate immune system, playing a vital role in maintaining 
immune balance and defending against infections.13 In severe conditions such as sepsis and acute respiratory distress 
syndrome (ARDS), excessive activation or dysregulation of the complement system can lead to pathological conditions, 
including tissue damage, uncontrolled inflammation, and microvascular leakage syndrome, all of which are closely associated 
with disease severity and poor prognosis.14,15 In sepsis, the complement system is primarily activated via the classical 
pathway, alternative pathway, and mannan-binding lectin (MBL) pathway,16 which ultimately converge to form C3 convertase 
and C5 convertase. These convertases initiate the production of anaphylatoxins (C3a and C5a) and opsonins (C3b/iC3b). C3a 
and C5a bind to specific receptors, triggering the release of inflammatory mediators, stimulating ECs, and promoting cell 
migration and activation. C5 convertase cleaves C5 into C5a and C5b,17,18 with C5b subsequently binding to C6 to activate the 
downstream terminal complement pathway. The C5b-6 complex progressively associates with C7, C8, and C9 in a sequential 
manner, ultimately forming the C5b-9 complex, also known as the membrane attack complex (MAC)19 (Figure 1).

Figure 1 Formation and main functions of C5b-9. This figure was created by Figdraw.18–20 

Note: It illustrates the formation process of the membrane attack complex C5b-9 through classical pathways, MBL pathways, and bypass pathways, focusing on the roles of 
C5b and C5b-9 in circulation.
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The Main Function of C5b-9 in the Complement System
C5b-9 plays a pivotal role in the complement system, with its key functions (Figure 1) including: 1. Cell Membrane 
Damage:20 The primary function of the C5b-9 complex is to form transmembrane channels on the membranes of target 
cells, allowing non-selective passage of substances into and out of the cell. This leads to damage of the cell membrane 
and ultimately results in cell lysis. 2. Cell Signaling:21 Interaction between the C5b-9 complex and the cell membrane can 
influence cell signaling, thereby affecting cell behavior and function. 3. Apoptosis Regulation:22 The C5b-9 complex may 
play a role in regulating apoptosis, particularly under pathological conditions, where it can either promote or inhibit 
programmed cell death. 4. Pathogen Elimination:23 During the immune response, C5b-9 complexes contribute to 
pathogen elimination by forming pores in the cell membranes of bacteria and viruses, compromising their integrity 
and leading to pathogen death. 5. Inflammatory Response:24 The assembly and activation of the C5b-9 complex can 
initiate an inflammatory response by promoting the release of inflammatory mediators, increasing vascular permeability, 
and attracting immune cells to the site of infection or injury. 6. Immune Regulation:25 Complement system activation 
enhances the immune response, with the formation of C5b-9 being one of the final steps in the complement cascade. This 
complex regulates immune activity either by directly destroying pathogens or modulating immune cell function. 7. 
Autoimmune and Inflammatory Diseases:26,27 Abnormal activation or dysregulation of the C5b-9 complex has been 
implicated in various autoimmune and inflammatory diseases, including atypical hemolytic uremic syndrome (aHUS), 
certain nephritides, and vasculitis.

The C5b-9 complex plays a central role in the complement system, directly eliminating pathogens or target cells 
through the formation of membrane attack complexes. It is also involved in various immunomodulatory and inflamma-
tory processes, playing a critical role in both immune defense and immune damage in diseases such as sepsis.

The Role of C5b-9 in Various Diseases
In complement-mediated aHUS,28,29 uncontrolled complement activation is triggered by alterations in complement 
regulatory factors, leading to excessive deposition of complement components, including C5b-9, in the vascular 
endothelium. Reviewing 103 patients with acute thrombotic microangiopathy (TMA), 19 patients with aHUS were 
identified. Multiple markers in the complement activation pathway were tested, including C3a, Bb, C4d, C5a, C5b-9, 
ADAMTS13 activity, and vWF multimers. These patients had a platelet count of <100 × 10^9/L, serum creatinine >2.25 
mg/dL, and ADAMTS13 activity >10%. Compared to patients with thrombotic thrombocytopenic purpura (TTP), aHUS 
patients generally exhibited elevated levels of complement activation markers before treatment, particularly C5a and 
C5b-9, which were significantly higher than those with ADAMTS13-deficient TTP. C5b-9 damages ECs by forming 
membrane pores, impairing endothelial function. It induces ECs to release vWF, stimulates the activity of thrombin and 
tissue factor (TF), and activates platelet aggregation and fibrin deposition, thereby promoting thrombosis on the 
endothelial surface. C5b-9 also induces morphological changes in ECs, cell contraction, exposure of procoagulant factors 
on the basement membrane, and enhances platelet and leukocyte adhesion. Additionally, it stimulates the release of 
inflammatory and growth factors, leading to microthrombus formation, which results in thrombotic microangiopathies in 
renal capillaries and small arterial branches, thrombocytopenia, vessel swelling and narrowing, and increased blood flow 
shear stress. This destruction predominantly affects red blood cells. Moreover, C5b-9 not only damages ECs but also 
promotes inflammation through chemotaxis, with C3a and C5a exhibiting strong chemotactic effects on phagocytic cells. 
This triggers the release of histamine from phagocytic cells, increasing small blood vessel permeability, causing kidney 
damage, and potentially leading to renal failure. The study revealed that aHUS patients showed no abnormal accumula-
tion of ULVWF multimers during acute episodes, strongly indicating these complement biomarkers could prove 
instrumental in distinguishing aHUS from TTP. Of the 16 aHUS patients undergoing plasma exchange (PEX), 6 
(38%) demonstrated positive responses, while among 9 patients treated with eculizumab, 7 (78%) achieved therapeutic 
efficacy. These findings underscore that C5a and C5b-9—key biomarkers of complement activation—may not only 
confirm aHUS diagnoses but also sharpen differentiation from clinically similar thrombotic microangiopathies like 
TTP.29 The measurement of these markers may help predict the response to complement inhibition therapy.
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Studies have also shown that the deposition of C5b-9 and vWF on the vascular endothelium of pre-eclamptic patients 
is significantly higher compared to normal pregnancy, suggesting that this may be a key factor in the vascular endothelial 
injury and dysfunction observed in pre-eclampsia.30 In the context of TMA, C5b-9 deposition may reflect complement- 
mediated endothelial damage and could be associated with the release of vWF and subsequent platelet aggregation.31 

Thus, C5b-9 plays a critical role in the pathogenesis of aHUS.

Sepsis and the Role of C5b-9
In sepsis, the complement system plays a protective role by rapidly identifying and eliminating pathogens, with the 
alternative pathway serving as the primary mechanism for complement activation. The resulting C5b-9 complex targets 
pathogen cell membranes, forming pores that lead to cell disintegration.16 While C5b-9 serves a protective function, 
reduced expression of the complement regulator CD59 (a C5b-9 inhibitor), due to genetic mutations or acquired diseases, 
can lead to overactivation of C5b-9. This overactivation induces the exposure of phosphatidylserine on platelet surfaces, 
activating their procoagulant activity and providing a catalytic surface for prothrombin assembly, thereby promoting 
platelet aggregation. This process plays a role in coagulation regulation and triggers positive feedback in complement 
activation.32

In sepsis, C5b-9 predominantly affects vascular ECs, leading to the following manifestations: 1. Cell Membrane 
Damage:33 C5b-9 forms pores in the cell membrane, compromising its integrity. This allows molecules, including water, 
ions, proteins, and blood cells, to enter or exit the cell, disrupting the internal and external balance of the cell. 2. 
Increased Cell Permeability:34 The pores created by C5b-9 increase the permeability of vascular ECs, which can lead to 
leakage of fluids and proteins, compromising the vascular barrier function and enhancing vessel leakage. 3. Cell Death:35 

The insertion of the C5b-9 complex can directly induce cell death through a programmed process known as complement- 
mediated cytolysis. 4. Alterations in EC Function:36,37 C5b-9-induced damage to ECs can lead to significant functional 
changes, including disruption of vascular tone regulation, impairment of white blood cell adhesion and migration, and 
hindered vascular repair and regeneration. 5. Changes in Signal Transduction of Vascular ECs:38,39 The insertion of C5b- 
9 may activate intracellular signaling pathways in ECs, such as the mitogen-activated protein kinase (MAPK) and 
extracellular signal-regulated kinase (ERK) pathways, leading to increased production of inflammatory mediators. 6. 
Imbalance Between Coagulation and Anticoagulation:40,41 C5b-9 activation of the clotting pathway following endothelial 
damage promotes thrombosis. Simultaneously, injured ECs may fail to effectively produce anticoagulant and pro- 
fibrinolytic factors, resulting in a coagulation-anticoagulation imbalance. 7. Overactivation of the Complement 
System:39,42 The formation of C5b-9 serves as a signal to further activate the complement system, leading to the 
generation of additional MAC and exacerbating cell damage. 8. C5b-9 Activation of Calcium (Ca2+) Channels:43 C5b-9 
can trigger Ca2+ channels in ECs and epithelial cells, activating the NOD-like receptor heat protein domain-associated 
protein 3 (NLRP3) inflammasome, which subsequently contributes to cell damage. These combined effects promote 
vascular endothelial dysfunction and damage in conditions such as sepsis and coronavirus disease 2019 (COVID-19), 
leading to multiple organ dysfunction and failure (Figure 2).

The mechanisms described above have been further supported by numerous cases of COVID-19 sepsis.44–46 Research 
indicates that C5b-9 plays the following roles in COVID-19 sepsis: 1. Association with Disease Severity: Elevated C5b-9 
levels have been observed in COVID-19 patients, indicating activation of the complement system. This activation 
correlates with disease severity, with C5b-9 levels decreasing as clinical improvement occurs. Higher C5b-9 levels are 
associated with a more severe disease phenotype. 2. Correlation with Viral Load: A positive correlation between high 
viral load and elevated C5b-9 levels suggests that the virus may directly trigger complement system activation. 3. 
Inflammation and Coagulation Response: This may explain the heightened inflammatory state, altered vascular perme-
ability, and abnormal coagulation observed in COVID-19 patients. 4. Tissue Damage and Microvascular Injury: The 
observed tissue damage is consistent with microvascular injury, suggesting that C5b-9 may contribute to microvascular 
damage in COVID-19 sepsis.

A study on preterm infants with sepsis also revealed significantly elevated plasma levels of C-reactive protein (CRP), 
SC5b-9, and interleukins (IL)-10 and IL-4 in infants with moderate to severe sepsis compared to healthy controls. This 
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suggests that, in the context of neonatal sepsis, SC5b-9, as a marker of complement system activation, plays a crucial role 
in assessing the severity of sepsis in preterm infants.47

Mechanism of vWF Release by ECs to Form Microthrombi in Sepsis
Effects of Sepsis on the Vascular Endothelium
Pathogen-associated molecular patterns (PAMPs) in sepsis induce EC inflammation, activate ECs, increase capillary 
permeability, promote leukocyte adhesion, establish a procoagulant phenotype, and alter vascular tone.10,48

In immune-mediated sepsis, EC activation triggers the release of damage-associated molecular patterns (DAMPs) and 
cytokines, initiating the inflammatory response. Immune cells, such as monocytes and neutrophils, further amplify this 
response by upregulating receptors and releasing inflammatory mediators, which leads to the shedding or degradation of 
the glycocalyx on the endothelial surface. This process results in an increased expression of TF and vWF on both 
endothelial and monocyte surfaces, enhancing platelet adhesion and aggregation, while downregulating anticoagulation 
and fibrinolysis, thus contributing to abnormal coagulation and thrombosis.49,50

Exposure of ECs to serum samples from sepsis patients has been shown to activate the inflammation-related 
p38MAPK pathway, which is closely associated with EC activation and the inflammatory response.51

During acute myocardial infarction, dysregulated complement activation through the C5a:C5a - Receptor (C5aR)1 
axis leads to endothelial glycocalyx degradation and endothelial dysfunction.52 In sepsis, C5a induces inflammatory 
signaling and apoptosis in PC12 cells through C5aR-dependent signaling, which may be a potential mechanism for 
adrenal injury in sepsis.53 C5a and neutrophil C5a receptor play a central role in anti-neutrophil cytoplasmic antibodies 

Figure 2 Effect of C5b-9 on vascular endothelium in sepsis. 
Note: This figure specifically illustrates the effect of C5b-9 on vascular ECs in sepsis. Created by Figdraw.
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(ANCA)-mediated neutrophil recruitment and activation. The activation of p38MAPK, ERK, and phosphatidylinositol 3- 
kinase (PI3K) are important steps in ANCA antigen translocation and C5a-induced ANCA activation of neutrophils. This 
indicates that C5a can trigger signaling pathway-related responses involving pathways such as p38MAPK.54 Although 
these studies do not directly mention it, they reflect the role of C5a in the pathological process of microthrombus 
formation in sepsis.

In addition to C5b-9, complement activation in sepsis involves other complement components, such as C5a, which 
activates neutrophils and exacerbates inflammation, ultimately leading to EC activation or injury.55,56

Overall, sepsis induces endothelial dysfunction, characterized by EC inflammation, abnormal coagulation, and 
impaired vascular tone regulation, leading to thrombosis, vasodilation, tissue hypoperfusion, inadequate oxygen delivery, 
secondary hypotension, and loss of endothelial barrier function.

Mechanism by Which ECs Release vWF to Form Microthrombi
vWF is a polymeric plasma glycoprotein synthesized by ECs and megakaryocytes.57 Its biosynthesis is a complex process, 
involving the removal of signal peptides and propeptides, glycosylation, sulfation, dimerization, and final polymerization. The 
synthesized vWF polymers are primarily stored in Weibel-Palade bodies (WPBs) of ECs or in the α-granules of megakar-
yocytes and platelets as ULVWF polymers.58,59 Upon stimulation by various agonists (such as cytokines or histamine) or fluid 
shear stress, these ULVWF polymers are rapidly secreted by ECs and anchored to the endothelial surface, forming long, string- 
like, highly adhesive structures, or are released into the circulation. Under shear stress in blood flow, the anchored and newly 
released ULVWF polymers undergo further changes.60,61 vWF is the only known substrate for the metalloproteinase 
ADAMTS13, which exists in a closed conformation in circulation, with its CUB domain interacting with the septal region. 
vWF can bind to this closed conformation of ADAMTS13, exposing functional extranuclear sites within the ADAMTS13 
spacer and activating the protease.62 ADAMTS13 cleaves the Tyr1605-Met1606 bond in the vWF A2 domain via its 
metalloproteinase domain, thereby shortening the vWF polymers. In TTP), when ADAMTS13 is deficient or inactive, 
ULVWF polymers persist in circulation, and their spontaneous binding to platelets is no longer inhibited. These ULVWF 
polymers bind to platelets, leading to platelet accumulation, activation, and the formation of platelet-ULVWF microthrombi. 
These active microthrombi propagate, consuming platelets and resulting in thrombocytopenia, mechanical destruction of red 
blood cells, and hemolytic anemia. Fragmented red blood cells are visible on peripheral blood smears, and ultimately, platelet- 
ULVWF microthrombi obstruct blood vessels, causing ischemic organ injury.57,63

In a cohort of 152 suspected disseminated intravascular coagulation (DIC) patients, comprehensive monitoring of 
ADAMTS13-vWF axis markers and DIC biomarkers unveiled striking disparities: vWF:Ag levels surged dramatically 
while ADAMTS13 activity plunged to critical lows. Prognostic analysis highlighted the platelet count/vWF:Ag ratio as the 
most potent predictor (p = 0.037), surpassing other ADAMTS13-vWF axis metrics including vWF:Ag levels (p = 0.009), 
ADAMTS13 activity/vWF:Ag ratio (p = 0.037), and ADAMTS13 activity/vWF:Rco ratio (p = 0.028).64 Intriguingly, human 
umbilical vein endothelial cell (HUVEC) studies revealed ADAMTS13 secretion persists constitutively regardless of 
inflammatory triggers, despite HUVEC ADAMTS13 mRNA expression registering at a mere 1:100 ratio relative to vWF 
monomer subunit expression. Histamine stimulation triggered a surge in vWF chain secretion while paradoxically reducing 
ADAMTS13-mediated cleavage efficiency at the vWF Y(1605)-M(1606) site. This sustained ADAMTS13 secretion from 
endothelial cells may preserve low adhesiveness of vWF multimer chains on cellular surfaces, maintaining vascular home-
ostasis through dynamic molecular regulation.65 ECs synthesize vWF and complement regulatory factor H (FH). Studies have 
found that FH and VWF coexist in the leukocytes of HUVECs. The binding of vWF to FH enhances the cofactor activity of 
FH, downregulates complement activation mediated by factor I, and inhibits vWF proteolysis mediated by ADAMTS13, 
promoting platelet aggregation.66

In typical hemolytic uremic syndrome (STEC-HUS) and aHUS,67 excessive activation of Shiga toxin (Stx) and the 
complement system can cause EC damage, which triggers the release of excessive vWF, subsequently interacting with 
platelets. This disruption of the balance between coagulation and anticoagulation ultimately promotes microvascular 
thrombosis and leads to organ damage and dysfunction.

In certain infectious diseases,68 such as bacterial endocarditis, brucellosis, acute glomerulonephritis caused by 
streptococcal infection, invasive fungal infections (eg, aspergillosis), and viral and rickettsial infections, pathogens can 
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directly damage ECs, activate the complement system, and induce the release of excessive vWF. The abnormal activation 
and aggregation of platelets through inflammatory responses and coagulation cascade activation result in microvascular 
thrombosis, paralleling the pathophysiological processes observed in TTP.

During major cardiovascular surgical trauma,69,70 ECs are directly damaged, leading to the release of large amounts 
of ULVWF polymers, decreased ADAMTS13 activity, and platelet adhesion and aggregation, all of which contribute to 
the formation of microthrombi and result in clinical manifestations similar to TTP.

Therefore, when ECs are damaged by various factors, excessive release of vWF polymers activates platelets. If the 
quantity and activity of ADAMTS13 are insufficient, platelet-ULVWF microthrombosis occurs, resulting in vascular 
occlusion and organ dysfunction.

Study of C5b9-Mediated vWF Release From ECs in Sepsis
Mechanism by Which C5b-9 Mediates Endothelial vWF Release
The deposition of the C5b-9 complex on the surface of ECs leads to cell damage and activates signaling pathways that mediate 
vWF secretion through several mechanisms: 1. Direct Attack on the Cell Membrane: The C5b-9 complex can integrate 
directly into the lipid bilayer of the cell membrane, causing structural changes and forming both single and compound pores.19 

This disrupts the integrity of the cell membrane, resulting in cell lysis and detachment, impairing secretion and anticoagulant 
functions,71 and promoting vWF secretion. Additionally, C5b-9 increases EC toxicity.72 Lactate dehydrogenase (LDH) levels 
can be used to assess the extent of cell damage. 2. Action on vWF Storage Particles: The C5b-9 complex may directly target 
vWF storage particles (WPBs) within ECs, leading to the fusion of these particles with the cell membrane and subsequent 
vWF release.73 3. Increased Ca2+ Ion Flux and Vesiculation of the Cell Membrane: The deposition of C5b-9 in HUVECs 
disrupts membrane integrity, alters membrane Ca2+ channels, and increases Ca2+ flux. This induces vesiculation of membrane 
particles on the EC surface, triggering the movement and fusion of storage particles with the membrane, leading to vWF 
secretion or exocytosis.74,75 4. Promotion of P-Selectin Expression: C5b-9 deposition may transiently upregulate the 
expression of P-selectin on the human EC surface. P-selectin and vWF are stored together in WPBs, which also serve as 
binding sites for monocytes and neutrophils, potentially contributing to vWF release.73 5. Involvement of Protein Kinase: The 
C5b-9-induced secretion response involves cellular protein kinases. Inhibition of cellular protein kinases with ceramide 
partially reduces C5b-9-induced vWF secretion.71 Extracorporeal studies have found that the receptor-binding domain (RBD) 
of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is sufficient to induce endothelial cell 
permeability and vWF secretion through angiotensin-converting enzyme (ACE) 2, in a manner dependent on the activation of 
Adp-ribosylation factor (ARF) 6. Furthermore, the use of pharmacological inhibitors has revealed a signal cascade down-
stream of ACE2 involved in SARS-CoV-2 spike protein-induced EC permeability and vWF secretion.76 6. Inflammation- 
Mediated:55 C5b-9 induces mitochondrial damage and activates the NLRP3 inflammasome, leading to the release of potent 
pro-inflammatory cytokines, including IL-1β and IL-18. These inflammatory mediators contribute to tissue damage and an 
inflammatory response, which in turn affects vascular EC function and indirectly increases vWF release from ECs.

A recent study75 demonstrated that when blood-derived endothelial cells (BOECs) are exposed to C5b-9, membrane 
integrity is compromised, resulting in membrane leakage, increased permeability, and rapid intracellular Ca2+ flux. Despite the 
continuous rise in intracellular Ca2+, membrane leakage ceases within 30 minutes. This response does not result in necrosis or 
apoptosis, and the cells exhibit a similar ability to repair plasma membrane damage within 20–30 minutes of C5b-9 exposure. 
The increase in intracellular Ca2+ triggers the mobilization of WPBs to the plasma membrane, where they fuse, leading to the 
secretion of vWF. The fusion of WPBs with the plasma membrane helps repair the damage caused by C5b-9. This repair 
mechanism enables vascular ECs to resist further damage, repair existing damage, and survive. However, this survival 
mechanism comes at a cost—the release of large amounts of ULVWF polymers. These polymers must undergo regulated 
cleavage by ADAMTS13 in the bloodstream. If ADAMTS13 activity is inhibited by environmental factors, or if ULVWF 
release exceeds the cleavage capacity of ADAMTS13, excessive ULVWF will interact with activated platelets, leading to the 
formation of platelet-ULVWF microthrombi. Thus, C5b-9-mediated endothelial release of vWF acts as a protective mechan-
ism, albeit at the expense of intravascular microthrombus formation, ultimately leading to microvascular occlusion and organ 
dysfunction.
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In 2017, Chang JC et al proposed the “endothelial dual activation theory”,10–12,77,78 suggesting that in sepsis, the C5b-9 
complex formed by complement activation induces endothelial damage, leading to both structural and biological changes in 
ECs, resulting in molecular dysfunction. This damage activates two concurrent pathways: the inflammatory and micro-
thrombotic pathways. The activated inflammatory pathway triggers the release of various pro-inflammatory cytokines, 
including IL-1, IL-6, tumour necrosis factor (TNF) -α, and interferon (IFN) -γ, contributing to the inflammatory response. 
The molecular response of the activated microthrombotic pathway involves the exocytosis of large amounts of ULVWF from 
WPBs in ECs, which subsequently activates platelets. If metalloproteinase ADAMTS13 is insufficient to cleave the excess 
exocytosed ULVWF, the ULVWF anchors to the damaged endothelial membrane, forming slender lines and recruiting a large 
number of activated platelets. The interaction of these components leads to the formation of platelet-ULVWF complexes, 
which eventually evolve into microclots that adhere to the damaged ECs and occlude microvessels, resulting in organ 
dysfunction.

However, the specific processes, mechanisms, and consequences of the platelet-ULVWF microthrombus pathway 
mediated by complement-induced EC injury remain insufficiently explored at the molecular and cellular levels.

In Sepsis, C5b-9 Mediates Endothelial vWF Release to Promote Microthrombosis
In summary, C5b-9 has been shown to directly or indirectly mediate the release of vWF by vascular ECs, thereby promoting 
platelet microthrombus formation in various diseases associated with complement activation (Figure 3). A significant body of 
research has confirmed this mechanism in patients with COVID-19 sepsis,79 yet studies examining this pathway in sepsis 
caused by a broad range of bacterial infections remain limited. In a previous retrospective study, 147 patients diagnosed with 

Figure 3 Molecular mechanism diagram of microthrombus formation by EC secretion of vWF mediated by C5b-9 in sepsis. 
Note: NLPR3: NOD-like receptor family, pyrin domain containing 3; IL: Interleukin; WPBs: Weibel-Palade bodies; SIC: sepsis-induced coagulopathy. Created by Figdraw.
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septic shock were admitted to the Intensive Care Unit at the Second Affiliated Hospital of Kunming Medical University. 
Elevated vWF antigen expression was observed in all patients, indicating endothelial injury caused by septic shock, which 
resulted in the release of substantial amounts of vWF. Additionally, 64 SIC patients with TF pathway-activated fibrin 
thrombosis were identified using the SIC score. There were another 65 patients exhibited thrombocytopenia, increased 
vWF antigen expression, and concurrent MODS. These findings suggest that endothelial injury led to the formation of platelet- 
ULVWF microthrombi, resembling a TTP-like syndrome,77 which was associated with organ dysfunction and increased 
mortality. It is evident that vWF antigen expression is closely linked to endothelial and organ damage in sepsis, with 
complement activation playing a crucial role in the pathogenesis of sepsis. In the early stages of sepsis, the expression of 
vWF antigen increases, characterized by microthrombi composed of platelet-ULVWF complexes, which ultimately lead to a 
massive consumption of platelets and MODS.11 Its hematological phenotype is very similar to that of TTP, but the 
pathophysiological mechanisms are completely different, hence it is called TTP-like syndrome.10,77,80 When vascular injury 
reaches subendothelial tissue (SET) and extravascular tissue (EVT), a large amount of TF is released, activating the TF 
pathway, forming “large thrombi”, and ultimately leading to SIC.11,81 Therefore, it can be concluded that C5b-9 may directly 
or indirectly mediate the release of vWF by vascular ECs, promoting platelet-ULVWF microthrombus formation, blocking 
microvessels, and ultimately causing organ dysfunction in sepsis caused by bacterial infection. Therefore, reducing the 
expression of vWF in patients with sepsis, improving thrombocytopenia, and alleviating organ dysfunction will play a 
significant role in improving patient outcomes.

Therapeutic Advances in the C5b-9 EC vWF Release Pathway
Currently, no clear treatment protocol exists for the formation of platelet-ULVWF microthrombi and the associated organ 
dysfunction resulting from this pathway. Although the complement system plays a crucial role in early immune defense, 
caution is needed when considering anti-complement therapy in sepsis. Given that platelet-ULVWF microthrombosis 
arises from excessive vWF secretion by damaged ECs and a relative deficiency of ADAMTS13, existing therapeutic 
strategies focus on the following directions: 1. Recombinant ADAMTS13 (rhADAMTS13): ADAMTS13/rhADAMTS13 
is used to inhibit the ULVWF pathway and prevent the accumulation of excess ULVWF polymers, thereby preventing 
microthrombus formation. In animal models, prophylactic administration of rhADAMTS13 protects ADAMTS13 
knockout mice from TTP-like syndrome and reduces the incidence and severity of TTP, although clinical use has not 
yet been established. However, rhADAMTS13 could theoretically represent the optimal approach for preventing and 
treating endotheliopathy-associated vascular microthrombotic disease (EA-VMTD).82,83 2. Disulfide Bond Reduction 
Mucolytic Therapy: N-acetylcysteine (NAC) is the most commonly used reducing agent. By reducing disulfide bonds in 
ULVWF polymers, NAC inhibits vWF-dependent platelet aggregation and collagen binding, thereby mitigating micro-
thrombus formation.84–87 NAC is an inexpensive, widely available drug, clinically used for treating chronic obstructive 
pulmonary disease (COPD), cystic fibrosis, bronchiectasis, and other conditions, with a high therapeutic safety profile. 3. 
Caplacizumab Treatment: Caplacizumab is a humanized, bivalent, variable-domain immunoglobulin fragment 
(Nanobody, Ablynx) that prevents microvascular thrombosis by targeting the A1 domain of vWF, thereby blocking the 
interaction of vWF polymers with platelet glycoprotein Ib-IX-V receptors. Significant clinical benefits have been 
observed in acquired TTP, further supporting the role of the ULVWF pathway in TTP-like syndrome and EA- 
VMTD.88 4. Therapeutic Plasma Exchange (TPE): As an alternative to ADAMTS13 therapy, TPE has demonstrated 
effectiveness in treating TTP and TTP-like syndrome. TPE can supplement ADAMTS13, reduce microthrombus 
formation, and improve outcomes in conditions such as ARDS and other organ syndromes.89–91

In addition to complementing ADAMTS13 therapy, inhibition of C5b-9 generation and activation can be targeted 
from the upstream pathway, as shown in Table 1. Eculizumab, a recombinant humanized IgG2/4 monoclonal antibody, 
binds to the human complement C5 protein, inhibiting the activation of the C5b-9 terminal complement complex. This 
prevents complement overactivation, thereby reducing complement-mediated inflammation and cell damage. In the 
treatment of TMA (cTMA) mediated by complement gene variations, eculizumab has shown significant hematological 
and renal responses, leading to favorable therapeutic outcomes. However, its response rate in secondary TMA (sTMA) 
remains low.92 sTMAs arise from underlying medical conditions such as infections, autoimmune disorders, or therapeutic 
interventions. Resolution typically follows the cessation of these triggers. However, eculizumab—a targeted complement 
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Table 1 Studies Examining Treatment of C5b-9 Mediating ECs Releasing vWF in Sepsis

Author Year Model Drugs/ 
PROCEDURES

Target Curative Effect

Alexandra 
Schiviz82

2012 ADAMTS13 KO mice rhADAMTS13 vWF, 
ADAMTS13

The administration of therapeutic doses significantly 
decreased both the incidence and severity of TTP, with 
efficacy closely correlated to the treatment interval. 
Although this strategy has not yet been implemented in 
clinical practice, it presents substantial potential as a 
novel therapeutic target.

Marijke 
Peetermans83

2020 S. aureus sepsis both in patients 
and in mice

ADAMTS13 vWF, 
ADAMTS13

The ratio of vWF to ADAMTS13 in patients with 
bacteraemia was strongly associated with severe disease 
outcomes. In vWF-/- mice, enhanced bacterial 
clearance, reduced mortality, and diminished organ 
microthrombosis were observed, highlighting the 
essential role of vWF in the development of infection- 
related complications.

Sultan 
Mehmood 
Kamran89

2020 280 Covid-19 hospitalized 
patients in a single centre in 
Pakistan

TPE ADAMTS13 Early initiation of TPE was significantly associated with 
improved overall survival, faster resolution of cytokine 
release syndrome (CRS), reduced time to hospital 
discharge, and a notable decrease in microthrombus 
formation.

Faryal 
Khamis90

2020 31 Covid-19 patients in the Royal 
Hospital of Oman

TPE ADAMTS13 TPE significantly decreased 28-day mortality and overall 
mortality rates, improved respiratory function, and 
significantly enhanced extubation rates.

Junmei Chen84 2011 Human plasma and mice NAC ULVWF, 
ADAMTS13

NAC effectively reduces soluble plasma-type vWF 
polymers in a concentration-dependent manner and 
rapidly degrades ULVWF polymer chains extruded from 
activated ECs. Additionally, NAC inhibits vWF- 
dependent platelet aggregation and collagen binding, 
demonstrating its potential as a potent modulator of 
platelet function.

Gerardo 
Cabanillas85

2015 A patient with recurrent TTP 
following the failure of plasma 
exchange (PE) treatment, despite 
therapy with steroids, rituximab, 
cyclophosphamide, vincristine, 
and azathioprine.

NAC ADAMTS13 NAC treatment at a dose of 150 mg/kg was initiated on 
day 135 for a duration of 10 days, in conjunction with PE 
and low-dose steroids. The platelet count fully 
recovered, and the patient was successfully discharged.

Claudia 
Tersteeg86

2016 Preclinical mouse and baboon 
models of TTP

NAC ULVWF, 
ADAMTS13

Prophylactic administration of NAC, in the absence of 
concurrent plasmapheresis, effectively prevented the 
severe manifestations of TTP in mice. However, NAC 
did not alleviate the acute symptoms of TTP in either 
mice or baboons.

Amihai 
Rottenstreich87

2015 3 patients with TTP were initially 
treated with PE, corticosteroids, 
and other immunosuppressants, 
in combination with NAC.

NAC ADAMTS13 A significant clinical improvement was observed in both 
symptoms, with platelet counts and ADAMTS13 activity 
levels returning to normal concurrently.

M. Scully88 2019 In a double-blind, controlled trial, 
randomly assigned 145 patients 
with TTP to receive 
caplacizumab or placebo during 
PE and for 30 days thereafter.

Caplacizumab ADAMTS13 In patients with TTP, treatment with caplacizumab was 
associated with a more rapid normalization of platelet 
counts. The combined incidence of TTP-related death, 
recurrence, or thromboembolic events during 
treatment was significantly low. Moreover, the 
recurrence rate of TTP during the study was notably 
lower compared to the placebo group.

Christof 
Aigner92

2022 Between 2012 and 2019, among 
patients treated with eculizumab, 
15 were diagnosed with TMA, 6 
with sTMA, and 2 with C3 
glomerulopathy (C3G).

Eculizumab C5b-9 For cTMA patients who do not respond to plasma 
therapy, eculizumab is considered the treatment of 
choice. However, the response rates in patients with 
sTMA and C3G have been notably low.

Toshiyuki 
Ohta93

2015 A 4-month-old boy who 
developed aHUS presenting with 
undetectable C3 protein.

Eculizumab C3 Control of severe hypertension (HTN) and cessation of 
peritoneal dialysis.

(Continued)
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inhibitor for treating complement-mediated TMA—paradoxically heightens infection risks due to its suppression of 
complement proteins, which are vital for immune defense. Eculizumab was approved in Japan in 2013 for the treatment 
of complement-mediated aHUS, with confirmed efficacy and safety in both children93,94 and adults.95,96 CD59, a C5b-9 
inhibitor, is a membrane glycoprotein that prevents the formation of the MAC C5b-9 by integrating into the complex and 
blocking the uptake and insertion of C9 molecules during the C5b-8 phase. This inhibits C5b-9 formation and protects 
ECs from damage. In rat models, CD59 has been shown to protect glomerular ECs from immune-mediated TMA- 
induced damage. However, no large-scale clinical trials have directly targeted CD59 as a therapeutic option, which may 
represent a promising avenue for future research.28

Summary
In sepsis, the hyperactivation of the complement system triggers rampant formation of MAC C5b-9, which assails 
vascular ECss and ignites catastrophic pathological cascades, emerging as a pivotal orchestrator of multiorgan failure. 
Mounting clinical evidence reveals that elevated C5b-9 concentrations demonstrate striking correlations with disease 
severity, cytokine storms, coagulopathic derangements, and microbial load, cementing its dual role as a prognostic 
beacon and therapeutic lodestar. Molecularly, C5b-9 subverts endothelial homeostasis through four-pronged warfare: 
unleashing torrents of proinflammatory cytokines to fuel systemic inflammaging; fracturing endothelial junctions to 
exacerbate vascular permeability; and crippling thrombomodulin-driven anticoagulant machinery, thereby turbocharging 
the coagulation-inflammation nexus. These synergistic endothelial insults coalesce into microvascular thrombosis and 
organ necrosis, with ruthless efficiency in renal, pulmonary, and hepatic territories. Rooted within this intricate mechan-
istic tapestry, we posit that C5b-9 orchestrates the pathological unleashing of vWF from ECs—relentlessly propelling 
platelet-ULVWF microclot formation and wholesale capillary obliteration. To decrypt this axis, imminent studies will 
map: the temporal dance between CD59 regulator and C5b-9 storm kinetics; ADAMTS13 protease failure as a 
microthrombosis perpetuator; dose-time-response relationships governing C5b-9-induced vWF multimer metamorphosis; 
and topographic alignment between microthrombus hotspots and organ injury signatures. Therapeutic innovation will 

Table 1 (Continued). 

Author Year Model Drugs/ 
PROCEDURES

Target Curative Effect

Naoko Ito94 2016 10 children with aHUS were 
treated with eculizumab. 7 
patients developed resistance to 
plasma therapy, while 3 remained 
dependent on it. Genetic 
mutations associated with the 
disease were identified in 5 
patients, and 2 patients tested 
positive for autoantibodies 
against FH. Additionally, three 
patients had a family history of 
TMA.

Eculizumab C5b-9 Following the initiation of eculizumab, all patients 
achieved immediate hematological remission and were 
able to successfully discontinued plasma therapy. 9 
patients regained renal function, while 2 ultimately 
progressed to end-stage renal disease (ESRD), 
necessitating long-term renal replacement therapy 
(RRT). No patient experienced a relapse of TMA during 
conventional eculizumab therapy, and no serious 
adverse events were reported during the follow-up 
period.

Masayoshi 
Okumi95

2016 A 22-year-old male patient with 
ESRD and aHUS, who 
experienced recurrent aHUS 
after renal transplantation and 
cTMA, was treated with PE in 
combination with eculizumab 
(900 mg) and followed up for 5 
years.

Eculizumab C5/C5b-9 At 40 months, GBx showed no signs of mild interstitial 
fibrosis, TMA, nephritis, or glomerulitis. No significant 
adverse events or abnormal laboratory findings were 
observed, and renal function remained stable and intact.

Hironori 
Nakamura96

2018 A rare case involved a 76-year- 
old male patient with IgA 
nephropathy and TMA, who 
presented with aHUS linked to a 
mutation in the FH gene.

Eculizumab C3 Light microscopy confirmed the diagnosis of HUS, while 
immunofluorescence analysis detected the presence of 
IgA and C3. Genetic analysis revealed a p.Arg1215Gln 
mutation in the FH gene, and treatment with 
eculizumab has been ongoing for five months.
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dual-wield: C5b-9 neutralization via monoclonal antibodies/complement inhibitors (anti-C5 biologics) to dismantle 
microthrombotic networks, coupled with ADAMTS13 rescue or vWF blockade strategies. The paradigm-shifting 
potential of this work resides in decoding the complement-endothelium-hemostasis triad: multidimensional profiling of 
C5b-9/vWF/ADAMTS13 dynamics may unlock precision prognostics; combinatorial C5b-9 inhibition (eculizumab 
analogs) and vWF pathway correction (recombinant ADAMTS13) could outmaneuver traditional anticoagulant pitfalls; 
while C5b-9 trajectory-guided chronotherapeutics and CRISPR-engineered CD59 enhancements might birth a new epoch 
of targeted critical care.

As the molecular keystone bridging endothelial cataclysm and microthrombotic avalanches in sepsis, C5b-9 unveils 
therapeutic frontiers for resuscitating failing organs. Silencing C5b-9 generation, resuscitating ADAMTS13 proteostasis, 
or intercepting malignant vWF surges could forge revolutionary interventions for microcirculatory catastrophe. This 
conceptual metamorphosis not only carries seismic potential to redefine sepsis trajectories but also illuminates funda-
mental mechanisms underlying thrombotic-inflammatory pandemonium—from aHUS to TMA—heralding an age of 
molecularly sculpted therapeutics.
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