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Abstract: Gynecological cancers represent one of the leading causes of death in women and pose a critical global health challenge. 
While surgery and chemotherapy remain the first-line therapies for gynecological cancers, the persistently high morbidity and 
mortality rates have driven the urgent exploration of novel theranostic strategies. In recent years, polymer nanoparticles (PNPs) 
have gained increasing attention in the diagnosis and treatment of cancer due to their superior targeting ability and delivery efficiency. 
This review provides an overview of PNPs and their role in tumor diagnosis and treatment, with a strategic focus on their utility in 
gynecological cancers. It covers drug delivery, imaging, combination therapy, and theranostic integration in gynecological cancers, and 
summarizes the composition, principles and characteristics of diverse polymers and their cargoes. Furthermore, this work highlights 
innovative applications of PNPs in gynecological cancers management, spanning chemotherapy, immunotherapy, PARPi therapy, 
phototherapy and other therapies. Despite promising preclinical advancements in PNPs, formidable challenges persist in their clinical 
translation. This review serves as a comprehensive resource for researchers and clinicians aiming to optimize gynecological cancers 
theranostics as well as accelerate the development and clinical translation of PNPs.
Keywords: polymer nanoparticles, gynecological cancer, theranostics, nanoparticles, ovarian cancer, cervical cancer, endometrial 
cancer, nanomedicine

Introduction
Nanoparticles (NPs) are solid colloidal particles, usually between 10–1000 nm in size,1 which can be composed of lipids, 
metals, metal oxides, polymers and other materials.2 Polymer nanoparticles (PNPs) is a collective term for nano-sized 
particles made of polymer,3 with the optimal size of 10–200 nm for their in vivo application.4 PNPs have superior 
biocompatibility and drug-loading flexibility compared to other NPs. PNPs are mainly prepared by self-assembly, 
nanoprecipitation, dialysis, solvent evaporation, salting-out, based on preformed polymers or on monomers.1,3–5 The 
circulation time of PNPs in vivo is determined by their physicochemical properties, while their controllable shape, size, 
and surface modifications allow them to be a promising therapeutic carrier.4 PNPs can encapsulate various cargoes to 
improve their solubility, bioavailability, biocompatibility, half-life, etc.6 Then they deliver and release the cargoes 
precisely to exert therapeutic or diagnostic effects. Therefore, PNPs have undergone extensive research in the treatment 
and prevention of tumors,7–9 cardiovascular diseases10,11, and infectious diseases.12,13

Cancer is one of the most important risk factors for human mortality in modern society. According to Global Cancer 
Observatory, about 9.7 million people died of cancer worldwide in 2022.4 Gynecological cancers, including ovarian, 
cervical, endometrial, vulvar, and fallopian tube cancers, are the leading causes of death in women.14 For now, the major 
therapies for gynecological cancers are still surgery and chemotherapy.15–17 However, the recurrence, metastasis, 
chemoresistance, and the still-growing global burden of gynecological cancers highlight the urgent need to develop 
novel precision-based strategies. Recently, polymeric nanosystems for combination therapy and diagnostic and thera
peutic integration have been developed to increase the therapeutic efficiency of gynecological cancers. Particularly, the 
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potential of PNPs in gynecological cancers therapy is gradually being realized. Since different gynecological cancers 
vary significantly in their pathogenesis, target expression, drug sensitivity, etc, the design of PNPs needs to be 
differentiated according to the cancers. Researchers have designed many novel PNPs to deliver therapeutic agents or 
adjuvants required for chemotherapy, immunotherapy, phototherapy, gene therapy in gynecological cancers.

Although many studies are underway, very few PNPs have been successfully translated into clinical practice. The 
clinical application of these PNPs still faces many challenges, such as biosafety, heterogeneity of clinical effects, targeted 
delivery efficiency, and scale-up production.18

The Mechanism of PNPs in Cancer Diagnosis and Treatment
Cargoes Loaded with PNPs
PNPs produce effects in the diagnosis and treatment of tumors primarily by loading different cargoes. Among them, 
chemotherapeutic agents (CTAs) are one of the most common cargoes. Many PNPs have been developed to address their 
drawbacks such as premature drug release, difficulty in targeted delivery, low bioavailability, side effects and toxicity, 
and drug resistance19,20 enhancing the efficacy of oncology chemotherapy. Other strategies with PNPs including the 
application of prodrugs,21 the combination of two drugs,22 and synergistic treatment with other therapies23,24 are 
constantly being investigated.

RNA-based drugs such as small interfering RNAs (siRNA), mRNAs, antisense oligonucleotides, microRNAs, etc, are 
increasingly explored for tumor therapy.25 mRNA-based therapies deliver genetic instructions for therapeutic protein 
production without nuclear entry, minimizing genotoxicity risks compared to DNA-based approaches.26,27 However, 
siRNA silences oncogenes via RNA interference but faces challenges like poor stability, rapid renal clearance, and 
inefficient cellular uptake in its free form.28,29 The protection of the polymer keeps these nucleic acids from being 
degraded during delivery to tumor cells and promotes cellular uptake.30

PNPs can also deliver phototherapeutic agents such as photothermal agents (PTA) for photothermal therapy (PTT) 
and photosensitizers (PS) for photodynamic therapy (PDT)4 as well as contrast agents for magnetic resonance imaging 
(MRI),31,32 photoacoustic imaging (PAI),33 etc. This capability enhances both therapeutic precision and diagnostic 
accuracy. Compared to conventional therapies, phototherapy (including PTT and PDT) offers non-invasive treatment 
with minimal trauma.23 PTT generates localized heat to eliminate cancer cells34 and remodel the TME,35 while PDT 
relies on light-activated PS to produce cytotoxic reactive oxygen species (ROS), inducing tumor cell apoptosis or 
necrosis.23,36,37

Targeted Drug Delivery
Targeted drug delivery of PNPs is categorized as active targeting and passive targeting. Controllable surface modifica
tions are the basis for active targeting. Active targeting mainly occurs through the binding of ligands on the surface of 
PNPs to receptors on the surface of tumor cells or tumor vascular endothelial cells. Therefore, the tumor cell receptors 
selected for designing PNPs are supposed to be specifically overexpressed on the tumor surface but not in healthy cells.4 

Commonly overexpressed target receptors in tumors include human epidermal growth factor receptor 2 (HER2), CD44 
receptor, folic acid (FA) receptor, vascular endothelial growth factor (VEGF) receptor, and others.30,38 For example, 
Sader et al39 utilized dermatan sulfate, which can target the CD44 receptor, to design PNPs capable of actively targeting 
triple-negative breast cancer. The site-specific binding of the ligands to the receptors decreases the probability of off- 
targeting during delivery.

However, passive targeting is achieved by enhanced permeation and retention (EPR) effects and does not require 
ligand-receptor binding. Nano-sized particles preferentially enter tumor cells but are difficult to exit due to leaky 
vasculature and poorly developed lymphatic drainage of the tumor,6 which allows them to accumulate and prolongs 
their sustained release within the tumor cells.40 (Figure 1) Although the theory of the EPR effect is widely recognized, it 
has not been successful in clinical translation. That might be related to the heterogeneity of the EPR effect in different 
tumors or individuals. Thus several researchers are exploring this area and trying to guide the application of nanome
dicines through patient stratification.41
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Figure 1 The mechanism of PNPs in the theranostics of gynecological cancers. Created in BioRender. Lin, X. (2025) https://BioRender.com/wlprr14. 
Abbreviations: PNPs, polymer nanoparticles; PDT, photodynamic therapy; PTT, photothermal therapy; ROS, reactive oxygen species; TME, tumor microenvironment; 
GSH, glutathione.

International Journal of Nanomedicine 2025:20                                                                                   https://doi.org/10.2147/IJN.S527023                                                                                                                                                                                                                                                                                                                                                                                                   6723

Lin et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://BioRender.com/wlprr14


Stimuli-Responsive Release
The tumor microenvironment (TME) is remarkably different from the environment in which healthy cells live. Acidic 
pH, high levels of glutathione (GSH), specific enzymes, ROS, hypoxia, and other stimuli unique to TME offer 
opportunities to design stimuli-responsive PNPs.42–44 In addition, in vitro physical stimuli such as light, heat, ultrasound, 
magnetic fields and so on can also mediate drug release.43 PNPs can release the cargoes they carried when they encounter 
the specific stimulus in the target site. This process is known as stimuli-responsive release. For example, as an important 
reducing agent in tumors, GSH can break disulfide bonds in the backbone of redox-responsive polymers, leading to the 
degradation of the polymer and the release of its loaded drug.45,46 This capacity to locally release the drug only in 
response to the specific stimulus effectively minimizes the loss of the drug in the circulation and the side effects of 
systemic administration (Figure 1).

Commonly Used Polymers
As the core of PNPs, the characteristics of the various polymers themselves cannot be ignored. The polymers used to 
design PNPs for drug delivery share the general characteristic of biocompatibility, which can be classified into natural 
and synthetic polymers47,48 (Table 1).

Natural Polymers
Chitosan
Chitosan (CS) is the most widely used natural polymer as a drug carrier which is found in large quantities in nature.48 CS 
can be extracted from crustacean shells or fungi,54 and it is a copolymer of β-(1,4)-linked D-glucosamine and N-acetyl- 
D-glucosamine.50 The cationic nature is one of the advantages of CS, which facilitates its binding to anionic molecules 
such as nucleic acids and cell surface macromolecules, and also enhances adhesion to negatively charged mucous 
membranes.49,50 Other advantages of CS include lower toxicity and immunogenicity, excellent biocompatibility and 
biodegradability, and potential for antimicrobial, antioxidant and anticancer activity.49,54,59 Ali et al60 designed chitosan/ 
tannic acid nanoparticles (CS/TAN NPs) for loading loratadine (LOR), which exhibited stronger cytotoxicity than free 
loratadine, to enhance the anticancer activity of the antihistaminic agent LOR against MCF-7 breast cancer. Together 
with the ability of tannic to promote apoptosis in MCF-7 breast cancer cells, this demonstrates the great potential of 
LOR-CS/TAN NPs as a novel antiproliferative agent for breast cancer therapy.

The disadvantages of CS are also well defined, such as poor water solubility and inefficient endosomal escape 
ability,49 which prevent it from achieving clinical translation. In this regard, scientists have explored multiple approaches 
to overcome its shortcomings by adding various structural modifications. Among them, polyethylene glycolylation 

Table 1 Commonly Used Polymers

Category Abbreviation Full Name Main Characteristics

Natural polymers CS Chitosan Cationicity, solubility in aqueous acidic medium49,50

– Albumin Solubility48

– Polyphenols Fast metabolism, limited bioavailability51

– Gelatin Hydrophilicity, near-body-temperature melting52

Synthetic polymers PEG Poly (ethylene glycol) Hydrophilicity,4 escape MPS recognition and clearance53

PLGA Poly (Lactic-co-Glycolic Acid) Hydrophobicity, tunable physicochemical properties54,55

PCL Poly-ε-Caprolactone Hydrophobicity, slow degradation6,56

PLA Poly(lactic acid) Hydrophobicity57

PEI Polyethyleneimine Cationicity, non-degradability58
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(PEGylation) is one of the reliable strategies to improve CS nanoparticles (CS-NPs) drug delivery.61,62 Coating the 
surface of CS-NPs with PEG, covalent conjugation of CS with PEG to form self-assembled NPs, or linking CS-NPs with 
drugs via PEG-linker are all used as means to form PEGylated CS-NPs. PEGylation improves CS solubility, inhibits 
mononuclear phagocytic system (MPS) clearance to prolong plasma circulation time, and enhances CS stability and 
anticancer ability in biological fluids.63

Albumin
Albumin is a protein-based polymer that has also been used to engineer PNPs. Albumin NPs are considered as excellent 
drug carriers due to their biological origin, lack of toxicity and immunogenicity, good water solubility, and the ability to 
accumulate at the tumor site. According to its source, albumin can be classified as human serum albumin, bovine serum 
albumin (BSA), etc.48 Its most classical application case is albumin-bound paclitaxel (Abraxane). Paclitaxel (PTX) is 
a Taxanes with well-defined tumor inhibitory properties, however, high insolubility has hindered its clinical development. 
Earlier, researchers had developed solvent-based PTX (Taxol®) with Cremophor EL as an excipient, but the risk of 
inducing hypersensitivity reactions, neutropenia and peripheral neuropathy was identified in subsequent clinical applica
tions. In order to avoid the Cremophor EL-related toxicities, researchers developed Abraxane.64,65 Abraxane avoids 
solvent-related toxicity and has better response rates, tumor uptake, and tolerability.64 Clinical trials have shown that 
Abraxane can significantly improve the toxicity and efficacy of the drug, with higher volume of distribution and 
clearance, as well as significant linear pharmacokinetics compared to Taxol®.66

Other Natural Polymers
Owing to their natural abundance, low toxicity, biodegradability and biocompatibility, these natural polymers, including 
polysaccharide-based polymers (CS, hyaluronic acid (HA), alginate, starch, agarose, etc) and protein-based polymers 
(albumin, gelatin, collagen, etc), are widely used for drug delivery.48 For example, gelatin was used to load PTX for EPR 
effect and slow release of the drug.52 In addition, some teams have also designed PNPs with natural polyphenol Gossypol 
as the polymer backbone to promote anti-tumor effects utilizing its pro-apoptotic ability.67

Synthetic Polymers
Poly (Ethylene Glycol)
Poly (ethylene glycol) (PEG) is a hydrophilic polymer with high stealth properties in vivo and is the most common 
polymer used to produce PNPs.4 PEG shows excellent biocompatibility, drug encapsulation efficiency and non-toxicity.68 

What’s more, it has the capacity to escape recognition and clearance by MPS, therefore breaking the limitation of 
circulation time.53 In addition, using PEG as a surface coating for NPs, PEGylation can also prolong its in vivo 
circulation time.53 However, other studies have reported that in vivo PEG antibody production and pre-existing PEG 
antibodies can induce accelerated blood clearance, negatively affecting the safety and efficacy of PEGylated drugs.69

Poly (Lactic-co-Glycolic Acid)
Poly (Lactic-co-Glycolic Acid) (PLGA), a polyester polymer approved for medical applications by both the US Food and 
Drug Administration (FDA) and the European Medicines Agency (EMA), has received extensive attention in the design 
of PNPs.70 PLGA is hydrolyzed in vivo to lactic acids and glycolic acids, which are degradable metabolite monomers 
that can be metabolized in the tricarboxylic acid cycle, thus making PLGA a polymeric material with minimal 
toxicity.56,70 The physicochemical properties such as hydrophobicity, mechanical strength, and degradation speed can 
be controlled by adjusting the ratio of lactic acid and glycolic acid content in PLGA.54,55 This allows PLGA to be utilized 
better for encapsulation of different drugs as well as treatment of different diseases.

Poly-ε-Caprolactone
Poly-ε-Caprolactone (PCL) is also a polyester polymer approved by the FDA that can be hydrolyzed or enzymatically 
cleaved to caproic acid and excreted in urine or feces without accumulation in the body,6,71 so it is considered a reliable 
synthetic polymer. PCL is a hydrophobic polymer that degrades slowly in vivo,56 and the encapsulated drug can be 
released slowly and gradually once it is applied.6 Some teams have utilized its controlled-release property to design 
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drugs72,73 to prolong the duration of effects or to achieve long-term administration in vivo.56,71,74 Abriata et al75 utilized 
polycaprolactone (PCL) as a delivery vehicle for PTX and demonstrated its potential to optimize treatment protocols for 
ovarian adenocarcinoma in vitro.

Other Synthetic Polymers
Similar to PLGA and PCL, Poly(lactic acid) (PLA) is also one type of the hydrophobic polyesters, yet water molecules 
can break its ester bonds leading to hydrolysis.57 Its degradation product, lactic acid, can be metabolized by the body, 
making PLA also a suitable polymer for the production of PNPs.76,77 Polyethyleneimine (PEI) is a cationic synthetic 
polymer that encapsulates negatively charged DNA to protect it from degradation.58 It also has great transfection ability 
and has been extensively studied as a gene delivery carrier.4,26 However, its non-degradability can lead to cytotoxic 
effects,58 which limits its application. Therefore, researchers have attempted to synthesize some biodegradable polymers 
with similar functions to PEI. For example Poly(β-amino esters) (PBAE) synthesized by Jordan J Green et al78 for the 
delivery of DNA for the treatment of glioblastoma. Additionally, disulfide-bonded derivatives of PEI (l-PEIS) synthe
sized by Yan Lee et al79 which showed high transfection efficiency and low toxicity.

Combining the advantages of different polymers to form new copolymers is also an important research trend. For 
example, the PLGA introduced previously is a commonly used copolymer. The amphiphilic PNPs prepared using PEG- 
PCL featured both PCL as the hydrophobic core and PEG as the hydrophilic shell, which enhances the water solubility 
while protecting the physicochemical properties of the cargo.33 The mPEG-PEI copolymer NPs were utilized for the 
delivery of short hairpin RNA (shRNA) for the treatment of chemoresistant prostate cancer, taking advantage of the high 
transfection efficiency of PEI while incorporating PEG to reduce the toxicity of the NPs and enhance their stability.80 

Coating CS and PEG on the outside of PLA-based NPs can inhibit the phagocytosis of PNPs by the reticuloendothelial 
system, facilitate the penetration of macromolecules across the mucosal surface and form a hydrated shell to prolong the 
in vivo circulation time of PNPs.81

Polymer-Hybrid Nanoparticles
In order to overcome the disadvantages of homopolymer, another strategy is to combine it with other kinds of materials 
(such as lipids, metals, inorganic compounds, etc) to form new polymer-hybrid nanoparticles (PHNPs).82 Farinha et al83 

designed a novel targeted hybrid nanosystem consisting of a pH-sensitive lipid bilayer and a PLGA core in order to 
improve the effects of targeted therapeutics selumetinib and perifosine in combination with the tumor suppressor gene 
transgene for the treatment of hepatocellular carcinoma (HCC). They endowed this nanosystem with many advantages, 
including the capability of PLGA to load different therapeutic molecules, easy adjustment of the degradation rate, the 
stimulus responsiveness of lipids and reduced therapy-related side effects. Kong et al84 also designed a lipid-PHNP using 
PLGA with the incorporation of redox-responsive polymer for the delivery of mRNA encoding the tumor suppressor p53, 
to treat the patients with p53-deficient HCC and non-small cell lung cancer. Le’s team85 utilized PBAE combined with 
bioactive lipids, forming PBAE-lipid hybrid NPs that encapsulate the mRNA encoding bevacizumab, which is prefer
entially targeted to the pulmonary endothelial cells in systemic administration. There are many other studies that have 
demonstrated that the application of PHNPs can contribute to improving the blood circulation time of NPs, increasing the 
encapsulation rate, and optimizing the specific release.82

Novel Polymer Nanoparticles for Drug Delivery in Gynecological Cancers
Focusing on the field of gynecological cancers, although surgery and chemotherapy remain the mainstream treatment 
options, scientists are also attempting to leverage the unique advantages of PNPs to provide new strategies for 
gynecological cancers theranostics (Table 2).

Ovarian Cancer
Ovarian cancer (OC) is a common malignant tumor of the female reproductive system that lacks effective diagnostic 
strategies in the early stages, therefore most of the patients are already in advanced stages when they are 
diagnosed.116 According to the survey data of the World Health Organization (WHO), in 2022, there were 6.65 
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Table 2 Novel Polymer Nanoparticles for Gynecological Cancers

Cancer Polymer Active Substance Surface Targeting 
Ligand

Cell Line/ In-vivo Model Reference

Ovarian Cancer PLA PTX HA SKOV3; SKOV3 xenograft tumor model [86]

PLGA-b-PEG Platin-C TPP A2780/CP70 [21]

PEI, PEG siRNA FA SKOV-3-Luc [87]

PBAE mRNA Di-mannose C57BL/6 mice [88]

PLGA aEP2/4 - A375; patient-derived ascites [89]

BSA Olaparib, Ga3+ - SKOV3, OVCAR3 [90]

MESOPOROUS 
polydopamine

Olaparib, adavosertib TMTP1 OVCAR8, SKOV3; patient-derived 
xenograft models

[91]

PLA JQ1 - OVCAR8, SKOV3 [92]

PEG5000 Ki16425; CBZ - A2780, OVCAR3, SKOV3 [93]

PLA Brazilian red propolis 
extract

- OVCAR3 [94]

PLGA-PEG-PLGA Genistein FA SKOV3 [95]

PCL PTX - SKOV3 [75]

Cervical Cancer Polymeric gemini, PEG Ir(III) complexes, 
BODIPY

- HelaDDP; HelaDDP tumor-bearing 
mouse

[96]

chitosan DOX HA HeLa, HEK [97]

l-tyrosine poly  
(ester-urethane)

DOX, CPT - HeLa, WT-MEFs [98]

PDMS DOX - HeLa [99]

Thiolated chitosan NDV HA HeLa [100]

PLGA Antigenic peptide 
HPV16 E744–62, ATP

- TC-1; C57BL/6 mice [101]

Polystyrene Lead vaccine antigens 
HPVE7, Survivin and 
WT1

- HLA-A2/Kb [102]

PEG-b-P(MNT-r-StSi) α-Mangostin-rich 
extract, TEMPO

- HeLa [103]

PLGA Coumarin derivative 
21

- HeLa [104]

PGS Curcumin - HeLa [105]

PMBA Curcumin FA HeLa [106]

Chitosan Syringaldehyde - HeLa [107]

PBAE CRISPR/ shRNA - SiHa, HeLa, CaSki, S12, HEK293; 
C57BL/6 mice, SiHa and HeLa cells 
xenografts models

[108]

(Continued)
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new cases of OC and 3.97 deaths due to OC per 100,000 women, and the incidence and mortality rates of ovarian 
cancer ranked 7th and 6th among women.117 OC is the most lethal gynecological cancer, while surgery and 
chemotherapy are the major therapies for OC. However, most patients relapse after chemotherapy or surgery.116 

The high invasiveness, metastases and drug resistance of OC result in high mortality rates.102,118–120 Therefore new 
OC treatments still urgently need to be developed. In recent years, with the development of pharmaceutical research, 
the status of new modalities, such as immunotherapy, targeted therapy and hormonal therapy, has been rising in the 
management of OC. Notably, the development of PNPs has also provided an efficient strategy for the application of 
these new therapeutic molecules.

Chemotherapy
Chemotherapy is one of the most common treatments for OC. Neoadjuvant chemotherapy and postoperative adjuvant 
chemotherapy both belong to the first-line chemotherapy; while second-line approaches are usually applied in patients 
with OC recurrence or deterioration during the first-line chemotherapy.121

PTX has been the first-line drug for OC treatment in recent decades. Several formulations, such as Abraxane, have 
been put into use to deal with the problem of adverse reactions or low solubility of PTX.122 However, how to overcome 
its short half-life in vivo remains a focus of scientific inquiry, and PNPs have certain advantages in this field.123 Xiang 
Sun et al86 designed HA-PLA-PTX NPs, which took advantage of HA to bind to CD44 overexpressed on the surface of 
OC, used HA to surface-modify PNPs synthesized by PLA and PTX. They also PEGylated the surfaces of the PNPs in 
the process of preparation. The HA on the surface of HA-PLA-PTX NPs provides the ability to actively target OC, and 
the PEGylation provides the stealth ability to avoid being cleared by MPS. This facilitates the solution of the premature 
release of PTX and the improvement of the therapeutic targeting and killing efficiency of ovarian tumors in vivo.

Platinum is another chemotherapy drug that is frequently used. Banik’s team21 reported a novel platinum (IV) 
prodrug, Platin-C, a combination of curcumin and cisplatin, which is recognized as a promising drug to enhance the 
cytotoxic activity of platinum drugs. In order to deliver Platin-C to mitochondria directly, they used triphenyl phospho
nium (TPP) cation-modified PLGA-b-PEG as a carrier for PNPs and validated its mitochondria-targeting activity in the 
cisplatin chemotherapy-resistant human OC cell line A2780/CP70.

Immunotherapy
Immunotherapy achieves its anti-tumor effects through enhancing the immune response.124 Interaction of programmed 
death 1 (PD-1) protein overexpressed in OC cells with its ligand PD-L1 decreases T-cell responsiveness in epithelial OC. 
Therefore, using siRNA to inhibit PD-1 expression is a viable immunotherapy for OC. However, PD-1 can also be 

Table 2 (Continued). 

Cancer Polymer Active Substance Surface Targeting 
Ligand

Cell Line/ In-vivo Model Reference

Endometrial 
Cancer

PEG–PLGA PTX FA HEC-1A [109]

PEG-PDPA DOX, navitoclax - Ishikawa; Ishikawa xenograft models [110]

PLGA CIP2b, PTX - Hec50co [111]

PLGA PTX, BIBF-1120 - Ishikawa, Hec50co, KLE [22]

PCL-PEG-PCL CRZ, GEM - Ishikawa, KLE [112]

Reduction-sensitive 
polymer P1

JX06 - Ishikawa, patient-derived EC cells [113]

Uterine Sarcoma Poly(l-glutamic acid), 
poly(l-leucine), PEG

PTX - MES-SA/DX5 [114]

Choriocarcinoma PEG-PLA Methotrexate HCG JEG-3, JAR [115]
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expressed in healthy cells, so it is necessary to improve the specificity of siRNA delivery. Teo et al87 designed PNPs that 
use FA and PEG to modify the surface of PEI bound to siRNA, which can specifically bind to the FA receptors 
overexpressed in epithelial OC cells to enhance its uptake. The combination of PEI with siRNA can improve its stability 
by protecting siRNA from enzymatic degradation through the “proton sponge hypothesis”.

Tumor-associated macrophages (TAM) have anti-tumor properties when they express the M1-like phenotype. 
However TAMs usually express the M2-like phenotype, which means it has a pro-tumorigenic effect to reduce 
inflammation and promote tissue repair, leading to tumor progression, metastasis, and drug resistance.125,126 For 
reprogramming TAM into the M1-like, Zhang’s team88 developed IRF5/IKKβ NPs choosing mRNA-PBAE as the core 
of PNPs. In order to enable mRNA-PBAE to specifically target TAM and improve its stability, Di-mannitol- 
functionalized polyglutamic acid was coated on the outer side, and in vitro-transcribed mRNA that encodes the M1- 
polarizing transcription factors were delivered to M2-like macrophages. Through experiments in OC, glioblastoma and 
melanoma models, they confirmed the efficacy of IRF5/IKKβ NPs in inducing TAM reprogramming to antitumor, as well 
as the safety of repeated administration.

Tumor-derived Prostaglandin E2 (PGE2), along with its receptors EP2 and EP4, forms a PGE2-EP2/4 signaling axis, 
which has been proven to affect the immune function of dendritic cells (DCs) in the tumor microenvironment.127 Clinical 
trials have been conducted to study the efficacy of EP2/EP4 antagonists (aEP2/4) in the treatment of cancer.128 In order to 
address the possible off-target effects and premature degradation, Jorge Cuenca-Escalona et al89 used PLGA to 
encapsulate aEP2/4, which can be phagocytosed by DCs and inhibit the signal transduction involved in PGE2 to protect 
conventional type 2 DCs from inhibition and promote anti-tumor immune responses of DCs. This concept was validated 
in experiments with ascites from OC patients.

PARP Inhibitor
Poly (adenosine diphosphate ribose) polymerase inhibitor (PARPi) induces DNA strand breaks and shows synthetic 
lethality in homologous recombination deficiency (HRD) cells to exert anti-tumor effects.129,130 Clinical evidence 
supports PARPi’s role in improving overall survival (OS), particularly in patients with newly diagnosed OC and 
BRCA gene mutations,131,132 leading to FDA approval for OC maintenance therapy.129 However, PARPi also faces 
problems of poor long-term tolerability as well as acquired resistance.92

DNA repair consists of both single-stranded and double-stranded, which are handled by two enzymes, PARP and 
BRCA, separately. Therefore, the use of PARPi in BRCA-mutated HRD OCs results in the failure of both types of repair. In 
this case, tumor cells are unable to repair themselves in the event of genetic errors, inhibiting cell proliferation.90 The low 
rates of BRCA gene mutations in OC and the limited effects of PARPi in promoting apoptosis in non-HRD cells have 
restricted the clinical benefit of PARPi in the treatment of OC. Hence, a new combination strategy is needed to improve the 
sensitivity of OC to PARPi. Yangyang Li et al90 utilized gallium(III), which can disrupt cellular iron homeostasis and thus 
inhibit DNA, in combination with PARPi to improve the therapeutic efficacy of PARPi. However, gallium (III) ions (Ga3+) 
have low solubility and bioavailability in vivo and are associated with a risk of nephrotoxicity, so they developed olaparib- 
Ga nanomedicines composed of NPs with an average size of ~7 nm to deliver PARPi and Ga3+ simultaneously. Firstly, 
BSA-Ga3+ was formed based on the natural polymer BSA, then gallic acid (GA) was mixed to form stable GA-Ga3+, and 
then hydrophobic PARPi (olaparib) was attached to BSA and self-assembled to form pH-responsive releasing nanodrugs. 
The synergistic therapeutic effect of gallium (III) and olaparib was demonstrated in SKOV3 and OVCAR3 homologous 
recombination-proficient (HR-proficient) OC cells, and its inhibitory effect on tumor growth was proved in vivo in 
xenograft models.

The combination of PARPi and WEE1 inhibitor (WEE1i) can provide more effective inhibition of ovarian tumor 
growth, but it is not widely used in clinical practice because it is poorly tolerated.133 Therefore, Chaoyang Sun’s team91 

designed a type of PNPs called TPNPs based on mesoporous polydopamine NPs modified with a tumor-targeting peptide 
(TMTP1), for the delivery of WEE1i (adavosertib) and PARPi (olaparib), reducing the side effects of the combination 
through precise delivery of PNPs.

It has been reported that the bromodomain and extra terminal inhibitors (BETi) can specifically regulate oncogene 
expression and enhance the therapeutic efficacy of PARPi when co-applied with olaparib in HR-proficient OC.134 Juan et al92 
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utilized PLA-based NPs encapsulating JQ1, a BETi, to form JQ1-NPs. The use of JQ1-NPs together with olaparib in 
OVCAR8 and SKOV3 OC cell lines showed an enhanced synergistic interaction as well as stronger ability to induce cell 
death than free JQ1. In addition, JQ1-NPs used alone also showed similar or slightly stronger antiproliferative effects than 
free JQ1.

Other Therapeutic Modalities and Medications
There are many signaling pathways dysregulated in OC. The widely recognized ones include the VEGFR and LPA 
pathways, whose dysregulation can stimulate tumor growth, adhesion, migration, invasion and angiogenesis and also lead 
to chemoresistance.93,135–137 VEGF and lysophosphatidic acid (LPA) secreted by OC cells are important signaling 
molecules involved in the above-mentioned signaling pathways. Ozel et al93 designed a targeted polymer-drug conjugate 
nanoparticles loaded with LPA receptor inhibitor (Ki16425) and VEGFR inhibitor (CBZ), using O-(2-Carboxyethyl) 
polyethylene glycol (PEG5000) as a carrier to inhibit the growth of OC.

As a natural product, propolis has been reported to have anticancer effects in OC, including inhibition of tumor 
angiogenesis, metastasis, as well as inhibition of anti-apoptotic proteins and activation of cysteine-containing aspartic 
protein hydrolases caspases that promote apoptosis.138 Justino’s team94 encapsulated Brazilian red propolis extract, 
which shows cytotoxicity against drug-resistant OC cells,139 in PLA to form PNPs for the treatment of OC. The use of 
polymer for loading this promising natural antitumor drug overcomes the disadvantages of its instability, low solubility 
and low bioavailability. Patra et al95 designed folate-targeted PLGA nanoparticles for delivery of Genistein (GEN), which 
has therapeutic potential for OC, to improve GEN’s water solubility and bioavailability, as well as to overcome its 
disadvantages that lack of targetability and rapid in vivo metabolism.

Cervical Cancer
Data from WHO surveys indicate that cervical cancer (CC) is the fourth most common cancer in women, with 
approximately 14.12 and 7.08 new cases or deaths per 100,000 women worldwide in 2022 respectively.117 CC is an 
infection-associated cancer and the majority of CC is caused by human papillomavirus (HPV) infection, while about 5% 
of cases are HPV-independent, and the latter is often associated with a poor prognosis.140 As for treatment, regular 
therapy for CC includes surgery, radiotherapy, chemotherapy, or a combination of these therapies. For recurrent or 
metastatic CC, first-line therapy involves platinum-containing combination regimens of chemotherapy as well as 
pembrolizumab in combination with chemotherapy. While for patients with progression after first-line therapy, other 
regimens like immunotherapy, pembrolizumab, tisotumab vedotin-tftv and cemiplimab are available as second-line 
treatment. However, the response rate is low, with a median progression-free survival (PFS) of only 3–6 months.16 

Therefore, a number of PNPs for the treatment of CC are also being developed.

Chemotherapy
Platinum-containing chemotherapy is the standard regimen for CC treatment, but the risk of tumor progression and drug 
resistance should not be ignored.16,141 The use of synchronized radiotherapy is considered to bring additional clinical 
benefits,16,142 while there are many teams attempting to optimize CTAs and their carriers to improve the chemother
apeutic efficacy in CC.

Ir (III) complex is an antitumor agent that has received widespread attention for its excellent photophysical and 
photochemical properties as well as its ability to overcome the drawbacks of the commonly used CTA cisplatin. 
However, many studies have shown unsatisfactory therapeutic efficacy and severe side effects of Ir (III) complexes, 
which are related to their poor accumulation in tumors.96,143,144 Therefore Liang et al96 designed NPIr@Bp, a PNPs 
formed by self-assembly of Ir(III), dipyrrometheneboron difluoride (Bp) (a type of near-infrared PS) added to polymeric 
gemini NPs, and terminally capped PNPs with PEG. NPIr@Bp generates single-linear oxygen under near-infrared (NIR) 
light, which triggers the dissociation of nanostructures and activates the prodrug to achieve mitochondrial targeting. The 
CTA Ir accumulates in the mitochondria and thus achieves induction of apoptosis. In the cisplatin-resistant human CC 
mouse model, the application of 808 nm light irradiation of NPIr@Bp shows 95% tumor inhibition.
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HA-modified PNPs can target CD44 receptors overexpressed on the surface of solid tumors, and the strong attraction 
of HA to CD44 promotes the internalization and retention of PNPs within tumor cells.97 And as a multifunctional 
transmembrane cell surface adhesion receptor, CD44 is involved in tumor progression by regulating signal transduction 
pathways and enhanced invasion.145 Anjum et al97 utilized HA-coated CS NPs loaded with CTA adriamycin (DOX) to 
overcome the systemic toxicity, lack of targeting, and other drawbacks of free DOX as well as to optimize the efficacy of 
DOX in CC therapy. Aluri’s team98 developed an l-tyrosine-based PNPs, which encapsulated DOX and camptothecin 
utilizing l-tyrosine-based amphiphilic poly(ester-urethane) self-assembled enzyme-responsive NPs. It was confirmed in 
CC HeLa cells that such l-tyrosine PNPs increased drug uptake and internalization by tumor cells compared to free DOX. 
Polydimethylsiloxane (PDMS) is one of polymers with organelle-targeting properties. Maparu et al99 proposed a novel 
strategy to use PDMS to produce soft NPs with a size of about 30 nm. They successfully utilized these NPs to deliver 
DOX to the nucleus and mitochondria of CC cells, and the IC50 value was reduced by more than four times compared 
with that of free DOX. The anticancer potential of PDMS NPs to specifically deliver drugs to the mitochondria and 
nucleus was also demonstrated by a series of experiments.

Immunotherapy
As an emerging therapeutic approach, some studies have suggested that immunotherapy has superior effect to surgery 
and radiotherapy in recurrent CC, however, the low tumor immunogenicity and targeting efficiency pose challenges for 
the application of immunotherapy in CC.146

Oncolytic virotherapy is a promising immunotherapy for CC. To address the rapid clearance of the virus by immune- 
neutralization in vivo, Kousar et al100 used thiolated CS NPs to encapsulate Newcastle disease virus (NDV) and modified 
the surface of the PNPs to attain active targeting of CD44 on the surface of CC cells. They found that such PNPs not only 
actively targeted cargo delivery, but also kept NDV away from the immune system and prolonged the release of NDV in 
the TME.

Therapeutic vaccines are also recognized as a promising therapy for HPV infection and CC. HPV E6 and E7 are ideal 
antigens to activate cell-mediated immune responses, but such peptide vaccines usually require adjuvants to attain the 
ideal efficacy.147 It has been reported that extracellular adenosine triphosphate (ATP) promotes DC recruitment as well as 
antigen uptake and presentation. And the binding of ATP to receptors on the surface of DCs can lead to the release of 
immunomodulators. Besides, ATP facilitates the maturation and homing of DCs. All of the above suggests that ATP has 
the potential to act as an adjuvant for therapeutic vaccines.101 In addition, particles with a size <500 nm are more easily 
internalized by DCs and more likely to stimulate CD8+ T cell responses.148 Therefore, Qishu Zhang et al101 used PLGA 
to encapsulate E7 peptide and carry the adjuvant ATP to form ATP-adjuvanted PNPs vaccine, which showed potent anti- 
tumor cellular immunity. The NPs formed by polymer PLGA in this nanovaccine play an important role in enhancing the 
stability, DC uptake, and lymph node accumulation of E7 peptide.

Polystyrene nanoparticles (PSNPs) are polymeric carriers with self-adjuvanting properties that induce antigen-specific 
CD8+ and CD4+ T cells. Moreover, it does not induce inflammation, pro-inflammatory cytokines, and expansion of 
inflammation reactive regulatory T cells, and can show superiority over conventional pro-inflammatory adjuvants in 
delivering protein-based antigens. Xiang et al102 utilized PSNPs to study peptide-based nanovaccines for CC and OC 
therapy.

Other Therapeutic Modalities, Medications
α-Mangostin is a natural product that derives from pericarps of mangosteen and is cytotoxic to a wide range of cancer 
cells. However, it has poor water solubility as well as a risk of oxidative degradation surrounding solid tumors. Therefore 
Suttithumsatid et al103 used TEMPO (a nitrogen oxide) with antioxidant properties as the side chain of amphiphilic 
copolymers and added silanol moiety to improve the encapsulation efficiency, self-assembled to form NanoAOX NPs for 
the delivery of α-Mangostin-rich extract (AME). It was proved that this PNPs could effectively inhibit the growth of 
HeLa cell lines and had a better safety profile than free AME.

In an attempt to develop anticancer drugs with higher efficacy and fewer side effects, six coumarin derivatives were 
designed by Arvas et al.104 And PLGA NPs were utilized as carriers to deliver compound 21 which has the lowest IC50 
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value among the six derivatives. The use of PLGA carriers provided better drug loading and controlled release of 
compound 21.

Curcumin is a plant-derived chemical with anticancer activity, but its drawback of poor water solubility should 
not be ignored. Poly(glycerol sebacate) (PGS) is another FDA-approved polymer made from the condensation of 
sebacic acid and glycerol and is biodegradable. Massironi et al105 encapsulated curcumin in PGS NPs to improve its 
bioavailability and absorption by oral administration, which showed higher ability to anti-HPV, cytotoxicity and 
activation of apoptosis in HeLa cells. Instead, Kavya et al106 utilized poly(methacryloyl beta-alanine) (PMBA) as 
the carrier to deliver curcumin. In this study, PMBA was polymerized from radicals in supercritical CO(2) and 
treated with FA. Both curcumin and Bcl2 siRNA were encapsulated in PMBA to form Poly@Cur-FA NPs for co- 
delivery of drugs and genes. Poly@Cur-FA stimulates autophagy and inhibits the growth of CC cells through 
activation of Bcl2 and multiple other signaling pathways, which may provide an idea for overcoming tumor drug 
resistance.

Ahmed et al107 studied CS and butyraldehyde together to form new modified CS derivative NPs called CS-3NPs in 
the presence of cross-linking agents. This new CS derivative has a size of less than 100 nm with a wide range of 
applications, an ideal stability with a zeta potential of 20±5.98 mV, an improved crystallinity, as well as the ability to 
induce apoptosis in Hela cells to achieve antitumor effects. And it shows therapeutic potential for CC.

Zhu et al108 developed gene-targeting technology-based PNPs for the treatment of CC. They utilized shRNA and 
CRISPR/Cas targeting to silence and knockdown the HPV16 E7 gene and delivered the associated nucleic acids using 
PBAE NPs. Their PNPs are intended for vaginal administration for the treatment of HPV infections, providing new ideas 
for the prevention and treatment of CC.

Endometrial Cancer
Endometrial cancer (EC) or more broadly known as carcinoma of the uterine corpus17 is an epithelial malignant tumor 
that occurs in the endometrium, which is also one of the three most common malignant tumors of the female reproductive 
system. The incidence of EC has been on the rise in recent years, with 420,368 newly diagnosed patients worldwide in 
2022.117,149 As far as therapy is concerned, EC is usually treated with surgery, supplemented by a comprehensive 
approach of radiotherapy, chemotherapy and hormone therapy. It has also been reported that adding immunotherapy to 
chemotherapy for advanced or metastatic EC is beneficial for improving OS in patients.150

Earlier, Changyan Liang et al109 created a folate-modified PLGA NPs using PEG as a coupling agent to connect folate 
with PLGA, and encapsulated the CTA PTX in it. The modification of folate allows this PNPs to be internalized into EC 
cells through a folate receptor-mediated mechanism. And it was experimentally confirmed that PTX-loaded folate- 
targeted PNPs showed higher anti-tumor efficacy than free PTX, and the tumor inhibition rate of targeted PNPs was 
higher than that of non-targeted ones. Subsequently, there have also been many studies combining PNPs with CTAs used 
to improve the therapeutic efficacy of EC.

Jie Ding et al110 combined the CTA DOX with an anti-apoptotic gene Bcl-2 inhibitor (navitoclax) encapsulated in pH- 
sensitive poly(ethylene glycol)-poly(diisopropylamino)diethyl methacrylate (PEG-PDPA) NPs (NP@DOX/Nav) for the 
treatment of EC and delivered them to the tumor site through enhanced permeability and TME effects. And the 
NP@DOX/Nav showed a higher level of pro-apoptotic effects in the Ishikawa xenograft model than DOX or Nav alone.

Loss of function (LOF) p53 occurs in 80% of type II EC, may lead to EC resistance to chemotherapy. Recent studies 
have shown that CIP2b, a derivative of the fluoroquinolone antibiotic ciprofloxacin (CIP), exhibits cytotoxicity against 
various cancer cells. Its combination with PTX increases the accumulation of PTX in tumors and inhibits tumor 
growth.151 Naguib’s team111 designed CIP2b-NPs that encapsulate CIP2b in PLGA and use TPGS containing hydrophilic 
PEG chains as a surfactant, which aggregates at the tumor site through the EPR effect. The CIP2b-NPs were confirmed to 
increase the accumulation and cytotoxicity of PTX in Hec50co cells of EC. Moreover, the CIP2b-NPs were able to 
maintain a higher concentration in tumors for a longer period of time than soluble CIP2b alone, demonstrating its ability 
to synergize with PTX in the treatment of LOF p53 type II EC and to reduce chemotherapy resistance.

Kareem Ebeid’s team22 developed a PNP utilizing the combination of PTX and a tyrosine kinase inhibitor to 
synergistically induce LOF p53 cancer cell death by abrogating the G2/M checkpoint. The PNP was PLGA-based and 
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carried PTX and the triple angiokinase molecular inhibitor (BIBF) to achieve co-delivery and increase the synthetically 
lethal to uterine serous carcinomas (USC) (a type II EC with low differentiation) cells. The application of these PNP 
carriers overcame the drawbacks of the low water solubility of PTX and BIBF, reduced the side effects due to off-target 
effects, and improved the pharmacokinetics.

Jiaolin Yang’s team112 designed NPs (CRZ@GEM-NPs) of a PCL-PEG-PCL triblock copolymer coupled with the 
CTA gemcitabine (GEM) and the protease inhibitor crizotinib (CRZ) to reduce the side effects of chemotherapy and 
improve their anti-tumor capabilities.

Hyperglycemia is associated with EC invasion and progression.152 Xiao Yang et al113 found that a high glucose 
environment could promote glucose metabolism reprogramming in EC cells by promoting the expression of pyruvate 
dehydrogenase kinase 1 (PDK1), while down-regulation of PDK1 significantly inhibited EC proliferation and invasion. 
Therefore, a reduction-sensitive polymer (P1) encapsulating a PDK1 inhibitor (JX06) was designed to form PNPs called 
JX06-NPs. JX06-NPs deliver small molecules of JX06 with limited water solubility to the tumor site via GSH-triggered 
release in TME. JX06 synergistically enhances antitumor effects with metformin, providing a novel adjuvant for the 
management of patients with both diabetes and EC.

Other Gynecological Cancers
Uterine sarcoma (US) is a very rare gynecological cancer that develops in the uterus. Compared to other uterine tumors, 
it has a poorer prognosis.153 Mostoufi et al114 designed a type of PTX-PNPs for multidrug-resistant US. They utilized the 
pH-responsive polymer poly(l-glutamic acid), the hydrophobic polymer poly(l-leucine), and PEG to form pH-sensitive 
copolymer NPs. This PNPs showed a 10-fold lower IC50 than free PTX in multidrug-resistant US cell line, as well as the 
ability to inhibit drug efflux and induce lysosomal membrane permeability.

Choriocarcinoma is a gynecological cancer that occurs after childbirth, miscarriage or gravida. Chemotherapy 
remains its first-line therapy, yet the non-selective drug distribution leads to serious side effects.153,154 The HCG81- 
NP created by Cong et al154 was aimed at solving this problem. The characteristic of choriocarcinoma overexpressing 
human chorionic gonadotropin (HCG) receptor was utilized by them to achieve targeted delivery of PNPs. They loaded 
CTA methotrexate using PEG-PLA and modified the PNPs with HCG. It was confirmed that the uptake of this PNPs was 
significantly increased in choriocarcinoma cell lines and showed higher inhibition of cell proliferation.

Polymer Drug Delivery Systems for Combination Therapy
In addition to the development of novel medicines, how existing therapies and drugs can be combined and reused is also 
an important research area. Evidence suggests that combination therapies work better against advanced tumors than 
single drugs or sequential drug combinations. On top of that, the heavy financial burden of new drug innovation and the 
uncertainty of efficacy have shifted our focus to the development of combination therapy strategies, even though this may 
contradict the interests of pharmaceutical companies.155,156 Although combination therapy is not a totally novel concept, 
its progress has been hampered in the past because of non-specific delivery of drugs, different pharmacokinetics of 
various agents, and other problems.157 With the increasing development of nanomedicine, chemotherapy, phototherapy, 
immunotherapy and other proven effective tumor therapies are combined to form new dual-mode or multi-mode 
therapeutic nano-systems, and the synergistic effects of tumor therapy are significantly improved.158 In the field of 
gynecological cancers treatment, several teams have created nanoplatforms for combination therapy such as chemother
apy and immunotherapy,159 chemotherapy and PDT160 or two-drug combination161, etc. Similarly, polymer-based 
nanosystems have been studied for gynecological cancers therapy, most of which are synergistic drug combinations,162 

while several studies have involved combinations of diverse therapies.
High levels of nitric oxide (NO) gas on the one hand can react with ROS to produce tumor-killing reactive nitrogen 

species, and on the other hand may increase tumor sensitivity to chemotherapy, which provides a novel idea for 
synergistic treatment with chemotherapy and NO therapy.163–165 Based on the above, Guang Li’s team165 designed 
PSSP@ART-ISMN PNPs using GSH-responsive PNPs loaded with isosorbide 5-mononitrate (ISMN), a NO donor that 
can release NO, as well as a traditional Chinese medicine extract that promotes apoptosis and increases the concentration 
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of ROS called Artesunate (ART). The synergistic therapeutic effect of PSSP@ART-ISMN was confirmed via in vivo 
experiments in SKOV3 tumor-bearing mice, which provides an innovative combination therapy strategy for OC.

PDT can be difficult to attain satisfactory efficacy because of insufficient ROS generation due to hypoxia in the TME. 
In this situation, it is necessary to combine PDT with other therapies, such as cold atmospheric plasma (CAP) therapy, to 
enhance the efficacy.36 CAP is an ionized gas near room temperature.166 Its antitumor effects through oxidative damage 
to DNA and cell membranes are most likely related to high concentrations of ROS and reactive nitrogen.36 Some studies 
have reported that CAP has a promising future in the treatment of gynecologic tumors.167,168 Ha and Kim36 prepared 
a PNPs named PPHE, which was formed by self-assembly of (Pheo a)-conjugated poly(γ-glutamic acid) and mPEG- 
PLGA to form the core of the PNP, and encapsulated the core with targeting ligand-modified HA (HA-EAE7). PPHE was 
released more readily in the acidic pH of the cellular lysosome than in the physiologic pH environment of blood, and 
showed enhanced phototoxicity against the CC CaSki cell line. They subsequently applied this HER3/CD44 dual- 
targeting PPHE in an in vitro experiment with combined PDT/CAP treatment, which showed enhanced ability to induce 
apoptosis in HPV-positive CC cells compared to free Pheo a or PDT alone.

Synthesis of Functional Polymers for Tumor Imaging and Therapy
Theranostics derives from the words diagnostic and therapeutic.169 Progress in nanomedicine has also made it possible to 
integrate the diagnosis and therapy of diseases on a single platform. In the last section, it was introduced that PNPs 
achieve synergistic treatment by carrying multiple therapeutic cargoes; similarly, co-delivery of therapeutic agents with 
contrast agents allows the integration of tumor treatment and imaging, as well as the simultaneous monitoring of 
treatment efficacy.158 The characteristics of PNPs, which can be easily modified, and their high drug-carrying capacity 
enable them to be a promising carrier for tumor theranostics. The strategy of integrating therapy with diagnosis is 
expected to provide novel personalized solutions with higher efficacy and safety for the treatment of tumors.170

In recent years, PAI has gained increasing attention in tumor detection due to its superior contrast, temporal and 
spatial resolution.171 The combination of phototherapy and PAI is one of the most widely studied strategies for the 
integration of diagnosis and therapy. PAI often can be applied concurrently with PTT, and PTA is usually suitable for PAI 
as well.

In PTT, the protective mechanisms of cancer cells are triggered at high temperatures. Therefore, to achieve cancer cell 
killing, heating above 50°C is required, but this can easily damage normal tissues. However, the milder conditions of 
40–45°C may also increase the risk of tumor recurrence and spread.172 The efficacy of PTT is also influenced by the 
ability of the laser to penetrate tissues. The near-infrared-I (NIR-I) window (650–950 nm) has been studied a lot; while 
the near-infrared-II (NIR-II) window (1000–1700 nm) laser has attracted attention due to its deep-tissue penetration and 
less damage to normal tissues, and many related PTAs have been developed.35,173,174 In addition to the deep tumor 
treatment, NIR-II fluorescence imaging (FL) can also guide PTT through precise imaging.172

Lorenz’s team33 designed a novel PNP carried contrast agent to increase the diagnostic accuracy of PAI. They 
encapsulated two dyes that show excellent photoacoustic peaks in specific NIR regions in PEG-PCL NPs, which were 
intravenously injected and delivered to primary and metastatic lesions of OC. These PNPs produced well-separated 
absorption peaks when irradiated with 770 nm and 860 nm laser light, which could clearly distinguish the tumor from 
other tissues in the background; and when irradiated with 808 nm NIR laser light, PNPs can heat up the tumor to ≈49°C 
and kill the tumor, which enabled both PAI diagnosis and PTT treatment can be realized. Similarly, the PD-FA NPs 
prepared by Qiu et al175 enabled both NIR imaging and PAI-guided PTT.

Indocyanine Green (ICG) is an FDA-approved PTA as well as an excellent NIR fluorescent contrast agent, yet its 
poor stability limits its clinical application. Nuernisha’s team176 encapsulated ICGs with amphiphilic poly(styrene-co- 
maleic anhydride) (PSMA) to form PNPs and demonstrated its favorable biocompatibility and enhanced PTT efficiency 
in CC Hela cells. (Figure 2) Another study from this team177 utilized PSMA to encapsulate a new ICG (IR-820) that acts 
as a PTA and NIR fluorescent probe to enhance its biocompatibility. This IR-820@PSMA NP was confirmed to be 
uptaken by Hela cells under confocal microscopy and obtained a PTT efficiency of 77%. Their study suggests that 
theranostics PNPs can also be prepared with a single multifunctional cargo.
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Apart from integration with phototherapy, PNPs have been developed in relation to other therapies. Guang Li’s team67 

designed a nanoparticle called HA@PFG NPs, whose core is a PNP composed of Gossypol, a type of natural polyphenols, 
together with Fe3+ and Pt-COOH, a prodrug of the CTA cisplatin; and coated the outside of the PNP with HA, which can 
target tumor cells. When HA@PFG NPs were delivered into the TME, the acidic environment stimulated the breakage of 
pH-sensitive linkages to release Fe3+ and Pt-COOH. HA@PFG NPs exert cytotoxicity to suppress tumors through 
chemotherapy, Fe3+-induced iron death, and promotion of apoptosis by Gossypol. Fe3+ can also act as a contrast agent to 
enhance MRI visualization, allowing HA@PFG NPs to play a role in both diagnosis and treatment for OC.

Dragulska’s team178 has also developed a PNP that combines diagnostic imaging with targeted therapy, called the 
RGDFFF-CA4 NP. This PNP has a PLGA core, carries the vascular disrupting agent combretastatin A4 (CA4) used for 
OC treatment. Additionally, replaces the popular PEG coating on the surface of the PNPs with a short arginine-glycine- 
aspartic acid-phenylalanine x3 (RGDFFF) peptide to diminish immunogenicity and achieve targeting. What’s more, they 
also modified the surface of PNPs with NIR fluorophore label Cy7 for tumor imaging.

Challenges in Clinical Translation of PNPs
For clinical translation, in addition to Abraxane, which has been approved by the FDA for oncology treatment,179 few 
PNPs have been in clinical practice. For example, Paclical is approved by the EMA for OC therapy, as well as Genexol- 
PM is approved in South Korea for the treatment of breast cancer and non-small cell lung cancer.4 Besides, only a limited 
number of studies that have entered clinical trials, for example, CRLX101, a cyclodextrin-based PNP, whose first Phase 
1/2a clinical trial results in OC were published in 2013,180 with several subsequent clinical trials completed alone or in 
combination.181,182 A systematic review showed that CRLX101 may bring higher efficacy and lower systemic toxicity to 
cancer therapy, but its safety and efficacy are still influenced by multiple factors.183 While another meta-analysis showed 
that CRLX101 improved patients’ median PFS compared to the control group, but delivered poorer median OS.184 Issues 
such as biological barriers, plasma stability, and immune clearance preventing the drug from reaching the desired 
therapeutic dose at the lesion site;185 as well as challenges in synthesizable scale-up such as production stability, green 
nanotechnology,18 are the core barriers faced by the clinical translation of PNPs.

Figure 2 Schematic illustration of the synthesis process and PTT effect. Reprinted with permission from Chen S, Zhu L, Du Zet al Polymer encapsulated clinical ICG 
nanoparticles for enhanced photothermal therapy and NIR fluorescence imaging in cervical cancer. RSC Adv. 2021;11(34):20,850–20858. Copyright 2021 Royal Society of 
Chemistry.176
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Conclusions and Future Prospect
In conclusion, polymer is a promising material to prepare nanoparticles for tumor theranostics. The preparation of novel 
PNPs involves not only the modification and combination of the polymers themselves to optimize the circulation time, 
release mechanism and action site of the PNPs in vivo; but also the use of the polymers’ advantages to carry the freshly 
developed cargoes for improving the water solubility, biocompatibility, bioavailability and other properties of the 
cargoes. These advantages of PNPs could meet the urgent need for precision strategies in the management of gynecologic 
cancers. Especially in chemotherapy and immunotherapy for gynecological cancers, lots of novel regimens of PNPs have 
been proposed, which provide possibilities to better the prognosis of advanced gynecological cancers. In addition, PNPs 
can realize co-delivery by storing different agents in different layers/chambers in the particles respectively. These 
strategies for combination therapy as well as diagnostic and therapeutic integration will contribute to higher efficiency 
and lower economic burden for gynecological cancers theranostics.

Despite demonstrated preclinical success of several PNPs in cellular and animal models, their clinical translation 
remains challenging, with few candidates progressing to human trials. To bridge this translational gap, critical parameters 
must be addressed during PNP design and development: (1) Biosafety assurance and scalable synthesis protocols; (2) 
Wider therapeutic window and lower dosing frequency; (3) Tumor-selective targeting with mitigated off-tissue effects.

Future target of design PNPs could be shifted to the early diagnosis of tumors, especially for OC, which is diagnosed at 
advanced stages in most patients.186 PNPs carry contrast agents to precisely target tiny malignant lesions and provide imaging 
evidence for very early diagnosis of gynecological cancers. In terms of gynecological cancers, the female reproductive tract, as 
a unique route of administration, perhaps can replace the traditional ones to enhance gynecological cancers therapeutic 
efficiency. For example, the intrauterine device (IUD) is a common controlled release device for drugs used in ovarian 
endocrine disorders. Corrie et al187 proposed the concept of controlled release of PS-loaded PNPs through IUDs for PDT and 
FL. Similarly, such integration of gynecological cancers-targeted PNPs with IUD-based delivery platforms may establish 
a clinically viable strategy for precision intervention. Furthermore, the versatile surface functionalization capacity of PNPs 
provides a robust foundation for the further development of personalized therapy and intelligent NPs.
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