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Background: Neuroblastoma (NB) is a malignancy of neural crest cells that primarily affects children. Single nucleotide polymorph-
isms (SNPs) in the fat mass and obesity-associated (FTO) gene, a well-conserved gene, have been implicated in tumorigenesis. 
However, there is currently insufficient evidence to establish the relationship between FTO gene SNPs and susceptibility to NB.
Methods: A TaqMan assay was conducted to examine the potential associations between FTO gene SNPs and the risk of NB in 
a cohort of 898 patients and 1734 controls from eight medical centers in China. Additionally, stratification analysis was performed to 
evaluate the relationship between the selected FTO SNPs and the susceptibility to NB among various subgroups.
Results: No significant association was found between the selected FTO polymorphisms and the risk of NB in either the single locus 
analysis or the combined analysis.
Conclusion: However, our study reveals that individuals with retroperitoneal NB and those with stage III+IV NB are more prone to 
exhibit FTO SNPs compared to other patients. Moreover, participants with the FTO rs8047395 GG genotype displayed a higher 
likelihood of developing stage III+IV NB in comparison to other participants.
Keywords: FTO, single nucleotide polymorphisms, neuroblastoma, susceptibility

Introduction
Neuroblastoma (NB) is the most common pediatric extracranial solid tumor that develops from the sympathetic nervous 
system.1,2 NB accounts for approximately 8% of all pediatric cancers.3 Furthermore, the prognosis of NB varies depending on 
the heterogeneity in age, clinical stage, genetic features, and biological characteristics.1,4,5 Additionally, patients diagnosed 
with neonatal NB and low-risk NB generally exhibit a more favorable prognosis,3,6 whereas those with high-risk NB 
commonly develop metastases and experience a rapid deterioration of their condition. The 5-year survival rate for patients 
with high-risk NB is less than 50%.7–9 Consequently, there is an urgent need to identify novel therapies for patients with NB.

With the progress of high-throughput “omics” techniques, several genes and molecules have undergone evaluation as 
potential targets for the treatment of NB. Additionally, certain genetic SNPs, such as the YTHDC1 gene polymorphism 
(rs3813832 T>C)10 and the hOGG1 gene polymorphism (rs1052133 G>C),11 have been linked to NB susceptibility. 
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Nevertheless, our current understanding of the correlation between FTO SNPs and NB susceptibility remains limited. 
Notably, certain FTO SNPs situated within intron 1 of the FTO gene have demonstrated a significant influence on body 
mass and obesity in humans.12–14

In a recent study, the overexpression of FTO was discovered to play a critical role in acute myeloid leukemia as an 
N6-methyladenosine (m6A) demethylase. It was observed to promote cell proliferation and transformation while 
suppressing apoptosis.15 Furthermore, aberrant FTO overexpression was associated with the promotion of breast tumor 
progression,16 regulation melanoma tumorigenesis as a pro-tumorigenic factor,17 and the proliferation and invasion of 
colorectal cancer cells, while also suppressing their apoptosis.18 Additionally, FTO knockdown led to a decrease in 
proliferation of N2a NB cells.19 Lin et al also reported that FTO overexpression could modulate energy homeostasis 
through the cAMP-response element binding protein signaling pathway in human NB cells.20

Considering the significance of FTO, we performed a case-control study to investigate the association between FTO 
polymorphisms and the risk of NB.

Materials and Methods
Study Population
This retrospective case-control study enrolled all unrelated patients of Chinese Han ethnicity with NB from eight medical 
centers in Guangzhou, Zhengzhou, Wenzhou, Xi’an, Taiyuan, Kunming, Changsha, and Shenyang (Table S1), following 
the same inclusion criteria. In addition, 1734 NB-free controls matched for age, sex, and ethnicity were recruited from 
the same geographical locations during the same period. The case group consisted of 898 patients who were diagnosed 
with NB based on precise diagnostic criteria using clinical and histopathological evidence and received treatment at these 
eight medical centers. The detailed inclusion criteria have been previously reported in our studies.21,22

Polymorphism Selection and Genotyping
Four potential FTO SNPs (rs1477196 G>A, rs9939609 T>A, rs7206790 C>G, rs8047395 A>G) were retrieved from the 
dbSNP database (http://www.ncbi.nlm.nih.gov/SNP) and the SNPinfo Web Server (https://snpinfo.niehs.nih.gov) based 
on our previous studies.22–24 The selection criteria were as follows: Firstly, SNPs are located in the 5’-flanking regions, 
3’- and 5’- untranslated regions, and exons of the FTO gene. Moreover, the minor allele frequencies should be >5% in 
Chinese Han population; Furthermore, LDmatrix Tool (https://ldlink.nih.gov) result indicated that there was no sig-
nificant linkage disequilibrium (LD) among each other (R2 < 0.8). As shown in the Figure S1, there was no significant 
LD among these four SNPs of FTO (R2 = 0.064 between rs7206790 and rs8047395, R2 = 0.034 between rs7206790 and 
rs1477196, R2 = 0.536 between rs7206790 and rs9939609, R2 = 0.598 between rs8047395 and rs1477196, R2 = 0.089 
between rs8047395 and rs9939609, and R2 = 0.06 between rs1477196 and rs9939609). Genomic DNA was then 
extracted from the patients’ peripheral blood using standard procedures, and the SNP types were determined using 
a commercial TaqMan real-time polymerase chain reaction kit.25,26 Additionally, approximately 10% of the DNA 
samples were randomly selected for re-genotyping using sequencing to ensure quality control and verify the accuracy 
of the results. The concordance between the two sets of results was 100%, demonstrating high reproducibility.

Statistical Analysis
The goodness-of-fit chi-square (χ²) test was conducted to assess whether the frequency distributions of the selected SNP 
genotypes adhered to the Hardy-Weinberg equilibrium (HWE) in the control group. Two-sided χ²-tests were used to compare 
demographic variables and allele frequency distributions between NB patients and controls. The odds ratio (OR), 95% 
confidence interval (CIs), and adjusted P values for age and sex were calculated for each FTO SNP. Unconditional univariate 
and multivariate logistic regression analyses were performed to evaluate the strength of the association between the selected 
SNPs and NB susceptibility, providing ORs and 95% CIs. Furthermore, stratification analyses were conducted based on age, sex, 
original tumor location, and International Neuroblastoma Staging System (INSS) stages. All statistical analyses were performed 
using SAS software version 9.1 (SAS Institute, Cary, NC). The detailed SAS running codes are provided in the supplementary 
materials (SAS Code 1 and SAS Code 2). Statistical significance was set at P<0.05.
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Results
Correlations Between FTO SNPs and NB Susceptibility
A total of 888 patients with NB and 1733 controls were successfully genotyped. The genotype frequency distributions of 
the four FTO SNPs (rs1477196 G>A, rs9939609 T>A, rs7206790 C>G, rs8047395 A>G) in patients with NB and 
controls, along with their relevance to NB susceptibility are presented in Table 1. Additionally, the genotype frequencies 
of the four selected SNPs accorded with the Hardy-Weinberg equilibrium (HWE) in controls (HWE=0.466 for rs1477196 
G>A, HWE=0.046 for rs9939609 T>A, HWE=0.022 for rs7206790 C>G, and HWE=0.657 for rs8047395 A>G). 
Consequently, no significant associations were observed between the selected FTO polymorphisms and the risk of NB 
in the single locus analysis (P adjusted for age and sex >0.05).

Table 1 Association Between FTO Gene Polymorphisms and Neuroblastoma Risk

Genotype Cases 
(N=888)

Controls 
(N=1733)

P a Crude OR 
(95% CI)

P Adjusted OR 
(95% CI) b

P b

rs1477196 G>A (HWE=0.466)

GG 485 (54.62) 952 (54.93) 1.00 1.00

GA 327 (36.82) 657 (37.91) 0.98 (0.82–1.16) 0.790 0.97 (0.82–1.16) 0.763
AA 76 (8.56) 124 (7.16) 1.20 (0.89–1.63) 0.236 1.18 (0.87–1.60) 0.290

Additive 0.511 1.04 (0.92–1.19) 0.510 1.04 (0.91–1.18) 0.582

Dominant 403 (45.38) 781 (45.07) 0.878 1.01 (0.86–1.19) 0.878 1.01 (0.86–1.19) 0.935
Recessive 812 (91.44) 1609 (92.84) 0.200 1.21 (0.90–1.64) 0.201 1.19 (0.89–1.61) 0.247

rs9939609 T>A (HWE=0.046)

TT 648 (72.97) 1297 (74.84) 1.00 1.00
TA 220 (24.77) 393 (22.68) 1.12 (0.93–1.36) 0.241 1.13 (0.93–1.36) 0.218

AA 20 (2.25) 43 (2.48) 0.93 (0.54–1.60) 0.795 0.94 (0.55–1.61) 0.814

Additive 0.428 1.07 (0.91–1.25) 0.428 1.07 (0.91–1.26) 0.393
Dominant 240 (27.03) 436 (25.16) 0.301 1.10 (0.92–1.32) 0.301 1.11 (0.92–1.33) 0.273

Recessive 868 (97.75) 1690 (97.52) 0.717 0.91 (0.53–1.55) 0.717 0.91 (0.53–1.56) 0.732

rs7206790 C>G (HWE=0.022)
CC 654 (73.65) 1255 (72.42) 1.00 1.00

CG 217 (24.44) 425 (24.52) 0.98 (0.81–1.18) 0.832 0.99 (0.82–1.19) 0.893

GG 17 (1.91) 53 (3.06) 0.62 (0.35–1.07) 0.067 0.61 (0.35–1.07) 0.084
Additive 0.262 0.91 (0.78–1.07) 0.262 0.92 (0.78–1.08) 0.285

Dominant 234 (26.35) 478 (27.58) 0.503 0.94 (0.78–1.13) 0.503 0.95 (0.79–1.14) 0.547

Recessive 871 (98.09) 1680 (96.94) 0.086 0.62 (0.36–1.08) 0.089 0.62 (0.35–1.07) 0.085
rs8047395 A>G (HWE=0.657)

AA 348 (39.19) 683 (39.41) 1.00 1.00

AG 393 (44.26) 803 (46.34) 0.96 (0.81–1.15) 0.655 0.96 (0.80–1.14) 0.619
GG 147 (16.55) 247 (14.25) 1.17 (0.92–1.49) 0.208 1.15 (0.90–1.47) 0.257

Additive 0.380 1.05 (0.94–1.18) 0.380 1.05 (0.93–1.18) 0.448

Dominant 540 (60.81) 1050 (60.59) 0.912 1.01 (0.86–1.19) 0.912 1.00 (0.85–1.18) 0.982
Recessive 741 (83.45) 1486 (85.75) 0.119 1.19 (0.96–1.49) 0.119 1.18 (0.94–1.47) 0.149

Combine risk genotypesc

0 8 (0.90) 24 (1.38) 0.055 1.00 1.00
1 20 (2.25) 46 (2.65) 1.30 (0.50–3.40) 0.587 1.34 (0.51–3.49) 0.550

2 706 (79.50) 1414 (81.59) 1.50 (0.67–3.35) 0.326 1.52 (0.68–3.40) 0.309

3 86 (9.68) 129 (7.44) 2.00 (0.86–4.66) 0.108 2.02 (0.87–4.70) 0.104
4 68 (7.66) 120 (6.92) 1.70 (0.72–3.99) 0.223 1.69 (0.72–3.98) 0.227

0–2 734 (82.66) 1484 (85.63) 1.00 1.00

3–4 154 (17.34) 249 (14.37) 0.046 1.25 (1.004–1.56) 0.046 1.24 (0.99–1.54) 0.060

Notes: aχ2 test for genotype distributions between neuroblastoma patients and cancer-free controls. bAdjusted for age and sex. cRisk genotypes were 
rs1477196 AA, rs9939609 TT/TA, rs7206790 CC/CG, and rs8047395 GG.
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To delve deeper into the relationship between FTO SNPs and NB susceptibility, the combined effect of risk genotypes 
was examined (Table 1). However, the findings from the combined analysis (P adjusted for age and sex >0.05) were 
identical to those of the single locus analysis.

Stratification Analysis
To further evaluate the association between the selected FTO polymorphisms and NB susceptibility among different 
subgroups, stratification analysis was conducted based on age, sex, site of origin, and INSS stage (Table 2). Single locus 
stratification analysis revealed no correlation between the rs7206790 C>G polymorphism and the risk of NB in any of the 
subgroups. However, among participants in the INSS stage III+IV subgroup, those with the GG genotype of rs8047395 
A>G had a significantly higher susceptibility to NB compared to those with the AA/AG genotype (Adjusted OR=1.36, 
95% CI=1.01–1.81, P=0.040). Furthermore, combined analysis indicated that the presence of 3–4 risk genotypes had 
a significantly correlation with NB originating in retroperitoneal (AOR=1.47, 95% CI=1.08–2.00, P=0.015) and NB in III 
+IV INSS stages (AOR=1.37, 95% CI=1.03–1.83, P=0.033) compared with the reference group.

Discussion
The FTO gene is situated on 16q12.2 and is responsible for producing the FTO protein, It has been reported FTO 
knockdown led to increased amounts of N6-methyladenosine (m6A) in mRNA, whereas overexpression of FTO resulted 
in decreased amounts of m6A in vitro, which strongly suggested FTO plays a crucial role in the demethylation process of 
N6-methyladenosine (m6A) residues in nuclear RNA within human cells.27,28 Several studies have shown 
that m6A modification is associated with various aspects of tumor biology, including growth,29 proliferation,30 

differentiation,31 invasion,32 and metastasis.33 Additionally, it has been observed that m6A can function both as 
a tumor stimulator and a tumor repressor.34,35 Owing to its oxidative demethylation function, the biological regulatory 
mechanism of FTO expression has been recently explored in various human malignancies, such as breast tumors,36 

bladder tumors,37 prostate cancer,38 hepatocellular carcinoma,39 and non-small cell lung carcinoma.40 Furthermore, the 
impact of FTO SNPs on tumorigenesis, tumor progression, and cancer susceptibility has also been revealed.41 Gaudet 
et al concluded that the rs8050136 C>A FTO polymorphism did not have a significant impact on the risk of endometrial 
cancer in the Polish Endometrial Case-Control Study,42 and this finding was consistent with three replication studies 
conducted by the same authors.42 In a hospital-based case-control study by Tang et al,43 it was reported that the FTO 
SNPs rs8050136 C>A and rs9939609 T>A polymorphisms were significantly associated with the risk of pancreatic 
cancer. This study included 1070 patients with pancreatic cancer and 1175 cancer-free controls.

There are many studies on the relationship between m6A modification and nervous system tumors, however, studies on FTO 
and nervous system tumors are limited. Cui et al confirmed that overexpression of FTO promoted glioblastoma stem cell-induced 
tumorigenesis as well as shortened the life-span of GSC-engrafted mice.44 This finding established a causative link 
between m6A modifications and glioblastoma, a highly aggressive form of brain cancer. NB, as an embryonal tumor originating 
from the nervous system,45,46 has a high incidence rate among infants.47,48 Recently, the involvement of m6A modification in NB 
has been elucidated. Cheng et al proposed that miR-98 binds to the 3’-UTR of MYCN RNA and down-regulates its expression 
through m6A modification, thereby inhibiting NB progression.49 Wang et al reported that five m6A modification-related genes, 
namely METT14, WTAP, HNRNPC, YTHDF1 and IGF2BP2, could impact the clinical prognosis of NB.50 Zeng et al have 
confirmed the relationship between an SNP (rs3738067 A>G) of the m6A modification-related gene YTHDF2 and NB 
susceptibility.51 Several studies have reported the results of the correlation between FTO and NB, most of which revealed the 
role of FTO in human neuroblastoma cells, such as SH-SY5Y cells and SK-N-SH cells. Hu et al reported that Early B Cell Factor 3 
(EBF3), a member of the highly evolutionarily conserved EBF-transcription factor family, whose m6A methylation modification 
level and mRNA half-life were upregulated by FTO siRNA, and EBF3 overexpression suppressed apoptosis of SH-SY5Y cells.52 

In N-methyl-4-phenylpyridinium treated SH-SY5Y cells, FTO impaired the NRF2 mRNA stability via m6 A-dependent pathway 
to led to the ferroptosis significantly upregulated.53 And FTO increased NRF2 expression by mediating m6A demethylation of 
NRF2 mRNA, thereby inhibiting oxidative stress response in glucose deprivation/re-oxygenation (OGD/R)-induced SH-SY5Y 
cells.54 Lin et al have confirmed FTO interacted with CaMKII and modulated the activity of CREB signaling pathway in SK- 
N-SH cells, and the CREB signaling pathway could regulate food intake and energy homeostasis.20 Moreover, Lin et al have 
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Table 2 Stratification Analysis for the Association Between Risk Genotypes and Neuroblastoma Risk

Variables rs7206790 
(cases/controls)

AOR (95% CI)a Pa rs8047395 
(cases/controls)

AOR (95% CI)a Pa Risk genotypes 
(cases/controls)

AOR (95% CI)a Pa

CC/CG GG AA/AG GG 0–2 3–4

Age, month

≤18 334/692 7/21 0.71 (0.30–1.68) 0.432 291/631 50/82 1.32 (0.90–1.92) 0.155 290/629 51/84 1.31 (0.90–1.91) 0.155
>18 537/988 10/32 0.58 (0.28–1.19) 0.137 450/855 97/165 1.11 (0.84–1.47) 0.448 444/855 103/165 1.20 (0.91–1.58) 0.188

Sex

Females 398/716 7/28 0.46 (0.20–1.06) 0.067 340/640 65/104 1.15 (0.82–1.61) 0.420 337/639 68/105 1.20 (0.86–1.68) 0.280
Males 473/964 10/25 0.81 (0.39–1.70) 0.579 401/846 82/143 1.20 (0.89–1.62) 0.226 397/845 86/144 1.26 (0.94–1.69) 0.120

Sites of origin

Adrenal gland 242/1680 5/53 0.66 (0.26–1.66) 0.373 209/1486 38/247 1.06 (0.73–1.54) 0.750 209/1484 38/249 1.05 (0.73–1.53) 0.781
Retroperitoneal 310/1680 4/53 0.40 (0.15–1.13) 0.083 255/1486 59/247 1.37 (1.00–1.87) 0.053 251/1484 63/249 1.47 (1.08–2.00) 0.015
Mediastinum 203/1680 7/53 1.05 (0.47–2.34) 0.907 184/1486 26/247 0.85 (0.55–1.32) 0.473 184/1484 26/249 0.85 (0.55–1.30) 0.446

Others 104/1680 1/53 0.30 (0.04–2.18) 0.232 86/1486 19/247 1.37 (0.81–2.29) 0.238 83/1484 22/249 1.62 (0.99–2.65) 0.054
INSS stages

I+II+4s 458/1680 9/68 0.61 (0.30–1.25) 0.178 400/1486 67/247 1.02 (0.76–1.36) 0.902 394/1484 73/249 1.12 (0.84–1.48) 0.449
III+IV 380/1680 8/68 0.65 (0.30–1.38) 0.261 314/1486 74/247 1.36 (1.01–1.81) 0.040 313/1484 75/249 1.37 (1.03–1.83) 0.033

Notes: aAdjusted for age and sex, omitting the corresponding stratification factor. Bold values indicate statistically significant associations (AOR > 1 with 95% CI excluding 1; P < 0.05). 
Abbreviations: AOR, adjusted odds ratio; CI, confidence interval.
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demonstrated FTO overexpression inhibited cell proliferation, whereas FTO knockdown promoted cell proliferation in NB cells, 
and the sensitivity of NB cells to chemotherapeutic drugs (etoposide and paclitaxel) is contributed to FTO expression level.55 

Those study mentioned above showed that FTO expression was correlated with survival probability and prognostic factors in 
patients with NB. Consequently, it is reasonable to hypothesize that FTO SNPs may influence one or more pathological processes 
involved in the occurrence, progression, deterioration, or metastasis of NB. Limited studies have demonstrated the association 
between FTO SNPs and the susceptibility, tumorigenesis, and progression of pediatric NB. Nevertheless, this hospital-based case- 
control study represents the first attempt, to our knowledge, to assess the impact of FTO SNPs on NB susceptibility in the Chinese 
Han population. Our findings indicate that the selected FTO polymorphisms did not show a significant correlation with NB 
susceptibility overall. However, in the stratification analysis of FTO rs8047395 A>G, we observed that patients with a GG 
genotype in the stage III+IV subgroup were considered to have a higher risk of NB, therefore the results of our study may 
contribute to the effective health risk assessment of possible NB patients.

Our study has several limitations that should be acknowledged. Firstly, the study population may not be entirely 
representative of the entire Chinese population, despite being the largest case-control study conducted to evaluate the 
association between FTO SNPs and NB susceptibility specifically in the Chinese Han population. Therefore, further 
studies with larger sample sizes are needed to confirm and validate our findings. Additionally, the low incidence rate of 
NB poses challenges in conducting studies with small sample sizes, which may introduce some degree of bias. 
Furthermore, it is crucial to recognize that tumor susceptibility is influenced by a complex interplay between genetic 
risk factors and environmental factors.56 Furthermore, we did not evaluate important environmental factors, such as 
dietary habits, physical fitness, and childhood exposures, which could have a profound effect on the statistical analysis 
outcomes. Additionally, our study only focused on four specific FTO SNPs, limiting our ability to elucidate the role of all 
FTO polymorphisms in NB. Therefore, it is essential to identify potentially functional FTO polymorphisms to establish 
comprehensive associations between other FTO SNPs and NB susceptibility. Ultimately, mechanistic research and 
functional analysis will be fundamental approaches to confirm and clarify the underlying mechanisms linking FTO 
polymorphisms to NB susceptibility.

In summary, our study did not identify any remarkable associations between the selected FTO polymorphisms and 
NB susceptibility. However, our findings lay the groundwork for future research exploring the role of FTO SNPs in NB. 
Given the clinical significance of the relationship between FTO SNPs and NB susceptibility, larger-scale mechanistic 
studies are warranted to deepen our understanding and improve the treatment of NB.

Abbreviation
NB, Neuroblastoma; SNPs, Single nucleotide polymorphisms; m6A, N6-methyladenosine; HWE, Hardy–Weinberg 
equilibrium; CIs, confidence interval; INSS, International Neuroblastoma Staging System.
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