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Abstract: The genus Premna (Lamiaceae), widely distributed across tropical and subtropical regions, is renowned for its ethnome-
dicinal applications, including cardiotonic, antimicrobial, hepatoprotective, and antitumor properties. Despite these promising uses, the 
current body of literature relies predominantly on in vitro evidence, with limited knowledge regarding in vivo validation, metabolism, 
and bioavailability. This review synthesizes findings from the past decade on the Premna serratifolia group (P. serratifolia, P. odorata, 
and P. tomentosa), focusing on their bioactive compounds and mechanisms of in vitro anticancer activity. The compounds identified— 
such as flavonoids, terpenoids, and steroids—exhibit diverse actions, including cell cycle arrest, apoptosis induction, inhibition of 
metastasis, oxidative stress modulation, and autophagy. Key compounds like quercetin, kaempferol, and stigmasterol demonstrate 
multi-targeted actions, effectively regulating pathways such as PI3K/AKT and NF-κB while selectively targeting cancer cells. These 
findings underscore chemopreventive potential from P. serratifolia group and their ability to complement conventional cancer 
therapies, potentially reducing side effects and overcoming drug resistance. Furthermore, the review validates the ethnomedicinal 
use of Premna species and bridges traditional knowledge with modern oncology. However, the absence of comprehensive in vivo and 
clinical data warrants further research to fully harness these compounds’ potential. This study highlights P. serratifolia, P. odorata, and 
P. tomentosa as promising sources for novel plant-derived anticancer agents, offering opportunities for future drug discovery.
Keywords: phytochemicals, natural product-based therapy, chemoprevention, cytotoxic activity, multi-target mechanisms

Introduction
Noncommunicable diseases, characterized by their chronic and complex nature, are responsible for more than 70% of 
global deaths annually, equating to approximately 41 million fatalities. Among these, cancer ranks as the second leading 
cause of death, following cardiovascular diseases.1 According to GLOBOCAN 2020, a global cancer data source, new 
cancer cases are projected to rise significantly by 2040, representing a 47% increase compared to 2020.2 Cancer includes 
a diverse group of over 277 diseases, generally defined by uncontrolled cell growth. Any somatic cell has the potential to 
undergo malignant transformation through a cascade of genetic mutations that disrupt normal cell functions.3 This 
process, known as carcinogenesis, occurs in three stages: initiation, where genetic mutations occur; promotion, where 
mutated cells become malignant; and progression, marked by rapid, uncontrolled tumor growth. Additionally, metastasis 
—the spread of cancer cells to distant organs—is a major contributor to cancer-related.4

The growing global cancer burden highlights the urgent need for innovative, cost-effective chemopreventive, and 
therapeutic strategies that are accessible to populations worldwide. Natural products, with their unparalleled chemical 
diversity, provide a rich source of bioactive compounds with therapeutic potential.5 Among these, phytochemicals have 
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proven to be vital in the development of anticancer drugs, with more than 60% of current chemotherapeutic agents 
derived from these compounds.6

The genus Premna, first described by Linnaeus in 1771, comprises about 200 species found across Australia, Africa, 
Asia, and the Pacific Islands. The name Premna derives from the Greek word “premon”, meaning tree stump, reflect the 
short and twisted trunks of Premna serratifolia L., the first species described in this genus. Typically, Premna species are 
shrubs or trees, though some exist as pyroherbs or lianas.7 Morphologically, Premna species are divided into two groups 
based on their twig, calyx, and fruit characteristics: the P. serratifolia group and the P. trichostoma group. The 
P. serratifolia group includes commonly found species like P. serratifolia, P. odorata, and P. tomentosa. In contrast, 
the P. trichostoma group includes rarer, geographically restricted species.8 The P. serratifolia group are renowned for 
their phytochemical richness, including compounds such as iridoid glycosides, diterpenoids, phenylethanoids, lignans, 
sesquiterpenes, ceramides, megastigmanes, and glyceroglycolipids. These metabolites contribute to the diverse bioactiv-
ities of Premna species, including immunomodulatory, antimicrobial, anti-hyperglycemic, anti-inflammatory, and cyto-
toxic effects.9,10

Despite these promising biological activities, current research predominantly consists of in vitro assays, and there 
remains a significant gap regarding the comprehensive understanding of anticancer mechanisms, bioactive constituents, 
and their therapeutic potential in clinical contexts. To bridge this gap, this review aims to summarize and evaluate the 
available in vitro data regarding the anticancer activities and mechanisms of bioactive compounds from P. serratifolia, 
P. odorata, and P. tomentosa. Emphasis is placed on identifying bioactive compounds, summarizing reported mechan-
isms of action, and discussing the implications of these findings for future research. Given the limited in vivo studies 
available, our review focuses primarily on in vitro cytotoxic, apoptotic, anti-metastatic, and related mechanistic data, 
while underscoring the necessity for further preclinical and clinical validation.

Materials and Methods
Search Strategy
We conducted literature search in PubMed, EBSCO, and Scopus from 2013 to 2023 to identify relevant studies on 
Premna serratifolia, Premna odorata, and Premna tomentosa. The primary search terms included “Premna serratifolia”, 
“Premna odorata”, “Premna tomentosa”, combined with “bioactive compounds” and “anticancer activity”. Only peer- 
reviewed articles presenting in vitro and/or in vivo evidence for the anticancer effects of bioactive compounds explicitly 
isolated from these three Premna species were included. Reviews or commentaries lacking primary data and studies on 
non-serratifolia group species were excluded.

Data Extraction and Validation
Two investigators (RMF and SNR) independently screened the titles and abstracts and then reviewed the full text of 
potentially relevant articles. Discrepancies were resolved through discussion with a third investigator (ITM). Extracted 
data included information on the experimental design, cell lines models, treatment doses, identified bioactive compounds, 
and reported outcome. The data were cross-verified to ensure consistency and accuracy.

Although the focus is on in vitro efficacy, some studies that mention initial in vivo experiments were considered if 
they provided substantial mechanistic or cytotoxic data. Potential conflicts of interest in the cited papers were not always 
explicitly stated; however, we acknowledge such factors may influence reported outcomes and interpretations.

Results and Discussion
Premna serratifolia, Premna odorata, and Premna tomentosa are widely distributed across tropical and subtropical 
regions and have been traditionally used to address a broad spectrum of ailments. Their phytochemical profiles, including 
flavonoids, sterols, and terpenoids, underline their potential as sources of bioactive compounds for therapeutic applica-
tions. Table 1 provides a comprehensive overview of three species within the Premna serratifolia group. Following, 
Table 2 summarizes recent in vitro anticancer studies examining the biological activities of various extracts and bioactive 
secondary metabolites derived from Premna serratifolia, Premna odorata, and Premna tomentosa. In the following 
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paragraphs, we discuss anticancer mechanism of the bioactive compound such as induction of apoptosis, modulation of 
the cell cycle, inhibition of proliferation and migration, oxidative stress modulation, and autophagy induction. However, 
during compiling these findings, we recognized that certain references describing the anticancer mechanism of Premna 
species did not always provide in-depth of the identification of bioactive compound. To fill these gaps, we supplemented 
these mechanistic discussions with studies on the same compounds—albeit from other plant sources. While we acknowl-
edge that subtle variations in phytochemical context can influence potency or synergy, the core biochemical pathways 
(eg, apoptosis, cell cycle arrest) generally remain consistent for well-characterized molecules. Thus, once a compound is 
structurally identified, its fundamental anticancer mechanism (eg, caspase activation, ROS modulation) is usually 
reproducible across different models.

Mechanism of Anticancer
The anticancer potential of the three species within the Premna serratifolia group—P. serratifolia, P. odorata, and 
P. tomentosa—is attributed to their diverse array of bioactive compounds that target multiple cancer-related pathways. 
The Premna serratifolia group, exhibits a rich diversity of bioactive compounds categorized into several major classes of 
secondary metabolites. These compounds include flavonoids, terpenoids, steroids, phenylpropanoids, and long-chain 
fatty acids, all of which contribute to their anticancer potential.10 Among flavonoids, notable compounds such as 
quercetin, diosmetin, kaempferol-3-O-b-D-galactopyranoside, luteolin, and casticin have demonstrated potent anticancer 
activities through mechanisms like apoptosis induction, cell cycle arrest, and inhibition of proliferation and metastasis. 
Quercetin and kaempferol are particularly prominent for their ability to regulate oxidative stress and modulate signaling 
pathways such as NF-κB and PI3K/AKT.65

Table 1 Overview of Morphology, Distribution, Ethnopharmacological Uses, and Phytochemical Content of Premna Species

Name of 
the Plant

Plant Morphology Plant Distribution Ethnopharmacological Uses Phytochemical 
Content with 

Anticancer Activity

Premna 
serratifolia

Small tree, 3–4 m in height, 

glabrous stem, ovate-cordate 
leaves with foetid odor, creamy- 

white flowers, black globose 

drupe.11

Tropical and subtropical 

regions, Marquesas Islands, 
Indonesia, Guam, Papua New 

Guinea.11

Cardiotonic, antibiotic, 

carminative, hepatoprotective, 
antitumor, treats canker sores, 

bad breath, leucorrhea, 

gonorrhea, asthma, malaria.

Flavonoids: quercetin, 

luteolin, casticin, 
diosmetin, linarin, tricin, 

pectolinaringenin, 

vitexin, kaempferide. 
Terpenoids: oleanolic 

acid, phytol, 

Phenylpropanoids: 
verbascoside, 

Fatty acids: 

hexadecenoic acid
Premna 
odorata

Evergreen small tree/shrub, up to 

10 m tall, hairy green leaves, pale 

green/yellowish/white fragrant 
flowers.12

Philippines, temperate and 

tropical regions of Asia.12

Treats phlegm, stomach pain, 

headaches, cough, wounds, 

parasiticides, tuberculosis, heart 
disorders.

Flavonoids: 

Acacetin, diosmetin, 

Sterols: stigmasterol,  
β-sitosterol 

Phenylpropanoids: 

verbascoside, 
Terpenoids:  

β-caryophyllene,
Premna 
tomentosa

Medium-sized tree, 20 to 25 feet 

tall, Greyish-brown bark, ovate- 

cordate leaves, campanulate with 
two lobes calyx, dark purple to 

black ripe fruit.13

India, Bangladesh, Bhutan, 

China, Myanmar, Thailand, 

Cambodia, Vietnam, Malay 
Peninsula, Sumatra, Java, 

Philippines, East Timor.14

Treats stomach-related ailments, 

dropsy, wounds, and postpartum 

tonic.

Fatty acid: 

hexadecenoic acid.
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Table 2 Summary of Anticancer Mechanism of Premna Sp. Derived Bioactive Compound

Bioactive 
Compound

Group Method/ 
Assay

Type of Cancer In vitro 
Model

Dose and 
duration of 
treatment

IC50 Mechanism Ref.

Quercetin Flavonoid- 

flavonol

MTT assay Breast cancer cells MCF-7 0.5–100 μM; 

48 h

50 μM/mL ↑apoptosis, Bax, caspase-3 ↓ Bcl-2 [15]

MTT assay Human Prostate 
cancer

LNCaP, DU- 
145, PC-3

5–160 μM; 
24, 48, and 

72 h

40 μM ↑apoptosis, MAPK, ↓Akt, and NF-κB; ↓ROS [16]

Phytol Diterpenes MTT assay Human lung cancer A549 –; 48 h 16.97 ± 2.31 μM ↑apoptosis, ROS, TRAIL, FAS and TNF-α, caspase-9 
and -3

[17]

Oleanolic acid n-hexane fraction 

of methanol 
extract

MTT assay Colon Cancer HCT-116 0–120 μM; 

72 h

29.8 μΜ ↑apoptosis, caspase-3 and PARP-1; ↑autophagy, Beclin- 

1, ATG5; ↑mitophagy, p62 and PINK1, ↓TOMM20; 
↑cytotoxic activity, p38

[18]

Stigmasterol Steroid MTT assay Human breast 

cancer

MCF-7 0–40 μM; 

48 h

27.38 µM ↑apoptosis, Bax, p53, caspase-3 and −9 ↓ Bcl-2 [19]

Human liver cancer HepG2 25.80 µM

CCK8 assay, 

clone formation 
assay, and EdU 

proliferation 

assay

Gastric cancer cells SGC-7901 

and MGC- 
803

2.5–30 μM; 

24, 48, and 
72 h

20 μM ↓cell proliferation; ↑apoptosis, Bax, caspase-3 and 

PARP-1 ↓ p-Akt, Bcl-2; ↑autophagy, LC3-II, Beclin-1

[20]

Migration assay Ovarian Cancer Cell ES2 and 

OV90

5, 10, and 

20 μg/mL; 

48 h

– ↑apoptosis, cytochrome c, BAK, BAX, caspase 3, and 

caspase; ↑Mitochondrial depolarization; ↑ROS 

generation; ↑Mitochondrial & cytosolic calcium levels 
↓cell growth, pAKT, P70S6K, S6, ERK1/2, JNK, and P3 

↑subG1 phase

[21]

Linarin Flavonoid-flavone Cell cycle assay Human Alveolar 
Basal Epithelial Cells

A549 0.1 to 10 μM; 
pretreatment 

30 min, 

incubated 
24 h

0.55 mg/mL ↑ cell cycle arrest in G1 phase; ↓ cell proliferation [22]

MTT assay Human non-small- 
cell lung cancer

A549 5–500 μM; 
24 h

282 μM ↓ NF-κB activation, MMP-9 [23]

MTT assay, Eud 

analysis, flow 
cytometry assay

Glioma cells A172 and 

U251

10–100 μM; 

24 h

70 μM-80 μM ↑ apoptosis, p53, p21, Bax, Caspase-3, PARP-1, 

Survivin, p-Rb, Cyclin D; ↓ cell proliferation, ↓ NF-κB/ 
p65

[24]
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Pectolinarigenin Flavonoids MTT assay Liver cancer cell SK-HEP1 0–320 μM; 

24 h

10 μM ↑autophagy, Beclin-1, LC3-I, and LC3-II; ↑cell cycle 

arrest in G2/M phase; ↓migration and invasive

[25]

MTT assay Gastric Cancer Cell AGS 25, 50, 75, 

100, 125, and 

150 μM; 24 h

124.79 μM ↑cell cycle arrest in G2/M phase, ↑apoptosis, caspase- 

3, PARP, ↓XIAP, ↑autophagy, LC3-II, ↓PI3K/AKT/ 

mTOR pathway

[26]

MKN28 96.88 μM

Kaempferide Flavonoids SRB Liver Cancer HepG2 5, 10, and 

20 μM; 

24 h and 48 h

50 µM ↓lipid accumulation and oxidative stress, SREBP1, FAS, 

SCD-1, PPARγ, C/EBPβ, HO-1, Nrf2

[27]

Kaempferol Flavonoid- 

flavonol

WST-1 Gastric Cancer Cells GS, SNU-216, 

NCI-N87, 

SNU-638. 
NUGC-3 and 

MKN-7

25 μM, 

50 μM, and 

100 μM; 24 h

50 μM ↑ autophagy, LC3-I to LC3-II conversion ↓ p62 [28]

WST-1 Head and Neck 
cancer

SCC-9, SCC- 
25, A-253

5 to 100 mm; 
24, 48, and 

72 h

SCC-9: 45.03 μM 
SCC-25: 49.9 μM 

A253: 47.49 μM

↑G2/M and S phases cell cycle arrest ↓ Bcl-2; 
↑apoptosis, caspase-3, cytochrome c

[29]

Tricin Flavonoids- 
flavone

MTT assay Prostate Cancer PC3 –; 48 h 117.5 ± 4.4 μM ↑metastasis, MiR-21; ↓cell proliferation [30]

Casticin Flavonoids CCK-8 Nasopharyngeal 

carcinoma

S18 0, 2, 4, 8, 

16 μM; 24, 48 
or 72 h

8–16 μM ↑cell cycle arrest in G2/M phase, ↑apoptosis, Bax, 

↓Bcl-2; ↓cell proliferation

[31]

MTT assay Lung cancer stem- 

like cells (LCSLCs)

A549 0.1, 1, 3, 10, 

and 30 μM; 
48 h

0.4 µM ↓cell proliferation, ↓self-renewal and invasion, CD133, 

CD44, and 
ALDH1, MMP-9, pAKT

[32]

Diosmetin Flavonoid MTT assay Human Colon 

Cancer

HCT-116 0–100 μg/mL; 

24–72 h

11.92 ± 1.93 μM ↑cytotoxic effects towards HCT-116 CRC cells, ↑Fas, 

Bax, ↑cell cycle arrest in G2/M phase, ↓NF-ƙB 
translocation, ↓cell proliferation

[33]

MTT assay Prostate Cancer LNCaP 0, 2.5, 5, 10, 

20, 40, and 
80 µM; 24, 

48, and 72 h

40–80 μM ↑apoptosis, PARP, caspase-3, Bax, p27Kip1, FOXO3a, 

↑cell cycle arrest in G0-G1 phase in LNCaP and PC-3 
↓X-linked inhibitor of apoptosis (XIAP), cyclin D1, 

Cdk2, Cdk4

[34]
PC-3

(Continued)
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Table 2 (Continued). 

Bioactive 
Compound

Group Method/ 
Assay

Type of Cancer In vitro 
Model

Dose and 
duration of 
treatment

IC50 Mechanism Ref.

Acacetin Flavonoid-flavone MTT assay Oral squamous cell 
carcinoma

HSC-3 0, 6.25, 12.5, 
25, 50, 

100 mg/mL; 

24h

25 μg/mL ↑apoptosis, MAPK, ↑sub-G1 
cells and caspase-3 and PARP

[35]

CCK-8 and 

colony 

formation 
assays

Osteosarcoma Cells SJSA 0, 15, 30, 45, 

and 60 μM; 

72 h

28.91 μM ↑apoptosis, caspase-3, − 8, and − 9, PARP, JNK 

signalling pathway 

↓cell growth by activating the ROS/JNK signaling 
pathway

[36]

HOS 43.13 μM (24 h), 

39.78 μM (48 h), 
and 

28.72 μM (72 h)

CCK-8 assay Gastric Cancer MKN45 0, 3.125, 6.25, 
12.5, 25, 50, 

100 μmol/L; 

24, 48, and 
72 h

54.092 μM (24 h), 
45.017 μM (48 h), 

and 

36.961 μM (72 h)

↓cell proliferation, invasion and migration, ↓PI3K/Akt 
signalling and the phosphorylation levels of TGF-β1

[37]

MGC803 48.357 μM (24 h), 

33.449 μM (48 h), 

and 
19.968 μM (72 h)

WST-1 assay Glioblastoma cells U87 0, 10, 20, 30, 

50 μM; 24 h

43.73 ± 1.19 μM ↑apoptosis, Bax, caspase −9 and −3, and PARP, ↑cell 

cycle arrest in the G2/M, p21, ↓Cyclin-A1, Cyclin-B1, 
and Cdk-1

[38]

Luteolin Flavonoid-flavone MTS assay Prostate Cancer PC-3 3, 10, 30, 

100 μM; 24 h

30 μM ↓proliferation and migration cells, ↓ANO1 [39]

CCK8 assay Human esophageal 

squamous cell 
carcinoma

EC1 0, 10, 20, 40, 

80 μM; 48 and 
72 h

20 μM ↑apoptosis, caspase-3, p21 and p53; ↓cell proliferation [40]

KYSE450 40 μM

Sulforhodamine 

B (SRB) Assay

Cholangiocarcinoma 

Cells

KKU-M156 1, 5, 10, 25, 

50, 100 μM; 
24 and 48 h

10.5 ± 5.0 μM 

(24 h), 
8.7 ± 3.5 μM 

(48 h)

↑cell cycle arrest in G2/M phase, ↑apoptosis, ↓cell 

proliferation, 
↓metastasic cells, Bcl-2 protein expression, JAK/ 

STAT3 signaling 

pathway

[41]

MTT assay Lung cancer A549 0–80 µM; 

24 h

78.86 µM ↑cytotoxic effects, 

↓migration and invasion, ↓FAK, Src, Rac1, Cdc42, and 

RhoA

[42]
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Apigenin Flavonoid-flavone MTT assay Colon Cancer HCT-116 0, 10, 20, 40, 

60 µM; 24 h

27.9 ± 2.45 µM ↓cell proliferation, cell growth [43]
HT-29 48.2 ± 3.01 µM
DLD-1 89.5 ± 4.89 µM

Sulforhodamine 

B (SRB) Assay

Malignant 

mesothelioma

MM-F1 

(fibromatous)

12.5, 25, 

50,100 μM; 
48 and 72 h

56.31 ± 2.13 µM 

(48 h), 
46.95 ± 1.69 µM 

(72 h)

↑cell cycle arrest in subG1 phase; ↑apoptosis, Bax/Bcl- 

2 ratio, p53, caspase-9, and -8, PARP-1; ↑ROS 
intracellular production; ↑DNA damage 

↓cell proliferation, cell survival, pAKT, c-Jun 

expression and phosphorylation, and NF-κB nuclear 
translocation

[44]

MM-B1 
(biphasic)

64.23 ± 2.73 µM 
(48 h), 

49.16 ± 2.52 µM 

(72 h)
H-Meso-1 

(epithelioid)

46.44 ± 4.08 µM 

(48 h), 

34.31 ± 1.55 µM 
(72 h)

The murine 

MM cell line 
#40a

60.39 ± 3.62 µM 

(48h), 
56.82 ± 4.69 µM 

(72 h)

WST-1 assay Glioblastoma cells U-87 0–50 μM; 
24 h

48.18 ± 1.37 μM ↑cell cycle arrest in G2/M phase; ↑apoptosis, caspase 
8, Bid, Bax, caspase 9, caspase 3, and PARP; ↑ROS 

levels (2.5 fold)

[38]

CCK-8 assay Hepatocellular 
Carcinoma cells

HepG2 10, 20, and 
40 μM 12 h; 

20 μM 0, 6, 

12, and 24 h.

>40 μM ↓ cell proliferation; ↑ apoptosis, Bax, caspase-3, PARP 
↓ p-Akt, Bcl-2; ↑autophagy, LC3-II, Beclin-1

[45]

WST-1 assay Gastric Cancer Cells AGS, SNU- 

216, NCI- 

N87, SNU- 
638, MKN-7, 

MKN-74

30, 50, 70, 

and 40 μM 

12 h; 20 μM 
0, 6, 12, and 

24 h.

50 μM ↑autophagy, ATG5, LC3-II, phosphorylation of AMPK, 

ULK1 ↓ p-mTOR and p62

[46]

(Continued)

C
ancer M

anagem
ent and R

esearch 2025:17                                                                                     
https://doi.org/10.2147/C

M
A

R
.S516204                                                                                                                                                                                                                                                                                                                                                                                                   

1035

Febriyanti et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Table 2 (Continued). 

Bioactive 
Compound

Group Method/ 
Assay

Type of Cancer In vitro 
Model

Dose and 
duration of 
treatment

IC50 Mechanism Ref.

Verbascoside Phenylpropanoids CCK-8 assay Colorectal cancer 
cells

HCT-116 12.5, 25, 50, 
100, 150, or 

200 μM; 72 h

63.51 μM ↑apoptosis, HIPK2, p53, p-p53, Bax, ↓Bcl-2 [47]
LoVo 43.96 μM

HT-29 66.68 μM

SW620 29.05 μM
CCK-8 assay Breast Cancer MCF-7 0, 20, 40, 80, 

120, 

160, 200, or 
240 µM; 48 h

98.45 ± 7.63 µM ↑ apoptosis, Bax, caspase3/9, PARP1, Bcl-2, ↑ cell cycle 

arrest, CyclinB1, Cdc2

[48]

MDA-MB-231 106.73 ± 9.34 µM

SKBR3 109.65 ± 9.62 µM

MTT assay Glioblastoma cells U87 0, 10, 20, 40, 

60, 80, 
100 µM; 48 h

40 μM ↑apoptosis, SHP-1 expression 

↓cell proliferation, migration, and invasion, 
phosphorylated (p)-STAT3 expression

[49]

β-amyrin Triterpenoids MTT assay Colorectal 

carcinoma

Caco-2 20–80 μg/mL; 

48 h

81 μg/mL ↑apoptosis, caspase-3; ↑cytotoxic activity [50]

MTT assay Human liver cancer 

cells

HepG2 0, 3.12, 7.15, 

12.5, 25, 50, 

100 µM;

25 µM ↑apoptosis, Bax, p38 and JNK signalling pathways ↓Bcl- 

2

[51]

MTT assay Human prostate 

cancer cell line

PC3 –; 72 h 73.2 ± 1.02 µM ↑cytotoxic activities [52]

Human breast 
cancer cell line

Bcap-37 78.4 ± 0.93 µM

Human gastric 

cancer cell line

MGC-803 51.9 ± 0.87 µM

Vitexin Flavonoids MTT assay Chemo-resistant 

colorectal cancer 

cells

HCT-116(DR) 10, 25, 

50 µM; 24 h

50 µM ↑apoptosis, Bax, cleaved caspase-3 and −9, BID [53]

CCK-8 assay Human melanoma A375 5, 10, 15, 20, 

and 25 μM; 

48 h

16.85 μM ↓migration and invasion, MMP-2, MMP-9, vimentin, 

Slug and Twist, ↑STAT3

[54]

C8161 12.26 μM

α-amyrin Triterpenoids MTT assay Human laryngeal 

cancer cell line

Hep2 10, 20, 40, 

80,160, and 

320 µmol/mL;

69.32 µmol/mL ↓cell proliferation, ↑cytotoxic effect [55]
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β-Sitosterol Steroid Luminescent 
Cell Viability 

Assay

Hepatocellular cells HepG2 1.25–40 μg/ 
mL; 48 h

6.85 ± 0.61 µg/ 
mL

↑apoptosis, caspase-3 and −9 [56]

Huh7 8.71 ± 0.21 µg/ 

mL
MTT assay Human lung cancer 

cells

A549 0–200 μM; 

72 h

24.7 μM ↑apoptosis, caspase-3 and −9, ROS, Bax, PARP; ↑cell 

cycle arrest in Sub-G1 phase

[57]

MTT assay Human colon 
adenocarcinoma

HT-29 0–100 μM; 24 
and 48 h

79 µM ↑cell cycle arrest in G0/G1 phase, G2/M peak ↓ 
S peak; ↓proliferation ↑ LXR-α, LXR-β

[58]

Hexadecanoic 

acid/Palmitic 
acid

Long-chain fatty 

acids

MTT assay Human colon 

adenocarcinoma

HT-29 5–320 μg/mL; 

24 h

36.04 μg/mL ↑apoptosis, ↑ROS ↑cell cycle arrest in the G0/G1 

phase

[59]

MTT assay Human breast 

cancer

MCF-7 0–256 µM; 

24 h, 48 h, 

and 72 h

158.14 ± 0.27 

(24 h), 118.87± 

0.22 (48 h), and 
94.64 ± 0.13 µM 

(72 h)

↑ apoptosis, caspase-3 and caspase-9, Bax, p53, ↓Bcl-2; 

↓cell proliferation, NF-κB

[60]

β-caryophyllene Sesquiterpene MTT assay Human pancreatic 
cancer

PANC-1 10–640 µM 27 μM ↓ cell proliferation ↑apoptosis, caspase-3, nuclear 
condensation and fragmentation ↓ motility and 

invasion ↓ colonization cells, PE

[61]

Colorectal cancer HCT-116 19 μM

HT-29 63 μM
2α- 

hydroxyursolic 

acid/Corosolic 
acid

Triterpenoids MTT assay Human Breast 

Cancer

MCF-7 5–50 µM; 24, 

48, and 72 h

28.50 µM ↓cell proliferation, NF-κB [62]

MDA-MB-231 20 μM ↑apoptosis, caspase-8, 9, and −3

Maslinic acid Triterpenoids MTT assay Murine melanoma 

cells

B16F10 0–212 µM; 

24 h

42.3 μM ↓cell proliferation ↓ROS ↑SOD, GST and GPX [63]

Flow cytometry Human cervix 

cancer

HeLa 0–45 μM; 

48 h

35 μM ↑ DNA condensation, damage, fragmentation, 

p-ATMSer1981, p-ATRSer428, p53, p-p53Ser151, 

p-H2A.XSer139, BRCA1 and PARP ↓ NA-PK and 
MGMT

[64]
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The terpenoid class is represented by compounds such as oleanolic acid and phytol which exhibit diverse anticancer 
mechanisms, including induction of apoptosis, autophagy, and modulation of mitochondrial function. Steroidal com-
pounds such as stigmasterol and β-sitosterol play crucial roles in promoting apoptosis and disrupting cancer cell 
proliferation through mitochondrial depolarization and ROS generation. Phenylpropanoids, including verbascoside and 
pectolinarigenin, show remarkable potential in inhibiting cancer cell migration, invasion, and proliferation while 
promoting apoptosis and autophagy.10 Additionally, long-chain fatty acids, particularly hexadecanoic acid, have been 
identified for their capability to enhance ROS levels, induce apoptosis, and arrest cell cycle progression in cancer 
cells.66,67 A detailed overview of the anticancer mechanism of bioactive compounds extracted from Premna species 
focusing on their in vitro studies against various cancer types is presented in Table 2.

Induction of Cell Cycle Arrest
Dysregulation of the cell cycle is a hallmark of cancer, leading to unchecked proliferation. Compounds such as 
stigmasterol, linarin, kaempferol, and diosmetin derived from Premna species have been shown to arrest cancer cells 
at G0/G1, S, or G2/M phases, often accompanied by alterations in cyclin-dependent kinases and cell-cycle regulatory 
proteins. CDK inhibitors have emerged as promising therapeutic agents, forcing malignant cells into senescence or 
apoptosis by halting the cell cycle.68 Cancer cells, like L1-LW6, are notably more susceptible to cell death caused by 
CDK inhibition compared to their normal counterparts.

Findings from various in vitro studies highlight the role of bioactive compounds in targeting specific phases of the 
cell cycle. For instance, stigmasterol-induced subG1 arrest in ES2 cells, signaling apoptosis.21 Similarly, linarin disrupted 
the G1-to-S phase transition, resulting in G1 arrest in A549 cells.22 Kaempferol −3-O-b-D-galactopyranoside exhibited 
dual effects by halting SCC-9 cells in the S-phase and arresting HT-29 and LNCaP cells in the G0/G1 phase, linked to the 
downregulation of cyclin D1, cyclin E, and CDKs.29,59 Diosmetin also arrested the G1 and S phases in HCT-116 and PC- 
3 cells, respectively, by downregulating cyclin-dependent genes and increasing CDK inhibitors like p27Kip1, confirming 
its potential as a CDK inhibitor.33,34

Hexadecanoic acid and β-sitosterol significantly reduced the S and G2/M phases in HT-29 cells, suggesting these 
compounds arrest colon cancer cells in the G0/G1 phase.58,59 Pectolinarigenin caused G2/M arrest in SK-HEP-1, AGS, 
and MKN28 cells through the downregulation of cyclin B1 and CDK1, along with the upregulation of p21 and p53.25,26 

Similarly, verbascoside-induced G2/M arrest in MCF-7 and MDA-MB-231 cells, which involved downregulating cyclin 
B1 and CDC2 and modulating the PI3K/AKT signaling pathway.48

Furthermore, casticin treatment-elevated p21 expression in S18 cells, further supporting its role in G2/M phase 
arrest.31 Additionally, diosmetin-suppressed genes associated with mitotic division, such as ttk, pttg2, and mad2l2, while 
enhancing inhibitors of cyclin A and B, such as p21 and gadd45. This led to the inhibition of mitosis and accumulation of 
cells in the G2/M phase. These findings strongly suggest that compounds from the P. serratifolia group could effectively 
regulate the cell cycle and hold significant potential for developing anticancer therapies.

Inhibition of Proliferation
Cancer cells exhibit an abnormal ability to survive beyond their normal lifespan and proliferate uncontrollably, making 
the inhibition of proliferation a key strategy in cancer treatment. Targeting the high proliferative rate of cancer cells 
through specific interventions has proven effective in slowing or stopping cancer progression.69 Several factors contribute 
to cancer cell proliferation, including epithelial-to-mesenchymal transition (EMT), dysregulated cell cycle proteins, and 
constitutive activation of signal transduction pathways such as Wnt, Notch, IGF, PI3K/Akt, NF-κB, and Hedgehog 
(Hh).69 These factors promote uncontrolled cell proliferation, metastasis, and stem cell growth. Bioactive flavonoids like 
quercetin, linarin, casticin, and luteolin reduce cancer cell viability in in vitro assays, often by downregulating pro- 
survival signaling (eg, Akt, NF-κB) and upregulating cell cycle inhibitors (eg, p21, p27).

Genus Premna was reported rich in flavonoids such as quercetin, linarin, tricin, casticin, diosmetin, luteolin, acacetin, and 
apigenin. Flavonoids are known as key mediators of antiproliferative activity. Quercetin has been shown to inhibit prostate 
cancer (PCa) cell proliferation by modulating ROS production and interfering with MAPK, Akt, and NF-κB signaling 
pathways.16 Similarly, linarin suppresses proliferation in human lung carcinoma (A549) cells by downregulating Akt 
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activation and upregulating cyclin-dependent kinase inhibitor p27Kip1.22 In glioma cells, linarin exerts antiproliferative 
effects by upregulating p53 and downregulating NF-κB/p65, thereby inhibiting cell growth.24

Casticin effectively suppresses proliferation in lung cancer stem-like cells (LCSLCs) and nasopharyngeal carcinoma 
(NPC) cells by inducing G2/M arrest and selectively inhibiting PI3K pathways.31,32 Diosmetin, a plant flavonoid, exerts 
antiproliferative effects on prostate and colon cancer cells by regulating proteins such as c-Myc, Bax, p27Kip1, and 
FOXO3a while inhibiting BMP and NF-κB pathways.33,34

Tricin reduces proliferation in prostate cancer cells by downregulating key proliferative markers, while luteolin exhibits 
antiproliferative activity through the suppression of migration and G2/M phase arrest, mediated by p21 and p53 
regulation.39,40 Additionally, luteolin inhibits metastasis in cholangiocarcinoma cells by regulating JAK/STAT3 signaling 
pathways.41

Beyond flavonoids, other classes of secondary metabolites, including triterpenoids, sesquiterpenes, phenylpropanoids, 
and fatty acids, also demonstrate antiproliferative effects. β-caryophyllene suppresses colorectal cancer cell growth by 
disrupting mitochondrial membrane potential and inducing apoptosis.61 Hexadecanoid acid inhibits breast cancer cell 
proliferation by enhancing apoptosis-related proteins such as caspase-3, Bax, and p53 while downregulating anti- 
apoptotic protein Bcl-2.60

Stigmasterol inhibits gastric and ovarian cancer cell proliferation by targeting the PI3K and Akt/mTOR signaling 
cascades.20,21 Verbascoside further demonstrates antiproliferative effects by inducing cell cycle arrest, apoptosis, and 
inhibiting glioblastoma cell migration and invasion through SHP-1 activation and STAT3 pathway inhibition.48,49

Inhibition of Migration, Invasion, and Metastasis
Metastasis accounts for a large percentage of cancer-related deaths. This process involves cancer cell migration, invasion, 
and eventual colonization of secondary tissues through intravasation into the blood or lymphatic systems.70 The ability of 
cancer cells to migrate and invade tissues is a hallmark of metastatic progression and is largely driven by pathways such 
as STAT3 activation, which upregulates MMP-2 and promotes epithelial–mesenchymal transition (EMT).71

Flavonoids, a group of secondary metabolites abundant in Premna species, have demonstrated significant anti- 
metastatic properties in various in vitro cancer models. These effects are mediated by the regulation of signaling 
pathways and molecules associated with migration and invasion, including MMPs, TGF-β, and NF-κB.72 Among the 
bioactive flavonoids in P. serratifolia leaves with demonstrated antimetastatic activity are linariin, pectolinaringenin, 
tricin, and casticin.

Linariin has been shown to significantly reduce IR-induced migration and invasion of A549 cells by downregulating 
MMP-9 expression and suppressing NF-κB activation through inhibition of NF-κB and IκB-α phosphorylation.23 

Pectolinaringenin inhibited the invasion and migration of human SK-HEP1 carcinoma cells, as evidenced by wound 
healing and transwell assays, further validating its anti-metastatic potential.25 Tricin, through its ability to reduce MiR-21 
overexpression, effectively decreased metastasis and chemoresistance in prostate cancer cells, indicating its potential in 
combating metastatic progression.30 Similarly, casticin inhibited the invasion of sphere-forming cells (SFCs) derived 
from A549 lung cancer cells by reducing MMP-9 activity in a concentration-dependent manner.32

In addition to flavonoids, other secondary metabolites from Premna species have shown anti-metastatic effects. For 
instance, β-caryophyllene from Aquilaria crassna essential oil significantly reduced cell invasion in colorectal cancer, 
underscoring its potential as an anti-metastatic agent.61 Similarly, verbascoside decreased glioblastoma cell migration and 
invasion by increasing SHP-1 expression, downregulating phosphorylated STAT3, and reducing MMP-2 and MMP-9 levels.49

Induction of Apoptosis
Apoptosis, or programmed cell death, is a tightly regulated process essential for maintaining cellular homeostasis, 
development, and the removal of damaged or unwanted cells. Unlike necrosis, apoptosis is a controlled and orderly 
mechanism that prevents inflammation and minimizes damage to surrounding tissues. Apoptosis occurs through two 
interconnected pathways: the intrinsic (mitochondrial) pathway and the extrinsic (death receptor) pathway, both of which 
involve the activation of caspase family proteases. Caspases serve as both initiators and executioners in the apoptotic 
process, breaking down cellular components to facilitate cell death.73
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The intrinsic pathway is regulated by the BCL-2 protein family, which includes anti-apoptotic (eg, BCL-2, BCL-xL), 
pro-apoptotic (eg, BAX, BAK), and BH3-only proteins (eg, BIM, BID). Triggers for apoptosis increase BH3-only 
protein expression, leading to mitochondrial membrane disruption, cytochrome c release, and apoptosome formation, 
which activates caspase-9 and downstream executioner caspases-3 and -7. The extrinsic pathway involves death receptor 
ligands such as Fas-L and TNF binding to receptors, forming the death-inducing signaling complex (DISC) and 
activating caspases-8 and -10. These pathways converge to initiate apoptosis via cleavage of structural and regulatory 
proteins, aided by inhibitors such as XIAP and regulators like SMAC.73,74

Several bioactive compounds from the Premna genus (P. serratifolia group) have shown strong apoptotic effects in 
various cancer cell models. Quercetin, at a dose of 50 μM/mL, effectively activates the apoptotic signaling pathway in 
MCF-7 cells by increasing Bax and caspase-3 expression while downregulating Bcl-2 expression.15 Similarly, stigmas-
terol enhances Bax expression, reduces Bcl-2 levels, and upregulates caspase-9 and -3 mRNA expression in a dose- 
dependent manner in ovarian and gastric cancer cells. It also increases mitochondrial depolarization and ROS generation 
in ES2 and OV90 cell line.19,21

Phytol induces apoptosis in A549 lung cancer cells via ROS-mediated activation of TRAIL, FAS, and TNF-α receptors and 
caspases-9 and -3, operating through both intrinsic and extrinsic pathways (Thakor, 2017). In colon cancer HCT116 cells, 
oleanolic acid activates cleaved caspase-3 and PARP-1, inducing apoptosis.18 Linarin induces apoptosis in glioma cells by 
activating p53, Bax, and caspase-3 and cleaving PARP.24 Pectolinaringenin decreases XIAP levels, activates caspase-3, and 
cleaves PARP in AGS and MKN28 gastric carcinoma cells.26 Kaempferol −3-O-b-D-galactopyranoside induces apoptosis by 
triggering cytochrome c release and activating caspase-3 in head and neck cancer cells.29

Diosmetin activates apoptosis in colon and prostate cancer cells by upregulating Fas and Bax expression, releasing 
cytochrome c, and cleaving caspase cascades while inhibiting XIAP.33,34 Acacetin induces apoptosis in oral squamous 
cell carcinoma, osteosarcoma, and glioblastoma through caspase activation, Bcl-2/Bax regulation, and mitochondrial 
depolarization.35,36 Luteolin triggers apoptosis in cholangiocarcinoma cells by increasing p21 and p53 levels and 
activating caspase-3 and related pro-apoptotic proteins such as CYT-c and cPARP.40

Other flavonoids such as apigenin [ref] regulate apoptosis via the Bax/Bcl-2 ratio, p53 expression, and caspase-3 and 
PARP cleavage in colon and hepatocellular carcinoma cells.45 Casticin increases Bax/Bcl-2 expression and decreases the 
Bcl-2/Bax ratio in nasopharyngeal carcinoma cells, promoting apoptosis.31 Vitexin [ref] induces caspase-9 and −3 
activation while upregulating pro-apoptotic proteins such as BID and Bax in colorectal cancer cells.53 Verbascoside 
induces apoptosis by modulating apoptosis-related proteins, increasing pro-apoptotic factors such as HIPK2, p53, and 
cleaved PARP1 while reducing anti-apoptotic proteins like Bcl-2 and survivin in colorectal and glioblastoma cells.48

Additionally, β-sitosterol and hexadecenoic acid induce apoptosis by increasing ROS levels, modulating apoptotic 
signaling pathways, and activating caspase cascades in colon and breast cancer cells.56,59 Furthermore, β-amyrin exerts 
its anticancer properties via apoptosis induction and activation of JNK and P38 signalling pathway.50,51 β-caryophyllene 
disrupts mitochondrial membrane potential, promoting apoptosis via nuclear condensation and fragmentation.61

Effect on Oxidative Stress
Reactive oxygen species (ROS), known as partially reduced oxygen metabolites, exhibit potent oxidizing properties that, 
in high concentrations, can damage cellular components. However, at moderate levels, ROS play essential roles in 
cellular signaling and homeostasis. Elevated ROS levels in cancer cells can induce cell cycle arrest, senescence, and 
apoptosis through intrinsic (mitochondrial) and extrinsic (death receptor) apoptotic pathways. These effects are mediated 
by the activation of signaling cascades such as ASK1/JNK and ASK1/p38, which suppress anti-apoptotic factors and 
promote cell death. ROS also regulate apoptotic effectors, such as the Bcl-2 protein family and cytochrome c, leading to 
caspase activation, DNA fragmentation, and PARP cleavage, hallmark events in apoptosis.75

In cancer therapy, ROS can serve a dual role: while excessive ROS levels promote apoptosis in malignant cells, their 
suppression can protect normal cells from oxidative damage. Flavonoids, as polyphenolic compounds, play a critical role in 
modulating ROS levels and protecting cells against oxidative stress. Interestingly, flavonoids can also induce oxidative stress 
in cancer cells, triggering apoptosis. Several flavonoid compounds in the Premna serratifolia group, such as quercetin, 
kaempferide, acacetin, and apigenin, have demonstrated ROS-modulating properties in various cancer models.27,38,44
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Quercetin demonstrated differential effects on ROS in prostate cancer cells, quenching ROS in LNCaP and PC-3 cells 
while elevating ROS levels in DU-145 cells, leading to the activation of Akt and NF-κB pathways and subsequent cancer 
cell death.16 Acacetin induced ROS-mediated activation of the JNK/c-Jun signaling pathway in osteosarcoma cells, 
amplifying apoptotic signaling.36 Similarly, apigenin induced a dose-dependent ROS increase in multiple myeloma 
(MM) and glioblastoma U87 cells, triggering apoptosis through caspase activation and DNA fragmentation.38,44

Steroidal compounds like stigmasterol and β-sitosterol also exhibit ROS-modulating activity. Stigmasterol induces 
ROS production in ES2 and OV90 ovarian cancer cells, contributing to mitochondrial depolarization and apoptosis.21 β- 
Sitosterol triggers apoptosis in HT-29 colon cancer cells through ROS-mediated mitochondrial dysregulation, evidenced 
by caspase-3 and −9 activation, Bcl-2/Bax ratio alteration, and cytochrome c release.57

Other secondary metabolites from the P. serratifolia group also demonstrate ROS-related activities. Phytol induces 
ROS-mediated apoptosis in A549 lung cancer cells by activating TRAIL, FAS, and TNF-α receptors and caspase 
cascades.17 Hexadecanoic acid significantly enhances ROS generation in HT-29 colon cancer cells, leading to apoptosis 
through mitochondrial pathways.59

Modulation of Autophagy
Autophagy, a cellular degradation process crucial for maintaining homeostasis, involves the sequestration and lysosomal 
degradation of damaged organelles and protein aggregates. This process, derived from the Greek words “auto” (self) and 
“phagia” (eating), is vital for cellular health and survival under stress conditions.76 Autophagy is regulated by several 
upstream mechanisms, including the mTORC1 and AMPK pathways, which respond to cellular energy and nutrient 
levels. Under nutrient depletion, mTORC1 inhibition and AMPK activation promote autophagy initiation via phosphor-
ylation of ULK1/2 and Atg13, enabling autophagosome formation. Dysfunctional regulation of autophagy has been 
implicated in cancer progression, where cancer cells bypass regulatory circuits to sustain high autophagic activity, 
promoting tumor survival.77

The role of natural products in modulating autophagy has been increasingly recognized in cancer therapy. Bioactive 
compounds from the Premna serratifolia group have demonstrated potent autophagy-regulating effects in various cancer 
models, either promoting autophagic cell death or inducing selective degradation of cellular components to inhibit tumor 
growth. Key autophagic markers such as LC3-I, LC3-II, and Beclin-1 are commonly evaluated to assess autophagy 
activation.

Oleanolic acid, a triterpenoid from leaf extract of P. serratifollia [ref oleanolic acid], induces autophagy by 
upregulating Beclin-1, ATG5, and LC3B expression, thereby promoting autophagosome formation. It also facilitates 
mitophagy by increasing p62 and PTEN-induced kinase 1 expression while reducing TOMM20 levels, which contributes 
to oxidative stress mitigation and cancer inhibition.18 Apigenin enhances autophagy in HepG2 cells by increasing LC3-II 
levels and GFP-LC3 puncta, alongside upregulating ATG5 and AMPK phosphorylation and downregulating p-mTOR 
and p62 in gastric cancer cells, leading to autophagic cell death.45,46

Kaempferol-3-O-b-D-galactopyranoside exhibits similar effects by increasing LC3-II expression and decreasing p62 
levels in gastric cancer cells. It activates the IRE1-JNK-CHOP signaling pathway, inducing an ER stress response and 
autophagic cell death.28 Pectolinaringenin and stigmasterol modulate autophagy by inhibiting the PI3K/AKT/mTOR 
signaling pathway, reducing p-4EBP1, p-p70S6K, and p-eIF4E levels. These effects are associated with increased Beclin- 
1, LC3-I, and LC3-II expression, alongside the formation of autophagosomes and acidic vesicular organelles, as observed 
via electron microscopy.20,25,26

Table 3 summarizes the diverse anticancer mechanisms of bioactive compounds identified in the Premna serratifolia 
group, categorized into six major pathways. Cell cycle arrest is mediated by compounds like β-sitosterol, casticin, 
diosmetin, kaempferol-3-O-b-D-galactopyranoside, and linarin, which target cyclin-dependent kinases, leading to dis-
ruption in the G1, S, or G2/M phases. Induced apoptosis, a critical pathway for eliminating cancer cells, involves 
compounds such as apigenin, diosmetin, and stigmasterol. These compounds trigger both intrinsic (mitochondrial) and 
extrinsic (death receptor) apoptotic pathways through the activation of caspases and modulation of pro- and anti- 
apoptotic proteins. The modulation of oxidative stress plays a dual role in cancer treatment, where compounds like 
quercetin and acacetin either mitigate oxidative damage in normal cells or induce excessive ROS production in cancer 
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cells to promote apoptosis. Autophagy regulation, a process that facilitates cellular homeostasis, is influenced by 
compounds such as kaempferol-3-O-b-D-galactopyranoside, oleanolic acid, and pectolinagerin, which target mTOR 
and AMPK signaling to promote autophagic cell death in cancer cells. Compounds such as β-caryophyllene, tricin, 
and stigmasterol inhibit migration, invasion, and metastasis by suppressing key signaling pathways like NF-κB and 
matrix metalloproteinases (MMPs), thereby reducing the metastatic potential of cancer cells. Finally, the inhibition of cell 
proliferation is achieved by compounds like diosmetin, verbascoside, and luteolin, which regulate oncogenic pathways 
such as PI3K/AKT and Wnt. Collectively, the Premna sp. represents a promising avenue toward the development of 
innovative, targeted, and less toxic cancer therapies that meet the goals of modern oncology.

However, although the bioactive compounds from the Premna serratifolia group exhibit promising anticancer effects 
in vitro, their clinical translation requires careful assessment of pharmacokinetics and toxicology in in vivo models. Key 
parameters such as absorption, distribution, metabolism, excretion (ADME), and bioavailability strongly influence therapeutic 
efficacy. Many flavonoids, terpenoids, and steroids, for instance, undergo extensive metabolic modifications (eg, glucuronida-
tion, sulfation) that can attenuate or alter their cytotoxic potential. Moreover, limited water solubility and rapid clearance often 
hamper systemic availability in animal models. To date, only a few studies have addressed these aspects in detail for Premna 
species. Future research should include well-designed in vivo experiments to validate anticancer efficacy and examine optimal 
delivery methods, pharmacokinetic profiles, and potential toxicity. Ultimately, incorporating both metabolic and bioavail-
ability investigations will more definitively position these compounds for clinical application.

Limitations of the Study
Although the present review provides comprehensive insights into the anticancer potential of bioactive compounds from 
Premna serratifolia, P. odorata, and P. tomentosa, several limitations need to be acknowledged. First, most of the 
evidence presented relies on in vitro studies, and there is a notable scarcity of robust in vivo data and clinical studies to 
confirm efficacy, safety, pharmacokinetics, and therapeutic relevance in more complex biological systems. Secondly, 
variability in the experimental design—such as differences in cell lines, experimental conditions, concentrations, and 
methodologies—may introduce inconsistencies or biases into the interpretation of results. Furthermore, the pharmaco-
kinetic properties and bioavailability of identified compounds remain largely unexplored, posing challenges for translat-
ing laboratory findings into clinical applications. Thus, future research should incorporate standardized methods, 
systematic evaluation of pharmacokinetics and toxicity in animal models, and eventually clinical validation to sub-
stantiate the therapeutic utility of these promising natural compounds.

Conclusion
This review highlights the in vitro anticancer potential of bioactive compounds from the Premna serratifolia group, 
encompassing P. serratifolia, P. odorata, and P. tomentosa. Flavonoids, terpenoids, and steroids present in these species 

Table 3 Mechanism-Based Classification Table for the Bioactive Compounds Derived from Premna Serratifolia Group

Anticancer Mechanism Bioactive Compounds

Induction of Apoptosis Quercetin, Phytol, Oleanolic acid, Stigmasterol, Linarin, Pectolinarigenin, Kaempferol, Casticin, Diosmetin, 
Acacetin, Luteolin, Apigenin, Verbascoside, β-Amyrin, Vitexin, β-Sitosterol, Palmitic acid, β-Caryophyllene, 2α- 

Hydroxyursolic acid (Corosolic acid), Maslinic acid

Inhibition of Cell Proliferation Quercetin, Stigmasterol, Linarin, Pectolinarigenin, Kaempferol, Tricin, Casticin, Diosmetin, Acacetin, Luteolin, 
Apigenin, Verbascoside, β-Amyrin, α-Amyrin, β-Sitosterol, Palmitic acid, β-Caryophyllene, 2α-Hydroxyursolic 

acid (Corosolic acid), Maslinic acid

Modulation of Oxidative Stress Quercetin, Phytol, Kaempferide, Acacetin, Apigenin, Maslinic acid, Palmitic acid, β-Sitosterol
Induction of Autophagy Oleanolic acid, Stigmasterol, Pectolinarigenin, Kaempferol, Apigenin, Verbascoside

Suppression of Migration/ 

Invasion/Metastasis

Linarin, Pectolinarigenin, Tricin, Casticin, Acacetin, Luteolin, Apigenin, Verbascoside, β-Caryophyllene, Vitexin

Cell-Cycle Arrest Linarin, Pectolinarigenin, Kaempferol, Casticin, Diosmetin, Acacetin, Luteolin, Apigenin, Verbascoside, β- 

Sitosterol, Palmitic acid
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exhibit varied mechanisms of action—inducing cell cycle arrest, promoting apoptosis, inhibiting metastasis, modulating 
oxidative stress, and regulating autophagy—making them valuable prospects for the development of novel plant-based 
anticancer drugs. Compounds such as quercetin, kaempferol, and stigmasterol stand out for their ability to target multiple 
pathways in tumorigenesis. Nevertheless, the current evidence is predominantly from in vitro research, and thorough 
in vivo and clinical evaluations remain necessary to confirm therapeutic utility. By investigating pharmacokinetics, 
toxicity, and long-term safety, future studies can help realize the chemopreventive and therapeutic potential of these 
Premna species, potentially overcoming drug resistance and minimizing side effects in conventional cancer treatments.
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