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Introduction: Hydrazones, due to the structural diversity of their nitrogen atoms, possess both electrophilic and nucleophilic 
properties, enabling strong hydrogen bonding interactions with enzymes and receptors. This study aimed to synthesize novel 
hydrazone derivatives and evaluate their antimicrobial potential.
Methods: Hydrazones were synthesized via condensation of 2-hydrazinobenzimidazole with various aldehydes or ketones using citric 
acid as an eco-friendly catalyst. The (E)-configuration of the products was confirmed through frontier molecular orbital (FMO) 
calculations. Antimicrobial activities were assessed against selected Gram-positive and Gram-negative bacteria, and fungi. Molecular 
docking studies were conducted on the most active compounds (3c and 3o) using bacterial and fungal protein targets (2IWC, 2NXW, 
1EA1).
Results: Compounds 3c and 3o showed strong antimicrobial activity. Docking studies revealed that both compounds interacted with 
2IWC via one H-bond donor to THR531 (3.12 Å), mirroring ampicillin. Against 2NXW, they showed dual H-donor bonding to 
MET404 with binding energies of –5.96 and –5.72 kcal/mol, comparable to gentamicin. Both also bound ARG326 in 1EA1 with 
binding energies of –5.97 and –6.0 kcal/mol, similar to nystatin.
Discussion: The comparable binding patterns and energies of compounds 3c and 3o to standard antimicrobial agents suggest that they 
are promising candidates for further development as broad-spectrum antimicrobial agents.
Keywords: condensation, HOMO, LUMO, global descriptors, geometrical configuration, pathogenic microorganisms

Introduction
Green chemistry provides essential principles aimed at minimizing environmental and health hazards by designing safer 
chemical processes and products. A core goal of this approach is the reduction or elimination of toxic substances through 
the use of benign solvents, renewable feedstocks, and eco-friendly catalysts.1 Among these, citric acid has gained 
considerable attention as a natural, non-toxic, biodegradable, and cost-effective catalyst extracted from citrus fruits 
(5–7%).2 It has been successfully applied in the green synthesis of various heterocyclic compounds, including azoles and 
azines,2 and has facilitated numerous reactions such as Knoevenagel condensation,3,4 Schiff bases,5–7 imines,8 phenolic 
derivatives,9 and amidoalkyl naphthols.10

In parallel, the pharmaceutical relevance of benzimidazole-based hydrazones has attracted significant research interest 
due to their broad spectrum of biological activities. These compounds have been reported to possess anti-diabetic,11 

anthelmintic,12 antimicrobial, antioxidant,13 anti-inflammatory,14 anticancer,15,16 anticonvulsant,17 antimalarial,18 and 
antileishmanial19 properties. Furthermore, hydrazones have shown potent inhibitory effects against carbonic anhydrase 
isoenzymes (I and II),20 making them valuable in rational drug design. Recent advances underscore the therapeutic 
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potential of benzimidazole derivatives, especially in anticancer and antimicrobial research, with new synthetic strategies 
enhancing their pharmacological relevance.21,22 The hydrazone moiety serves as a versatile pharmacophore capable of 
binding to various biological receptors,23 while substitution on the phenyl ring enhances biological activity, including 
anticancer effects24[Figure 1].

Given the increasing demand for sustainable and biologically active compounds, integrating green chemistry proto
cols with bioactive scaffold design represents a promising research direction. As part of our ongoing work on green 
synthesis of heterocycles,25–35 we report the citric acid-catalyzed synthesis of benzimidazole-based hydrazones and 
evaluate their antimicrobial potential. Density Functional Theory (DFT) computations were employed to determine the 
molecular geometries and electronic properties of the synthesized compounds. Furthermore, molecular docking studies 
were conducted to gain insights into their interaction with microbial protein targets, supporting their observed biological 
activities.

Results and Discussion
Chemistry
The synthetic conditions for preparing hydrazonobenzimidazole were accomplished by acid catalyst, especially acetic 
acid in methanol.26,35 Our study was commenced on a representative reaction of 2-hydrazinobenzimidazole26,35 and 
benzaldehyde in the presence of (0.1 g) citric acid as an eco-friendly catalyst. The reaction was subjected in various 
solvents under reflux as shown in Scheme 1 and Table 1.

As illustrated in Table 1, ethanol was a superior solvent in terms of the isolated yield of product 3a.
Ethanol was selected due to its moderate polarity and protic nature, which supports effective solvation of both the 

hydrazinobenzimidazole and carbonyl substrates. Its hydrogen-bonding ability enhances interactions with the citric acid 
catalyst, improving proton transfer and reaction kinetics. Additionally, ethanol ensures better miscibility of the reactants 
and facilitates uniform heat distribution during reflux, contributing to higher product yields.

To generalize the scope of our green synthesis protocol, a series of aromatic aldehydes (2a-g) and ketones (2h-j), 
acetyl heterocycles (2k-n), and isatin (2o) were condensed with 2-hydrazinobenzimidazole (1) in ethanol in the presence 
of acetic acid or citric acid. The mechanistic pathway was illustrated in Scheme 2 and a comparative yield of the 
condensation products (3a-o) was depicted in Table 2.

With the optimal conditions, the condensation reactions have been achieved with citric acid catalyst in good to 
excellent yield (88–94%) relative to acetic acid (78–85%). 4-substituted benzaldehyde with electron-donating or with
drawing groups gave the respective hydrazones (3a-3e) in an excellent yield. Also, dichlorobenzaldehyde with steric 

Figure 1 The biological activities of hydrazonobenzimidazole.

Scheme 1 Reaction of 2-hydrazinobenzimidazole and benzaldehyde.
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hinderance was not affected on the yield percent of the products (3f, 3g). Additionally, the high performance of citric acid 
catalyst was perceived with aryl (3h-3j), acetyl heterocycles (3k-3n), and isatin (3o) as shown in Table 2.

Although hydrazone formation can proceed without a catalyst, the use of citric acid notably enhances reaction 
efficiency by increasing yields and reducing reaction times. Its role as a natural, biodegradable, and non-toxic acid aligns 
with green chemistry principles, offering a sustainable alternative to conventional catalysts. This justifies its necessity in 
promoting an eco-friendly and efficient synthetic protocol.

The theoretical study using Density Functional Theory (DFT) further supports the experimental results. The FMO 
analysis showed that the (E)-isomers were more stable than the (Z)-isomers in all phases, as indicated by their lower total 
electronic energies. Moreover, the HOMO-LUMO energy gaps, ionization potentials, and electrophilicity indices 
provided insights into the reactivity and stability of the compounds. For instance, smaller HOMO-LUMO gaps indicate 
higher chemical reactivity, which aligns with the biological activity observed in certain hydrazones. Global descriptors 
such as softness, hardness, and chemical potential also supported the prediction of the compounds’ behavior during 
biological interactions. These findings confirm the reliability of the computational models and their relevance in 
predicting molecular behavior consistent with antimicrobial activity.

Table 1 Effect of Solvents on the Product Yield of 
Compound 3a

Entry Solvent Time (h) Isolated Yield (%)

1 Methanol 3 85

2 Ethanol 3 94

3 DMF 3 84

4 Dioxane 3 82

5 DMSO 3 80

Scheme 2 Synthesis of hydrazonobenzimidazole (3a-o).
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Table 2 A Comparative Yield of Products (3a-o) Under Catalytic Effect 
(Acetic Acid and Citric Acid)

Compd. No. R Ar Yield % Ref.

Citric Acid Acetic Acid

3a H C6H5 94 85 30

3b H 4-CH3C6H4 92 83 30

3c H 4-CH3OC6H4 92 82 30

3d H 4-ClC6H4 90 83 30

3e H 4-NO2C6H4 90 81 30

3f H 90 82 -

3g H 90 80 -

3h CH3 C6H5 92 81 31

3i CH3 4-BrC6H4 90 80 31

3j CH3 88 78 -

3k CH3 88 79 -

3L CH3 88 80 -

3m CH3 88 81 -

3n CH3 88 82 -

(Continued)
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Computational Investigations
The optimized structures of compounds 3a-o have been generated and displayed in Gauss View 6.0.16 using DFT with 
the B3LYP function and 6–31G basis set computations using the Gaussian 09 program. The compounds 3a-o can be 
formulated in two possible geometrical isomers (Z) and (E) forms (see Figure 2). HOMO (Highest Occupied Molecular 
Orbital) and LUMO (Lowest Unoccupied Molecular Orbital) of the investigated compounds in the gas, aqueous, and 
ethanol phases were computed and summarized in Tables 3, S1, and S2.

The data in Table 3 supported the superiority of the E-form over Z-form. For example, the electronic energy of 3a (E) 
in the gas phase = (–476,738.21 Kcal/mol), which is lower than that of 3a (Z) (–476,734.79 Kcal/mol). Similar 
calculations have been observed in both ethanolic (–476,745.89/–476,741.66 Kcal/mol) and aqueous phases (– 
476,746.29/–476,742.01 Kcal/mol), respectively.

Additionally, global descriptors such as ionization energy (I), electron affinity (A), global hardness (η), global 
softness (S), chemical potential (µ), electrophilicity (ω), and nucleophilicity (N) of the synthesized compounds were 
calculated in three different phases (gas/aqueous/ethanol) as shown in Table 4.

It is worthily mentioned that compounds 3a-o can be represented in three different tautomeric structures as 
hydrazones (I), conjugated diazines (II) and benzylazo forms (III) as shown in Figure 3. Frontier Molecular Orbitals 
(FMO) computations of these tautomeric forms were illustrated in Table 5.

The data in Table 5 pointed out that the electronic energies of tautomeric forms (I, II, and III) of compound 3a in the 
gas phase were (–476,738.21, –476,737.53, and –476,723.28 Kcal/mol), respectively, that revealing the superior stability 
of hydrazone tautomer (I) over conjugated azine tautomer (II) (∆E = 0.68 Kcal/mol) and benzylazo tautomer (III) (∆E = 
14.93 Kcal/mol). Similarly, the electronic energies of compound 3h (I, II, and III) in the gas phase were (–501,410.62, – 
501,410.88, –501,398.75 Kcal/mol), respectively. In the same manner, the electronic energy of (I) is lower than those of 
(II) and (III) forms in both aqueous and ethanolic phases for compounds 3a and 3h (Table 5).

To confirm the stability of hydrazone form (I), the global descriptors of three tautomeric forms (I, II, and III) of 
compounds 3a and 3h were computed in three different phases (gas, aqueous and ethanolic) as summarized in Table S3.

Table 2 (Continued). 

Compd. No. R Ar Yield % Ref.

Citric Acid Acetic Acid

3o 88 80 32

Figure 2 Geometrical isomers of compounds 3a-o.
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Table 3 Frontier Molecular Orbitals (FMO) Computations of Compounds 3a and 3h

Compd. 
No.

Optimized Structure E (Kcal/mol)

Gas H2O EtOH

3a (E) − 
476,738.21

− 
476,746.29

− 
476,745.89

LUMO E LUMO (eV)

Gas H2O EtOH

− 1.46 − 1.42 − 1.42

HOMO E HOMO (eV)

Gas H2O EtOH

− 5.19 − 5.32 − 5.32

3a (Z) E (Kcal/mol)

Gas H2O EtOH

− 
476,734.79

− 
476,742.01

− 
476,741.66

LUMO E LUMO (eV)

Gas H2O EtOH

− 1.42 − 1.37 − 1.37

HOMO E HOMO (eV)

Gas H2O EtOH

− 5.24 − 5.45 − 5.44

3h (E) E (Kcal/mol)

Gas H2O EtOH

− 
501,410.62

− 
501,419.09

− 
501,418.70

(Continued)
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Table 3 (Continued). 

Compd. 
No.

Optimized Structure E (Kcal/mol)

Gas H2O EtOH

LUMO E LUMO (eV)

Gas H2O EtOH

− 1.32 − 1.23 − 1.22

HOMO E HOMO (eV)

Gas H2O EtOH

− 5.14 − 5.31 − 5.30

3h (Z) E (Kcal/mol)

Gas H2O EtOH

− 
501,409.57

− 
501,417.02

− 
501,416.67

LUMO E LUMO (eV)

Gas H2O EtOH

− 1.08 − 0.98 − 0.98

HOMO E HOMO (eV)

Gas H2O EtOH

− 5.09 − 5.35 − 5.34

Table 4 Global Descriptors of Compounds 3a and 3h

No. I = -EHOMO A = - ELUMO η = (EL-EH)/2 S = 1/η µ = - (I+A)/2 ω= µ2/2η N = EHOMO-EHOMO 

TCE

3a (E) 5.19 1.46 1.87 0.54 3.33 2.96 4.22

3a (E) /H2O 5.32 1.42 1.95 0.51 3.37 2.91 4.09

(Continued)
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The in vitro Antimicrobial Screening
The synthesized compounds 3a-o were evaluated in vitro for their antimicrobial activity against two Gram-positive 
bacteria: Bacillus subtilis (BS, ATCC 6633) and Staphylococcus aureus (SA, ATCC 6538), and two Gram-negative 
bacteria: Pseudomonas aeruginosa (PA, ATCC 90274) and Klebsiella pneumoniae (KP, ATCC 13883). Additionally, one 
yeast, Candida albicans (CA, ATCC 10221), and one fungus, Aspergillus fumigatus (AF, ATCC 14109), were also tested. 
The standard drugs used for comparison were Gentamicin (Gram-positive bacteria), Ampicillin (Gram-negative bacteria) 
and Nystatin (fungi). The antimicrobial activity was assessed by measuring the inhibition zone diameter (IZD) in mm/mg 
of sample at a concentration of 30 µg/mL for each compound. The results were summarized in Table 6.

The results presented in Table 6 revealed varying levels of antimicrobial efficacy across the tested microorganisms. 
The synthesized compounds exhibited diverse degrees of activity against Gram-positive and Gram-negative bacteria. 
Among the tested compounds, 3c displayed exceptional activity against Gram-positive bacteria, with inhibition zone 

Table 4 (Continued). 

No. I = -EHOMO A = - ELUMO η = (EL-EH)/2 S = 1/η µ = - (I+A)/2 ω= µ2/2η N = EHOMO-EHOMO 

TCE

3a (E) /EtOH 5.32 1.42 1.95 0.51 3.37 2.91 4.09

3a (Z) 5.24 1.42 1.91 0.52 3.33 2.90 4.17

3a (Z) /H2O 5.45 1.37 2.04 0.49 3.41 2.85 3.96

3a (Z) /EtOH 5.44 1.37 2.04 0.49 3.41 2.85 3.97

3h (E) 5.14 1.32 1.91 0.52 3.23 2.73 4.27

3h (E) /H2O 5.31 1.23 2.04 0.49 3.27 2.62 4.10

3h (E) /EtOH 5.30 1.22 2.04 0.49 3.26 2.60 4.11

3h (Z) 5.09 1.08 2.01 0.50 3.09 2.37 4.32

3h (Z) /H2O 5.35 0.98 2.19 0.46 3.17 2.29 4.06

3h (Z) /EtOH 5.34 0.98 2.18 0.46 3.16 2.29 4.07

Figure 3 Tautomeric forms of compounds 3a-o.
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Table 5 (FMO) Computations of the Tautomeric Forms (I, II, and III) of 3a and 3h

Compd. (3a) E (I) E (II) E (III)

Optimized structure

E (Kcal/mol) Gas − 476,738.21 − 476,737.53 − 476,723.28

H2O − 476,746.29 − 476,745.10 − 476,730.62

EtOH − 476,745.89 − 476,744.72 − 476,730.24

LUMO

E LUMO (eV) Gas − 1.46 − 1.01 − 2.35

H2O − 1.42 − 1.23 − 2.45

EtOH − 1.42 − 1.22 − 2.45

HOMO

EHOMO (eV) Gas − 5.19 − 4.88 − 6.24

H2O − 5.32 − 5.03 − 6.34

EtOH − 5.32 − 5.03 − 6.34

Compd. (3h) E (I) E (II) E (III)

Optimized structure

E (Kcal/mol) Gas − 501,410.62 − 501,410.88 − 501,398.75

H2O − 501,419.09 − 501,418.06 − 501,406.05

EtOH − 501,418.70 − 501,417.69 − 501,404.54

(Continued)
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Table 5 (Continued). 

LUMO

E LUMO (eV) Gas − 1.32 − 0.89 − 2.15

H2O − 1.23 − 1.09 − 2.32

EtOH − 1.22 − 1.08 − 2.26

HOMO

E HOMO (eV) Gas − 5.14 − 4.84 − 6.18

H2O − 5.31 − 4.98 − 6.35

EtOH − 5.30 − 4.97 − 6.31

Table 6 Preliminary Antimicrobial Activity for the Synthesized Compounds 3a-o

Compd. Pathogenic Microorganisms mm

Gram Positive Bacteria Gram Negative Bacteria Yeast Fungi

Bacillus 
subtilis

Staphylococcus 
aureus

Pseudomonas 
aeruginosa

Klebsiella 
pneumoniae

Candida 
albicans

Aspergillus 
fumigatus

3a 26.5 ± 0.9 25.3 ± 0.8 20.1 ± 0.8 NA 22.4 ± 0.8 NA

3b 27.0 ± 0.8 28.2 ± 0.6 22.8 ± 0.9 29.8 ± 0.9 27.7 ± 0.7 NA

3c 29.2 ± 0.7 31.7 ± 0.9 26.3 ± 0.7 32.2 ± 1.0 29.8 ± 0.7 21.3 ± 0.5

3d 25.2 ± 0.8 27.1 ± 0.8 18.4 ± 0.7 23.3 ± 0.7 22.3 ± 0.7 NA

3e NA 22.3 ± 0.9 NA 21.9 ± 0.8 23.2 ± 0.8 NA

3f NA 20.5 ± 0.8 NA NA 24.8 ± 0.9 NA

3g 23.4 ± 0.9 19.7 ± 0.5 21.0 ± 0.7 NA 27.6 ± 0.7 NA

3h 29.0 ± 1.0 29.4 ± 0.9 25.6 ± 0.5 29.2 ± 0.8 27.5 ± 0.9 15.6 ± 0.8

3i 23.2 ± 0.9 26.1 ± 0.9 21.0 ± 0.8 NA 24.6 ± 0.8 NA

3j 27.6 ± 0.9 29.4 ± 0.7 21.2 ± 0.9 29.8 ± 0.7 20.9 ± 0.8 19.4 ± 0.7

3k 29.6 ± 0.7 30.9 ± 0.9 21.8 ± 0.7 28.5 ± 0.8 28.4 ± 0.9 17.7 ± 0.8

3L 28.3 ± 1.3 29.7 ± 0.9 21.9 ± 0.6 27.8 ± 1.1 26.6 ± 0.8 18.6 ± 0.9

(Continued)
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diameters (IZDs) of 31.7 ± 0.9 mm against S. aureus and 29.2 ± 0.7 mm against B. subtilis, closely approximating the 
activity of the standard ampicillin (30.2 ± 0.8 mm and 29.7 ± 0.9 mm, respectively). Similarly, compounds 3h, 3j, 3k, 3L, 
3m, 3n, and 3o demonstrated strong activity against both Gram-positive strains, with IZDs ranging from 27.6 to 
31.9 mm.

Against Gram-negative bacteria, 3c exhibited superior activity, particularly against K. pneumoniae, with an IZD of 
32.2 ± 1.0 mm, surpassing the efficacy of Gentamicin (28.3 ± 0.5 mm). Other compounds, including 3b, 3h, and 3j–3o, 
also displayed considerable activity against K. pneumoniae, with IZDs between 27.6 and 29.8 mm. Notably, 3c and 3h 
demonstrated significant activity against P. aeruginosa, with IZDs of 26.3 ± 0.7 mm and 25.6 ± 0.5 mm, respectively. 
These results underscore the potential of these compounds as effective agents against Gram-negative bacterial infections.

The antifungal activity of the compounds was evaluated against C. albicans and A. fumigatus. Most compounds showed 
promising activity against C. albicans, with 3c exhibiting the highest activity (IZD: 29.8 ± 0.7 mm), surpassing the standard 
nystatin (29.4 ± 0.8 mm). Compounds 3b, 3h, 3k, and 3L also demonstrated strong activity against C. albicans, with IZDs 
ranging from 26.6 to 28.4 mm. For A. fumigatus, moderate activity was observed. Compound 3o exhibited the highest 
activity, with an IZD of 25.0 ± 0.9 mm, although it was less effective than nystatin (33.4 ± 0.9 mm). Compounds 3c, 3h, 3j, 
3k, 3L, 3m, and 3n demonstrated moderate activity against A. fumigatus, with IZDs ranging from 15.6 to 21.7 mm.

Structure-Activity Relationship (SAR) of Synthesized Hydrazones (3a–o)
The antimicrobial activity of the synthesized hydrazones (3a–o) is strongly influenced by specific structural modifica
tions. Electron-donating groups, such as –OCH₃ (in 3c) and –CH₃ (in 3b), significantly enhanced antimicrobial potency 
compared to electron-withdrawing substituents. This improvement likely stems from increased electron density on the 
aromatic ring, which facilitates stronger hydrogen bonding and π–π interactions with microbial targets. Conversely, 
compounds with strong electron-withdrawing groups exhibited reduced activity, underscoring the advantage of electron- 
rich systems in promoting target engagement.

Heteroaromatic substitutions further boosted efficacy, with derivatives containing thiophene, pyridine, indole, or 
coumarin (3k–3n) showing markedly improved activity. The planarity and heteroatom interactions of these moieties are 
proposed to enhance both target affinity and membrane permeability. Lipophilicity also played a critical role: bulkier, 
more lipophilic compounds (eg, 3j with naphthyl and 3o with isatin) demonstrated superior activity, likely due to 
improved penetration of microbial lipid bilayers, as supported by their stronger docking scores. Notably, steric hindrance 
was well-tolerated, as evidenced by the retained activity of dichloro-substituted derivatives (3f, 3g), suggesting flexibility 
for further structural optimization.

Table 6 (Continued). 

Compd. Pathogenic Microorganisms mm

Gram Positive Bacteria Gram Negative Bacteria Yeast Fungi

Bacillus 
subtilis

Staphylococcus 
aureus

Pseudomonas 
aeruginosa

Klebsiella 
pneumoniae

Candida 
albicans

Aspergillus 
fumigatus

3m 29.0 ± 0.8 30.0 ± 0.9 21.9 ± 0.6 27.6 ± 0.8 25.0 ± 0.7 20.5 ± 0.7

3n 28.3 ± 0.8 31.0 ± 0.8 22.7 ± 0.8 27.8 ± 0.6 25.3 ± 0.7 21.7 ± 0.8

3o 29.6 ± 0.7 31.9 ± 0.7 23.7 ± 0.6 28.5 ± 0.9 25.9 ± 0.6 25.0 ± 0.9

Ampicillin 29.7 ± 0.9 30.2 ± 0.8 – – – –

Gentamicin – – 29.8 ± 0.8 28.3 ± 0.5 – –

Nystatin – – – – 29.4 ± 0.8 33.4 ± 0.9

Notes: Values are mean inhibition zone diameter (mm) ± standard deviation of three replicates. Mean zone of inhibition measured in millimeters, generated by several 
pathogenic bacteria. Control for Bacteria was Gentamycin and for fungi was Fluconazole. 
Abbreviation: NA, No activity.
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The most potent compounds (3c and 3o) exhibited a consistent correlation between their electronic properties, binding 
interactions, and biological activity. Their small HOMO-LUMO gaps (indicating favorable charge transfer) and strong 
hydrogen-bonding interactions with key microbial residues align with their exceptional in vitro performance. 
Collectively, these findings highlight that antimicrobial potency in hydrazones can be maximized by incorporating elec
tron-donating groups, heterocyclic rings, and lipophilic features—strategies that synergistically improve target binding, 
membrane penetration, and overall bioavailability.

Molecular Docking
The molecular docking evaluation was performed using the Molecular Operating Environment (MOE) software. The 
interaction between the selected proteins (PDB: 2IWC, 2NXW, and 1EA1) is utilized to assess the antimicrobial activity 
of the most promising hydrazone derivatives (3c and 3o) using Ampicillin, Gentamicin, and Nystatin as benchmark 
antibiotics (essential antimicrobial references). A comparison study between the ligands and antimicrobial references 
depended on the number of hydrogen bond interactions, the binding energy score, and the distance apart between the 
ligand/reference antibiotic and crucial amino acid residues in the protein. The investigation results for the interaction between 
antimicrobial references (Ampicillin/Gentamicin/Nystatin) or ligands (3c and 3o) with different proteins (2IWC as a gram- 
positive bacterial strain, 2NXW as a gram-negative bacterial strain and 1EA1 as antifungal strain) were shown in Table 7.

Ampicillin had a binding energy score = –6.07 Kcal/mol (RMSD = 1.39) with 2IWC protein (Table 7). It exhibited 
five H-bond interactions (one H-donor and four H-acceptors). The H-acceptor interactions with THR531, ASN441, 

Table 7 Ligand-Protein Interaction of the Antibiotics and Compounds (3c, 3o) with Proteins

Compd. Protein Ligand–Protein Interactions/Type of 
Interactions

Binding Energy 
(Kcal/mol)

Root Mean Square 
Deviation RMSD

Bond 
Distance (Å)

Ampicillin 2IWC THR 531 (A) / H-donor 

THR 531 (A) / H-acceptor 

ASN 441 (A) / H-acceptor 
ILE 533 (A) / H-acceptor 

SER 439 (A) / H-acceptor 

ASN 478 (A) / pi-H

− 6.07 1.39 3.30 

2.98 

3.04 
3.16 

3.40 

3.6

3c 2IWC THR 531 (A) H-donor 

ASN 441 (A) H-donor 
ASN 441 (A) H-acceptor 

ILE 533 (A) pi-H

− 5.63 1.09 2.99 

3.35 
3.13 

4.03

3o 2IWC THR 531 (A) H-donor 

GLY 530 (A) H-acceptor 

TYR 438 (A) pi-H 
ASN 441 (A) pi-H

− 5.24 1.93 2.94 

3.34 

3.77 
3.85

Gentamicin 2NXW MET 434 (A) / H-donor 
MET 404 (A) / H-donor 

MET 404 (A) / H-donor 

ALA 402 (A) / H-donor

− 5.18 1.55 4.41 
3.96 

4.17 

2.94

3c 2NXW MET 404 (A) / H-donor 

MET 404 (A) / H-donor 
TRP 459 (A) / pi-H

− 5.96 1.21 3.24 

3.53 
4.81

3o 2NXW MET 404 (A) H-donor 
LEU 462 (A) H-acceptor 

TRP 459 (A) pi-pi

− 5.26 0.98 3.46 
3.32 

3.92

(Continued)
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ILE533, and SER439 with 2.98, 3.04, 3.16, and 3.40 Å, respectively, in addition to an H-donor bond with THR531 with 
3.32 Å. Compounds 3c and 3o interacted with 2IWC through binding energy scores of −5.63 and −5.24 Kcal/mol, 
respectively. 3c as a model example displayed three H-bonds (two H-bond donors with side chain amino acid THR531 
and main chain amino acid ASN441) and one H-bond acceptor main chain amino acid ASN441. The investigated 
candidates bounded to the same amino acid (S) as the reference antibiotic ampicillin. Thus, the inhibition efficacy of the 
tested compounds against gram-positive bacteria is confirmed by these interactions (Tables 7 and 8).

Table 7 (Continued). 

Compd. Protein Ligand–Protein Interactions/Type of 
Interactions

Binding Energy 
(Kcal/mol)

Root Mean Square 
Deviation RMSD

Bond 
Distance (Å)

Nystatin 1EA1 HIS 392 (A) / H-donor 
SER 261 (A) / H-donor 

PRO 386 (A) / H-donor 

TYR 76 (A) / H-acceptor 
ARG 326 (A) / H-acceptor

− 4.32 2.4 2.51 
2.55 

2.72 

2.72 
2.79

3c 1EA1 ARG 326 (A) H-acceptor 
ALA 256 (A) pi-H

− 6.16 1.21 2.87 
4.38

3o 1EA1 ARG 326 (A) H-acceptor 
ARG 95 (A) pi-cation 

ARG 95 (A) pi-cation 

ARG 96 (A) pi-cation 
ARG 96 (A) pi-cation

− 5.75 0.95 3.44 
4.65 

4.14 

3.99 
3.17

Table 8 2D and 3D of Ligand’s Interaction (3c and 3o) with 2IWC, 2NXW, and 1EA1 Proteins

No. Protein 2D 3D

3c 2IWC

3o 2IWC

(Continued)
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Table 8 (Continued). 

No. Protein 2D 3D

3c 2NXW

3o 2NXW

3c 1EA1

3o 1EA1
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Similarly, the interaction of gentamicin with 2NXW protein (Table 7) was substantiated via four H-donor bonds 
with amino acids MET404, MET434, and ALA402, with binding energy (−5.18 Kcal/mol) and RMSD = 1.55 Å. 
Compounds 3c as a model example bonded with 2NXW protein via two H-donor bonds with the main chain amino 
acid MET404 and one pi-H bond with the main chain amino acid TRP459, that reflected the inhibition potency of 
these compounds towards gram-negative bacterial strain (Tables 8). Additionally, binding of nystatin with 1EA1, 
as a fungal protein, was achieved (Table 7) via three H-donor bonds with the amino acids HIS392, SER261, and 
PRO386, and two H-acceptor bonds with TYR76 and ARG326 amino acids with binding energies = −4.32 Kcal/ 
mol. Both compounds 3c and 3o were consistently connected to the same amino acid residue (ARG326) in 1EA1 
protein with binding energies of −6.16 and −5.75 Kcal/mol, respectively, that supported the biological activity of 
the tested compounds (3c and 3o) against C. albicans and A. fumigatus (Tables 7 and 8).

The 2D and 3D images of the ligand’s interaction (3c and 3o) with 2IWC, 2NXW, and 1EA1 proteins were compiled 
in Table 8.

Experimental
Materials and Instruments
A digital melting point apparatus (Bibby Sci. Lim. Stone, Staffordshire, UK) was used to measure the melting 
points (uncorrected) of products 3a-o. Shimadzu FTIR 8101 PC infrared spectrophotometer (Shimadzu, Tokyo, 
Japan) has recorded IR spectra in potassium bromide discs. Recording of 1H-NMR (at 300 MHz) and 13C-NMR (at 
75 MHz) spectra was manipulated on A Varian Mercury VXR-300 spectrometer using tetramethyl silane as an 
internal standard. The samples were dissolved in deuterated dimethylsulfoxide (DMSO-d6). GCMS-Q1000-EX 
Shimadzu spectrometer measured Mass spectra at an ionizing voltage of 70 eV. A German-made Elementarvario 
LIII CHNS analyzer was used to measure the elemental analyses of the synthesized products.

General Procedure for the Reactions of 2-Hydrazonobenzimidazole (1) and Carbonyl 
Compounds
A mixture of 2-hydrazonobenzimidazole (1) [0.148 g, 1 mmol] and carbonyl compounds 2a-o (1 mmol of each) in 
ethanol (20 mL) and few drops of acetic acid (or 0.1 g citric acid) was refluxed for 3 hours (checked by TLC until 
complete disappearance of starting materials). After evaporation of excess ethanol under reduced pressure, the collected 
precipitate was filtered and recrystallized from the appropriate solvent to give pure products 3a-o.

2-(2-Benzylidenehydrazinyl)-1H-Benzo[d]imidazole (3a)
Yellow powder, mp = 293–295°C, [lit. mp = 291°C]36 (EtOH/DMF); IR (KBr) υ = 3432 (NH), 2923 (CH-), 1600 
(C=N) cm−1; 1H NMR (DMSO-d6) δ: 7.09–7.51 (m, 9H, Ar-H), 8.33 (s, 1H, CH=N), 10.72 (s, 1H, NH), 12.53 (s, 1H, 
NH) ppm; 13C-NMR (DMSO-d6): δ: 113.1, 114.4, 122.5, 123.9, 126.2, 127.8, 137.1, 141.5, 143.0, 149.7, 150.1, 158.1 
(Ar-C) ppm; MS, m/z (%) 236 (M+, 31), 197 (61), 155 (54), 116 (100), 89 (32). Anal. Calcd. For C14H12N4 (236.11): C, 
71.17; H, 5.12; N, 23.71. Found: C, 71.29; H, 5.28; N, 23.91%.

2-[2-(4-Methylbenzylidene)hydrazinyl]-1H-Benzo[d]imidazole (3b)36

Yellow powder, mp = 275–277°C, [lit. mp = 277°C] (DMF); IR (KBr) υ = 3430 (NH), 2919 (CH-), 1602 (C=N) cm−1; 

1H NMR (DMSO-d6) δ: 2.38 (s, 3H, CH3), 7.10–7.52 (m, 8H, Ar-H), 8.31 (s, 1H, CH=N), 10.74 (s, 1H, NH), 12.53 (s, 
1H, NH) ppm; 13C-NMR (DMSO-d6): δ: 20.4 (CH3), 114.4, 115.1, 122.3, 123.4, 126.9, 128.8, 131.4, 132.4, 136.2, 140.8, 
144.4, 150.8 (Ar-C) ppm; MS, m/z (%) 250 (M+, 43), 136 (57), 121 (100), 95 (25). Anal. Calcd. For C15H14N4 (250.12): 
C, 71.98; H, 5.64; N, 22.38. Found: C, 72.09; H, 5.73; N, 22.21%.

2-[2-(4-Methoxybenzylidene)hydrazinyl]-1H-Benzo[D]imidazole (3c)36

Yellow powder, mp = 215–217°C, [lit. mp = 212°C] (EtOH); IR (KBr) υ = 3412, 3204 (NH), 30212 (CH=), 2960, 2914 
(CH-), 1602 (C=N) cm−1; 1H NMR (DMSO-d6) δ: 3.69 (s, 3H, OCH3), 7.11–7.56 (m, 8H, Ar-H), 8.33 (s, 1H, CH=N), 
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10.68 (s, 1H, NH), 12.52 (s, 1H, NH) ppm; 13C-NMR (DMSO-d6): δ: 56.2 (OCH3), 114.3, 121.5, 128.4, 128.8, 129.3, 
129.6, 129.8, 130.0, 146.4, 148.5, 152.3, 158.0 (Ar-C) ppm; MS, m/z (%) 266 (M+, 52), 158 (85), 142 (100), 138 (89), 89 
(86), 75 (43). Anal. Calcd. For C15H14N4O (266.12): C, 67.65; H, 5.30; N, 21.04. Found: C, 67.49; H, 5.18; N, 20.91%.

2-[2-(4-Chlorobenzylidene)hydrazinyl]-1H-Benzo[D]imidazole (3d)36

Yellow powder, mp = 273–275°C, [lit. mp = 270°C] (DMF); IR (KBr) υ = 3426, 3246 (NH), 3024 (CH=), 2959 (CH-), 
1596 (C=N) cm−1; 1H NMR (DMSO-d6) δ: 7.18–7.92 (m, 8H, Ar-H), 8.72 (s, 1H, CH=N), 10.70 (s, 1H, NH), 12.51 (s, 
1H, NH) ppm; 13C-NMR (DMSO-d6): δ: 115.1, 115.8, 122.3, 123.4, 128.9, 129.2, 130.2, 132.4, 135.2, 142.8, 148.4, 
160.8 (Ar-C) ppm; MS, m/z (%) 270 (M+, 40), 188 (46),150 (89), 75 (100). Anal. Calcd. For C14H11ClN4 (270.07): C, 
62.11; H, 4.10; N, 20.70. Found: C, 62.19; H, 4.17; N, 20.55%.

2-[2-(4-Nitrobenzylidene)hydrazinyl]-1H-Benzo[D]imidazole (3e)36

Yellow powder, mp = 287–289°C, [lit. mp = 283°C] (DMF); IR (KBr) υ = 3451 (NH), 3013 (CH=), 1594 (C=N) cm−1; 

1H NMR (DMSO-d6) δ: 7.10–7.89 (m, 8H, Ar-H), 8.62 (s, 1H, CH=N), 10.28 (s, 1H, NH), 12.53 (s, 1H, NH) ppm; 
13C-NMR (DMSO-d6): δ: 115.2, 116.1, 123.4, 124.3, 125.2, 125.9, 132.2, 136.4, 139.2, 142.1, 150.4, 160.8 (Ar-C) ppm; 
MS, m/z (%) 281 (M+, 20), 203 (52), 187 (53), 102 (100), 75 (80). Anal. Calcd. For C14H11N5O2 (281.09): C, 59.78; H, 
3.94; N, 24.90. Found: C, 59.55; H, 4.07; N, 24.85%.

2-[2-(2,4-Dichlorobenzylidene)hydrazinyl]-1H-Benzo[D]imidazole (3f)
Yellow powder, mp = 247–249°C (EtOH); IR (KBr) υ = 3433, 3203 (NH), 2958, 2918 (CH-), 1598 (C=N) cm−1; 

1H NMR (DMSO-d6) δ: 7.10–7.89 (m, 7H, Ar-H), 8.72 (s, 1H, CH=N), 10.28 (s, 1H, NH), 12.53 (s, 1H, NH) ppm; 
13C-NMR (DMSO-d6): δ: 114.8, 115.3, 122.4, 123.4, 123.9, 127.5, 128.2, 129.3, 130.2, 131.4, 131.9, 132.8, 138.4, 160.7 
(Ar-C) ppm; MS, m/z (%) 304 (M+, 31), 279 (36), 231 (49), 154 (56), 127 (100), 77 (39). Anal. Calcd. For C14H10Cl2N4 

(304.03): C, 55.10; H, 3.30; N, 18.36. Found: C, 55.19; H, 3.19; N, 18.25%.

2-[2-(2,6-Dichlorobenzylidene)hydrazinyl]-1H-Benzo[D]imidazole (3g)
Yellow powder, mp = 271–273°C (DMF); IR (KBr) υ = 3425 (NH), 2915 (CH-), 1603 (C=N) cm−1; 1H NMR 
(DMSO-d6) δ: 7.11–7.89 (m, 7H, Ar-H), 8.72 (s, 1H, CH=N), 10.29 (s, 1H, NH), 12.53 (s, 1H, NH) ppm; 13C-NMR 
(DMSO-d6): δ: 114.8, 115.2, 123.4, 123.9, 124.6, 127.5, 128.2, 129.3, 130.2, 131.4, 131.9, 133.8, 138.4, 160.6 (Ar-C) 
ppm; MS, m/z (%) 304 (M+, 62), 251 (60), 194 (36), 173 (100), 133 (63), 73 (92). Anal. Calcd. For C14H10Cl2N4 

(304.03): C, 55.10; H, 3.30; N, 18.36. Found: C, 55.20; H, 3.19; N, 18.18%.

2-[2-(1-Phenylethylidene)hydrazinyl]-1H-Benzo[D]imidazole (3h)37

Yellow powder, mp = 237–239°C (EtOH); IR (KBr) υ = 3432 (NH), 3035 (CH=), 2912 (CH-), 1599 (C=N) cm−1; 

1H NMR (DMSO-d6) δ: 2.46 (s, 3H, CH3), 7.09–7.52 (m, 9H, Ar-H), 10.52 (s, 1H, NH), 12.45 (s, 1H, NH) ppm; 
13C-NMR (DMSO-d6): δ: 18.4 (CH3), 115.4, 116.1, 123.3, 123.7, 124.9, 128.1, 128.4, 130.4, 135.2, 136.8, 141.4, 160.8 
(Ar-C) ppm; MS, m/z (%) 250 (M+, 70), 192 (48), 160 (96), 112 (100), 76 (82). Anal. Calcd. For C15H14N4 (250.12): C, 
71.98; H, 5.64; N, 22.38. Found: C, 72.03; H, 5.71; N, 22.28%.

2-[2-(1-(4-Bromophenyl)ethylidene)hydrazinyl]-1H-Benzo[D]imidazole (3i)37

Yellow powder, mp = 250–252°C (EtOH); IR (KBr) υ = 3385 (NH), 1585 (C=N) cm−1; 1H NMR (DMSO-d6) δ: 2.47 (s, 
3H, CH3), 7.10–7.74 (m, 8H, Ar-H), 10.54 (s, 1H, NH), 12.49 (s, 1H, NH) ppm; 13C-NMR (DMSO-d6): δ: 18.6 (CH3), 
115.4, 116.2, 123.3, 123.7, 124.9, 128.1, 128.6, 130.4, 134.9, 136.6, 141.4, 160.7 (Ar-C) ppm; MS, m/z (%) 328 (M+, 
37), 197 (67), 138 (69), 126 (100), 116 (87), 77 (48). Anal. Calcd. For C15H13BrN4 (328.03): C, 54.73; H, 3.98; N, 17.02. 
Found: C, 54.81; H, 3.77; N, 16.88%.
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2-[2-(1-(Naphthalen-2-Yl)ethylidene)hydrazinyl]-1H-Benzo[D]imidazole (3j)
Yellow powder, mp = 288–290°C, (DMF); IR (KBr) υ = 3414, 3204 (NH), 2915 (CH-), 1601 (C=N) cm−1; 1H NMR 
(DMSO-d6) δ: 2.46 (s, 3H, CH3), 7.11–8.45 (m, 11H, Ar-H), 10.62 (s, 1H, NH), 12.53 (s, 1H, NH) ppm; 13C-NMR 
(DMSO-d6): δ: 18.8 (CH3), 114.9, 115.1, 122.8, 123.1, 126.4, 126.8, 127.2, 127.6, 128.3, 128.6, 129.2, 129.8, 131.9, 
133.2, 134.2, 135.8, 142.4, 158.1 (Ar-C) ppm; MS, m/z (%) 300 (M+, 100), 247 (19), 219 (15), 140 (33). Anal. Calcd. For 
C19H16N4 (300.14): C, 75.98; H, 5.37; N, 18.65. Found: C, 76.09; H, 5.48; N, 18.81%.

2-[2-(1-(Thiophen-2-Yl)ethylidene)hydrazinyl]-1H-Benzo[D]imidazole (3k)
Yellow powder, mp = 244–246°C, (EtOH); IR (KBr) υ = 3433 (NH), 2921 (CH-), 1596 (C=N) cm−1; 1H NMR 
(DMSO-d6) δ: 2.47 (s, 3H, CH3), 7.11–7.63 (m, 7H, Ar-H), 10.60 (s, 1H, NH), 12.54 (s, 1H, NH) ppm; 13C-NMR 
(DMSO-d6): δ: 18.7 (CH3), 114.9, 115.2, 123.1, 124.4, 124.8, 125.2, 127.6, 128.1, 134.4, 135.8, 142.4, 158.7 (Ar-C) 
ppm; MS, m/z (%) 256 (M+, 71), 199 (39), 184 (100), 127 (66), 77 (68). Anal. Calcd. For C13H12N4S (256.08): C, 60.92; 
H, 4.72; N, 21.86; S, 12.51. Found: C, 61.09; H, 4.68; N, 21.88; S, 12.36%.

2-[2-(1-(Pyridin-3-Yl)ethylidene)hydrazinyl]-1H-Benzo[D]imidazole (3L)
Yellow powder, mp = 263–265°C (EtOH/DMF); IR (KBr) υ = 3387 (NH), 1592 (C=N) cm−1; 1H NMR (DMSO-d6) δ: 
2.43 (s, 3H, CH3), 7.09–8.67 (m, 8H, Ar-H), 10.58 (s, 1H, NH), 12.42 (s, 1H, NH) ppm; 13C-NMR (DMSO-d6): δ: 19.3 
(CH3), 115.2, 115.9, 122.3, 123.7, 123.9, 126.1, 132.4, 133.2, 134.2, 136.8, 141.4, 145.2, 160.4 (Ar-C) ppm; MS, m/z (%) 
251 (M+, 65), 204 (45), 123 (44), 106 (98), 91 (100). Anal. Calcd. For C14H13N5 (251.12): C, 66.92; H, 5.21; N, 27.87. 
Found: C, 67.03; H, 5.33; N, 27.91%.

2-[2-(1-(1H-Indol-3-Yl)ethylidene)hydrazinyl]-1H-Benzo[D]imidazole (3m)
Yellow powder, mp = 257–259°C (EtOH/DMF); IR (KBr) υ = 3413, 3259, 3207 (NH), 3009 (CH=), 2968 (CH-), 1591 
(C=N) cm−1; 1H NMR (DMSO-d6) δ: 2.41 (s, 3H, CH3), 7.08–8.26 (m, 9H, Ar-H), 10.54 (s, 1H, NH), 11.87 (s, 1H, NH), 
12.49 (s, 1H, NH) ppm; 13C-NMR (DMSO-d6): δ: 18.7 (CH3), 112.2, 113.4, 114.3, 115.7, 120.9, 121.1, 123.4, 123.9, 
127.8, 128.1, 133.2, 134.2, 135.8, 137.4, 141.2, 160.4 (Ar-C) ppm; MS, m/z (%) 288 (M+, 32), 132 (20), 119 (25), 106 
(100), 91 (70). Anal. Calcd. For C17H15N5 (289.13): C, 70.57; H, 5.23; N, 24.20. Found: C, 70.33; H, 5.11; N, 24.11%.

3-[1-(2-(1H-Benzo[D]imidazol-2-Yl)hydrazono)ethyl]-2H-Chromen-2-One (3n)
Yellow powder, mp = 271–273°C (DMF); IR (KBr) υ = 3419 (NH), 2926 (CH-), 1721 (C=O), 1606 (C=N) cm−1; 

1H NMR (DMSO-d6) δ: 2.47 (s, 3H, CH3), 7.09–8.57 (m, 9H, Ar-H), 11.19 (s, 1H, NH), 12.48 (s, 1H, NH) ppm; 
13C-NMR (DMSO-d6): δ: 18.7 (CH3), 115.2, 115.9, 118.3, 121.9, 122.4, 123.3, 125.8, 126.1, 128.5, 131.2, 133.4, 135.2, 
141.4, 149.2, 153.1, 158.4, 160.5 (Ar-C) ppm; MS, m/z (%) 318 (M+, 43), 144 (37), 126 (100), 78 (78), 64 (85). Anal. 
Calcd. For C18H14N4O2 (318.11): C, 67.92; H, 4.43; N, 17.60. Found: C, 67.83; H, 4.32; N, 17.41%.

3-[2-(1H-Benzo[D]imidazol-2-Yl)hydrazono]indolin-2-One (3o)38

Yellow powder, mp = 305–307°C [lit. mp = 320°C] (DMF); IR (KBr) υ = 3419, 3201 (NH), 3076 (CH=), 2917 (CH-), 
1680 (C=O), 1602 (C=N) cm−1; 1H NMR (DMSO-d6) δ: 7.03–7.81 (m, 8H, Ar-H), 9.51 (s, 1H, NH), 10.99 (s, 1H, NH), 
12.48 (s, 1H, NH) ppm; 13C-NMR (DMSO-d6): δ: 115.5, 116.7, 123.9, 128.8, 128.9, 129.4, 129.5, 129.7, 130.0, 136.3, 
140.8, 146.2, 151.4, 155.7 (Ar-C), 170.9 (C=O) ppm; MS, m/z (%) 277 (M+, 100), 198 (36), 182 (86), 153 (66), 75 (95). 
Anal. Calcd. For C15H11N5O (277.10): C, 64.97; H, 4.00; N, 25.26. Found: C, 64.85; H, 3.91; N, 25.09%.

DFT Calculations
All computational calculations were performed using the Gaussian 09W software package.39,40 The molecular geometry 
of the studied compounds was optimized using the density functional theory B3LYP method, by implementing the 
standard 6–31G(d,p) basis set. The visualization of the optimized structures was performed using GaussView 6.0.1.41–44
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Frontier Molecular Orbitals and Global Reactivity Indexes
The Frontier Molecular Orbitals and the global descriptors of the investigated compounds were achieved under the same 
calculation level. Popular qualitative chemical concepts derived from conceptual DFT were measured to define the 
reactivity as well as the stability of a system45–51 (see Electronic supplementary files).

Antimicrobial Activity
The antimicrobial activity of the prepared compounds was tested using strains from the RCMB culture collection at Al- 
Azhar University, Egypt. The well-diffusion method assessed activity against Gram-positive bacteria (Staphylococcus 
aureus, Bacillus subtilis), Gram-negative bacteria (Pseudomonas aeruginosa, Klebsiella pneumoniae), and filamentous 
fungi (Aspergillus gillus, Candida albicans). Microbial cultures (108 cells/mL for bacteria, 105 cells/mL for fungi) were 
spread on agar plates, and 100 μL of the compound solution (10 mg/mL) was added to 6 mm wells. Plates were incubated 
at 37°C for bacteria/yeast (24–48 h) and 28°C for fungi (48 h). Inhibition zones were measured, with larger zones 
indicating higher antimicrobial activity.52 DMSO served as a negative control, showing no inhibition, while ampicillin, 
gentamycin and nystatin were used as positive controls for bacteria and fungi, respectively.

Docking Methodology
The docking studies were carried out on Dell Inspiron 3847 [Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 16GB of 
DIMM DDR3-1333/1600 memory, Windows 10 home (64 Bit)]. Molecular Operating Environment (MOE) package 
version 2022.02 (Chemical Computing Group, Inc. Molecular Operating Environment was used for performing docking 
studies).

Receptor Preparation
Docking procedures were performed using Crystal Structure of Mecr1 Extracellular Antibiotic-Sensor with open form- 
penicillin G (PDB: 2IWC), Phenylpyruvate Decarboxylase with Thiamine diphosphate (PDB: 2NXW), and CYP51 with 
Fluconazole (PDB: 1EA1) was obtained from protein data bank (PDB). The structures were first repaired, and then 
appropriately protonated in the presence of ligands using the Protonate 3D, energy minimized with force field: amber10: 
EHT until it reached an RMS (root mean square) gradient of 0.00001 kcal/mol/Å.

Ligand Preparation
Compounds 3c and 3o were built in ChemBioDraw Ultra 14.0 and sketched in MOE.

Docking Procedure
The MOE 2022.02 procedure’s standard protocol was applied in this work. The Alpha Triangle placement determines the 
positions by randomly superposing ligand atom triplets alpha sphere dummies in the receptor site to create poses. The 
output database dock file, which was arranged according to the final score function (S), or the score of the final stage that 
was not set to zero, featured distinct poses for each ligand. The database browser was used to visually inspect the 
different poses of each ligand, and the best poses were chosen.

Conclusion
A green synthetic approach was applied to prepare a series of benzimidazole-based hydrazones using citric acid as an 
acid catalyst. These hydrazones 3a–o were formulated as (E) configuration. The synthesized compounds, particularly 3c 
and 3o, exhibit promising antimicrobial activities against a range of pathogenic microorganisms. Their broad-spectrum 
efficacy, coupled with performance comparable to standard antimicrobial agents, underscores their potential as valuable 
additions to the arsenal against microbial infections. Molecular docking results suggest that specific structural features, 
such as electron-donating groups on aromatic rings (3c) and the presence of a heterocyclic moiety (3o), significantly 
influence antimicrobial efficacy. Increased lipophilicity also appears to enhance cell wall penetration and target binding. 
Future work may explore in vivo biological testing and structural optimization for enhanced selectivity and potency. 
Potential applications include the development of new antimicrobial agents with environmentally friendly synthetic 
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profiles. Limitations of this study include the absence of in vivo data and the need for broader antimicrobial screening to 
fully establish the therapeutic potential of these compounds.
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