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Background: Tuberculosis spondylitis (TS), also known as Pott’s disease, is the most common destructive form of musculoskeletal 
tuberculosis and poses significant clinical challenges, particularly when complicated by osteoporosis. Osteoporosis exacerbates 
surgical outcomes and increases the risk of complications, making its accurate prediction crucial for effective patient management.
Methods: This retrospective study included 906 TS patients from two medical centers between January 2016 and November 2022. 
We collected demographic information and blood test data from routine examinations. To address class imbalance, the synthetic 
minority oversampling technique (SMOTE) was applied. Feature selection was performed using LASSO, Boruta, and Recursive 
Feature Elimination (RFE) to identify key predictors of osteoporosis. Multiple machine learning (ML) algorithms, including logistic 
regression, random forest, and XGBoost, were trained and optimized using nested cross-validation and hyperparameter tuning. The 
optimal model was further refined through threshold tuning to enhance performance metrics. Model interpretability was achieved using 
SHapley Additive exPlanations (SHAP), and an online web application was developed for real-time clinical use.
Results: Out of 906 patients, 60 were diagnosed with osteoporosis based on Dual-energy X-ray absorptiometry (DXA) measurements. 
Feature selection identified hemoglobin (HB), estimated glomerular filtration rate (eGFR), and cystatin C (CYS_C) as significant 
predictors. The logistic regression model exhibited the highest performance with an area under the receiver operating characteristic 
curve (AUC) of 0.826, which was externally validated with an AUC of 0.796. Threshold tuning optimized the decision threshold to 
0.32, improving the F1-score and balancing sensitivity and specificity. SHAP analysis highlighted the critical roles of HB, eGFR, and 
CYS_C in osteoporosis prediction. The developed web application facilitates the model’s integration into clinical workflows, enabling 
healthcare professionals to make informed decisions at the bedside.
Conclusion: This study successfully developed and validated an ML-based tool for predicting osteoporosis in TS patients using 
readily available clinical data. The model demonstrated robust predictive performance and was effectively integrated into a user- 
friendly online application, offering a practical solution to enhance surgical decision-making and improve patient outcomes in real- 
time clinical settings.
Keywords: tuberculosis spondylitis, osteoporosis, machine learning, threshold tuning, logistic regression

Introduction
Tuberculosis (TB) spondylitis (TS) or Pott’s disease – which was first modernly described by Percivall Pott in 1779 – is 
the most common destructive form of musculoskeletal tuberculosis.1 Bone and joint TB is a form of extrapulmonary TB 
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that occurs in 15–35% of patients with this condition.2 It represents 50% of all extrapulmonary musculoskeletal 
tuberculosis cases, despite only affecting approximately 1–2% of tuberculosis cases globally.3 TB continues to be 
a significant healthcare concern in China, particularly in its northwestern region.4 Although constitutional symptoms 
like weight loss, anorexia, and fever may be associated with widespread disease or coexisting extraspinal tuberculosis, 
the deterioration of kyphotic deformity and nerve compression causes severe back pain and neurological deficits. In 
Pott’s disease, there is a gradual progression of vertebral collapse, damage to adjacent tissues, and destruction, eventually 
leading to the formation of a paravertebral or epidural abscess. Abscess could extend to nearby soft tissues, resulting in 
spinal cord compression, kyphotic deformity, and additional neurological complications, which varies from 10% to 43%.5

Surgical intervention may be necessary when there was a neurological deficit present, which is one of the indications 
for surgery in Pott’s disease.6 The choice of surgical management depended on factors such as the location of the lesion, 
the severity of deformity, and the impact on adjacent neurological structures. Currently, three distinct surgical approaches 
were utilized in the treatment: anterior, posterior, or a combination of both approaches. Techniques include different 
combinations of decompression, fusion and instrumentation. Bone mineral density (BMD) was a significant factor 
relating to the outcome of spine surgery. Yagi et al demonstrated that low BMD was an important risk issue for proximal 
junctional failure (PJF) corrective surgery for adult spinal deformity (ASD).7 In addition to this, Zachariah et al reported 
that both osteopenia and osteoporosis were associated with increased rates of pseudarthrosis in patients undergoing 
elective anterior cervical discectomy and fusion (ACDF).8 Osteopenia and osteoporosis could lead to fractures in the 
adjacent vertebrae and cause instrument failure, such as screw loosening.9,10 These complications can further worsen the 
already challenging circumstances faced by underprivileged families.

Osteoporosis was a prevalent public health concern, especially among older adults and women. The associated 
challenges and complications of osteoporosis contribute to a greater societal burden, affecting not only individuals with 
osteoporosis but also their families and communities. Over the recent years, the occurrence of osteoporosis in China has 
significantly risen, especially with the development of aging society.11 Osteoporosis is a systemic skeletal disease marked 
by bone loss and increased risk of insufficiency fracture. The latest data reveals that 29.1% of women and 6.5% of men 
aged over 50 are affected by osteoporosis, resulting in an estimated population of 49.3 million women and 10.9 million 
men according a study conducted from 2008 to 2018.12 For this study, osteoporosis was operationally defined using the 
World Health Organization (WHO) criterion of a Dual-energy X-ray absorptiometry (DXA) T-score ≤ −2.5 (at the total 
femur, femoral neck, or lumbar spine). This objective, densitometric measure, was chosen due to its consistent 
availability and standardization across our retrospective multi-center dataset, making it suitable as a ground truth label 
for machine learning. While we acknowledge the broader clinical diagnostic criteria incorporating low-trauma fractures 
and FRAX scores, these were not used as primary outcome labels due to the challenges in reliably and systematically 
ascertaining the required detailed clinical information (eg, confirmation of low-trauma mechanism, all FRAX inputs) 
retrospectively for all participants.13 A T-score value greater than or equal to −1 is considered normal, a T-score between 
−2.5 and −1 indicates osteopenia, and a T-score equal to or less than −2.5 signifies osteoporosis.14

DXA – which was currently the gold standard measure of BMD – was limited to its accessibility and availability, 
which was deterring its use in population screening and primary health care. Additionally, DXA tends to overestimate 
BMD in larger bones and underestimate it in smaller bones. Furthermore, DXA scans are expensive, often only available 
in select settings, time-consuming, and involve exposure to ionizing radiation. Alternative tools have been studied, using 
low-dose computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound.15–17 Similarly, there were also 
other researchers who tried to screen osteoporosis via blood test and clinical data in specific populations using machine 
learning algorithms (ML).18–20 ML was an emerging data analysis tool that demonstrated the ability to uncover patterns 
and associations in large medical datasets. In contrast to traditional statistical methods like logistic regression, ML 
algorithms can analyze data across multiple dimensions, allowing them to more effectively analyze complex medical data 
and make predictions on unseen data. By training an ML model using a representative dataset, it could learn patterns and 
relationships within the data and use this knowledge to predict outcomes or classify new, unseen data with high accuracy. 
In TS patients, spinal deformities (eg, kyphosis, vertebral collapse) and paravertebral absences can distort anatomical 
landmarks, leading to inaccurate DXA measurements. Additionally, localized bone erosion in TS may falsely elevate 
T-scores at unaffected skeletal sites, underestimating true fracture risk. These limitations, combined with DXA’s limited 
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availability in TB-endemic regions, underscore the need for alternative screening modalities. ML involves algorithms 
that learn patterns from data to make predictions or classifications. In healthcare, ML can analyze routine clinical data, 
such as blood tests, to identify disease risks without relying on specialized imaging. This study employs ML to predict 
osteoporosis, offering an interpretable and accessible tool for clinicians.

Developing efficient screening tools for osteoporosis in TS patients using readily available data could significantly 
impact clinical decisions and patient outcomes; for instance, identifying high-risk individuals preoperatively allows for 
tailored surgical strategies (eg, regarding instrumentation choice, need for cement augmentation, or fusion length) and 
optimized perioperative management (eg, guiding nutritional support or pharmacological considerations), potentially 
reducing complications like implant failure or subsidence and improving overall prognosis. In our study, we trained ML 
models using demographic information and blood test data from routine examinations, aiming to achieve accurate 
osteoporosis prediction without relying on DXA measurements. To increase bed-side practicality and accessibility, we 
deployed our model online using advanced techniques such as the Flask framework, which enables its utilization in real- 
time clinical settings, benefiting healthcare professionals at the bedside in making informed decisions. Additionally, we 
employed Explainable Artificial Intelligence (XAI) techniques to interpret the results obtained from our model.

Methods
For this study, patient records were anonymized, and informed consent was not required due to its retrospective design. 
The study protocol received approval from the Institutional Ethics Committee of Xinjiang Medical University First 
Affiliated Hospital and the Sixth Affiliated Hospital of Xinjiang Medical University.

Cohort Design and Participants
We hypothesized that a machine learning-based model, utilizing routinely available blood test data, could accurately 
predict osteoporosis risk in patients with tuberculosis spondylitis (TS) by identifying complex patterns in clinical 
biomarkers, thereby offering a non-invasive, accessible screening tool to guide early intervention. This study is 
a derivation study designed to develop and externally validate a machine learning-based clinical prediction model for 
osteoporosis in patients with TS using routine blood test data. The primary aim was to create an interpretable, web-based 
risk calculator to assist clinicians in screening for osteoporosis without reliance on DXA. This retrospective study 
analyzed patients diagnosed with TS who were admitted to the First Affiliated Hospital (Center 1) and the Sixth 
Affiliated Hospital (Center 2) of Xinjiang Medical University. All participants were selected based on predefined 
inclusion and exclusion criteria. (Figure 1)

The diagnoses of tuberculosis spondylitis (TS) relied upon meticulous clinical evaluations, laboratory findings, and 
radiographic evidence. The inclusion criteria were: (1) aged ≥ 18 years; (2) received surgical therapy; (3) confirmed 
through surgery at an external hospital, but follow-up consultations were conducted in the outpatient setting. (4) 
confirmed through histopathological examination, detection of acid-fast bacilli using Ziehl–Neelsen staining, and/or the 
cultivation of Mycobacterium tuberculosis from culture specimens obtained from bone marrow, abscesses, or tissue.;21 

(5) complete information of blood test data; (6) patients underwent DXA measurement.
BMD measurements of the hip and lumbar spine (L1-L4) were taken using DXA (Hologic Discovery, Hologic, 

Bedford, Massachusetts). The T-score was utilized as a reference to compare an individual’s BMD to the average BMD 
of healthy young adults with the same sex and ethnicity.22 The diagnoses of osteoporosis in patients were made based on 
the diagnostic criteria set by the World Health Organization (WHO).

The exclusion criteria were as follows: (1) age less than 18 years; (2) received conservative therapy; (2) complications 
with malignant tumors; (3) brucella spondylitis, pyogenic spondylitis or other unknown spondylitis; (4) missing data 
≥ 30%.

Candidate Features
In this study, candidate features can be divided into two groups. One group includes general data such as age, gender, and 
body mass index (BMI). The other group comprises laboratory test parameters including, erythrocyte sedimentation rate 
(ESR), C-reactive protein (CRP), white blood cell count (WBC), neutrophil percentage (NEU%), lymphocyte percentage 
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(LYM%), monocyte percentage (MONO%), eosinophil percentage (EOS%), basophil percentage (BASO%), neutrophil 
count (NEU), lymphocyte count (LYM), monocyte count (MONO), eosinophil count (EOS), basophil count (BASO), red 
blood cell count (RBC), hemoglobin (Hb), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular 
hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red cell distribution width (RDW), platelet 
count, mean platelet volume (MPV), platelet hematocrit (PHCT), platelet distribution width (PDW), immature granulo-
cyte percentage (NRBC%), immature granulocyte count (NRBC), potassium (K), sodium (Na), chloride (Cl), bicarbonate 
(HCO3-), calcium (Ca), magnesium (Mg), inorganic phosphate (P), urea, creatinine, uric acid, estimated glomerular 
filtration rate (eGFR), triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density 
lipoprotein cholesterol (LDL-C), apolipoprotein AI (apoAI), apolipoprotein B (apoB), lipoprotein(a) [Lp(a)], lactate 
dehydrogenase (LDH), creatine kinase (CK), free fatty acids (FFA), angiotensin-converting enzyme (ACE), retinol- 
binding protein (RBP), serum cystatin C, total bilirubin, direct bilirubin, indirect bilirubin, total protein, albumin, 

Figure 1 Workflow of inclusion and exclusion process.
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globulin, albumin/globulin ratio, aspartate aminotransferase (AST), alanine aminotransferase (ALT), AST/ALT ratio, 
gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), cholinesterase, and ammonia. Data from Center 1 were 
divided into a training set and an internal testing set in a 7.5:2.5 ratio, while data from Center 2 served as the external 
testing set.

Imbalanced Outcome Classes
Imbalanced target classes, a form of unbalanced data, can introduce bias in machine learning classifiers. A significant 
variation in target class distribution is frequently observed in metabolic datasets. To mitigate these challenges, we 
adopted the synthetic minority oversampling technique (SMOTE).23 SMOTE enhances the fairness of data dispersion by 
generating synthetic data samples. This process involves identifying the K nearest neighbors, computing their distances, 
and augmenting these distances with random integers between 0 and 1.

Feature Selection and Data Preprocessing
Feature selection is a crucial step in machine learning and data analysis, as it identifies the most relevant predictors of 
a target variable. In our study, we applied three widely used feature selection techniques: LASSO (Least Absolute 
Shrinkage and Selection Operator), the Boruta algorithm, and Recursive Feature Elimination (RFE). Combining these 
methods offers more robust and accurate results. LASSO effectively identifies influential features, Boruta captures 
comprehensive predictive information without omitting relevant variables, and RFE iteratively removes less significant 
features. To verify the correlation between the selected variables, we used a heatmap. This combined approach improves 
the reliability and accuracy of identifying the most informative features related to osteoporosis in TS patients.

LASSO was a regularization technique that shrinks some coefficients to zero, thereby performing feature selection 
and reducing overfitting simultaneously.24 The objective of LASSO was to minimize the sum of the residual error 
between the predicted and actual values of the target variable, subject to a constraint on the sum of the absolute values of 
the coefficients. The resulting model would have only a subset of coefficients that are deemed significant.

Boruta was an all-relevant feature selection algorithm that considers all possible features to identify those that contain 
valuable information related to the target variable.25 Boruta works by comparing the importance of each feature to a set 
of randomized shadow features. Features that showed significantly higher importance than their corresponding shadows 
are deemed relevant and selected for further analysis. In contrast to other feature selection methods that aim to identify 
a minimal optimal subset of features, Boruta identified all relevant features associated with osteoporosis in TS patients.

RFE was a simple yet powerful technique that recursively eliminates less important features from the dataset to 
identify the most informative ones.26 RFE assigned scores to each feature and eliminates those with the lowest scores. It 
then creates a new model with the remaining features and repeats the process until it reaches the desired number or until 
a stopping criterion is met. By iteratively eliminating the weakest features, RFE identified the most important predictors 
of the target variable that are associated with osteoporosis in TS patients.

The data was preprocessed by standardizing the features using a StandardScaler, ensuring that each feature had 
a mean of 0 and a standard deviation of 1. Missing values in the dataset were imputed using the Multiple Imputation by 
Chained Equations (MICE) method, which iteratively models each feature with missing values as a function of the other 
features, providing robust and reliable imputations.27

Model Development
The supervised machine learning (ML) algorithms leverage training data to create a function (f) that maps input 
variables/features (X) to output/target (Y). The use of “labeled” training data sets is a common characteristic of 
supervised ML platforms, providing either qualitative or quantitative output. The labeled nature of these data sets during 
the training phase is crucial as it enables the ML model to mimic the input data, allowing the model to distinguish new 
inputs based on previously learned training parameters.

To develop and compare prediction models, various algorithms were employed. The construction of prediction 
models involved the implementation of the following methods: logistic regression (LR), extreme gradient boosting 
(XGBoost), light gradient boosting machine (LightGBM), random forest (RF), decision tree (DT), support vector 
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machine classifier (SVC), k-nearest neighbors (KNN), and Gaussian naive Bayes (GNB). All prediction models were 
developed using Python 3.9. In addition, we also developed ensemble models using different combinations of the 
classifiers mentioned above using a soft voting strategy.

Hyperparameters are critical components of learning algorithms that must be predefined before model training and 
fitting. To optimize algorithm performance, the process of hyperparameter tuning involves selecting the optimal set of 
hyperparameters. In this study, we employed a nested cross-validation (CV) scheme and grid search algorithm to fine- 
tune the hyperparameters of all models during the training phase.28 The process employs a nested cross-validation 
framework comprising two layers: an inner 5-fold loop for hyperparameter optimization via grid search and an outer 
4-fold loop to assess the generalized performance of the tuned model on held-out data. The hyperparameter search space, 
including parameter ranges and sampling strategies, is detailed in Supplementary Table 1.

After configuring the parameters for each classifier, we assessed the performance of the model using different metrics. 
We visually represented the discrimination and agreement between actual and predicted values by plotting the Receiver 
Operating Characteristic (ROC) curve and Calibration plot, respectively. Additionally, we conducted Decision Curve 
Analysis to evaluate the clinical usefulness of the model. The ROC curve measures a classifier’s ability to distinguish 
between positive and negative classes, and the area under the curve (AUC) provides an indicator of its performance. The 
calibration plot assesses the agreement between predicted and observed probabilities across various predicted probability 
ranges. Through Decision Curve Analysis (DCA), we compared the model’s decision-making performance with alter-
native strategies to determine its clinical net benefit.

Model Selection and Threshold Tuning
To optimize model performance, threshold tuning was performed using the TunedThresholdClassifierCV tool from the 
sklearn library.29 LR was chosen as the base model for its interpretability and efficiency. This tuning process was 
integrated into a repeated stratified k-fold cross-validation framework with 5 splits and 50 repeats to ensure robustness 
and address class imbalance. The primary aim was to maximize the F1-score, a balanced measure of precision and recall, 
while also evaluating clinically relevant metrics such as sensitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV). These metrics were calculated confusion matrix. In addition, supplementary metrics 
like accuracy, balanced accuracy, Brier score, and log loss were included to offer a comprehensive view of the model’s 
performance. This approach ensured that the final model was both statistically robust and clinically relevant, particularly 
in decision-making scenarios where threshold values significantly impact outcomes. (Figure 2)

Model Interpretation
In clinical applications, it is crucial to develop machine learning (ML) models that are interpretable and transparent, 
providing valuable insights for clinical practice. One significant challenge in achieving this goal is the “black-box 
problem”, where models are difficult to interpret, making it unclear why a specific prediction is made for a particular 
patient cohort. To enhance interpretability, we employed two methods: SHapley Additive exPlanations (SHAP).30 By 
utilizing SHAP, we computed feature importance scores, which indicate the average marginal contribution of each feature 
to every prediction. The term “marginal” refers to the difference between the actual predicted value and a base value used 
as a reference. This calculation draws inspiration from coalitional game theory, allowing us to gain a deeper under-
standing of the model’s inner workings and the impact of individual features on its predictions.

Web Application Deployment
To ensure the easy and effective utilization of our chosen optimal model, we created a user-friendly web application 
utilizing the Python Flask web application development framework and popular frontend techniques.31 This web-based 
interface enables clinical practitioners and researchers to access and interact with the model in a simple and seamless 
manner. Our intention is to promote the adoption and usage of the model in real-world clinical settings by offering 
a freely accessible and user-friendly interface. Furthermore, we have implemented appropriate security measures within 
the web application to safeguard confidential patient data and maintain data privacy. These measures prioritize protecting 
sensitive information and ensuring that only authorized individuals have access to the data.
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Figure 2 Workflow of whole study.
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Statistical Analysis
Firstly, we assessed the normality of the data using the Shapiro–Wilks test. Continuous variables that followed a normal 
distribution were reported as mean values with standard deviation (SD), while continuous variables that did not follow 
a normal distribution were reported as median values with interquartile range. For the statistical analyses, we utilized 
R Version 4.2.1 (http://www.r-project.org). The ML models themselves were developed and analyzed using Python 3.9.5 
and relied on the Scikit-learn packages (https://scikit-learn.org). To evaluate the performance of the models, we employed 
several evaluation metrics, including sensitivity, specificity, F1-score, and the area under the receiver operating char-
acteristic curve (AUC). The AUC, in particular, measures how well the classifier can distinguish between positive and 
negative classes, providing a robust indicator of overall model performance.

Results
Study Participants
Out of a total of 906 patients, 60 (12 males, average age 67.2; 48 females, average age 67.2) were diagnosed with 
osteoporosis based on DXA measurements, while 846 were classified as non-osteoporotic (Supplementary Table 2). 
Patients with osteoporosis exhibited lower age-adjusted scores, bone mineral density, and physical activity levels 
compared to those without the condition. Additionally, the osteoporotic group had a higher prevalence of comorbidities. 
Although the average age was significantly higher in the osteoporotic group compared to the non-osteoporotic group, no 
significant differences were noted between the two groups regarding other factors.

Regarding demographic characteristics, the overall average age of participants was 47.6 years (SD = 20.1). The non- 
osteoporotic group, consisting of 846 participants, had an average age of 46.2 years (SD = 19.9). In contrast, the 
osteoporosis group, with 60 participants, had a significantly older average age of 67.2 years (SD = 9.1). The gender 
distribution showed that among all participants, 467 were female (51.5%) and 439 were male (48.5%). In the non- 
osteoporotic group, 419 were female (49.5%) and 427 were male (50.5%). However, the osteoporosis group had a higher 
proportion of females, with 48 females (80.0%) compared to 12 males (20.0%). This indicates a significant age difference 
and a notable gender imbalance in the osteoporosis group. Detailed demographic characteristics for participants, stratified 
by study center (Center 1 and Center 2), are documented in Supplementary Tables 3 and 4.

Variable Selection
We have implemented several feature selection tools to identify the most relevant predictors for osteoporosis. The 
LASSO regression analysis, illustrated in Figure 3A, showed how coefficients shrank with increasing regularization 
parameter log alpha. This method effectively removed less significant features, concentrating on the most important 
predictors. The cross-validation curve for LASSO, depicted in Figure 3B, plotted the mean squared error (MSE) against 
various λ values. Additionally, Figure 3C presents a bar plot of the non-zero feature coefficients retained by LASSO, 
ranked by absolute magnitude, clearly highlighting the most influential predictors: HB, eGFR, Platelets, ALT, and 
Creatinine.

To complement the LASSO analysis, we implemented SVC-RFE, as shown in Figure 3D. This figure illustrates the 
relationship between the number of features selected and model performance, measured by cross-validated Area Under 
the Curve (AUC). The optimal number of features (n=12), identified at the peak AUC, balanced model complexity with 
predictive ability. Figure 3E presents a horizontal bar chart ranking the features selected by SVC-based RFE according to 
their importance scores, which reflect each feature’s contribution to classification performance. Notably, Neutrophils, 
Creatinine, WBC, ALB, and Platelets emerged as the most valuable predictors for osteoporosis. Lastly, we applied the 
Boruta feature selection algorithm, illustrated in Figure 3F, which evaluated feature relevance by comparing them to 
randomized shadow features. This method ensured that only the most significant features were included in the model. 
The Boruta algorithm identified several key predictors, including basophils, lymphocytes, hematocrit, hemoglobin (HB), 
total cholesterol (TC), estimated glomerular filtration rate (eGFR), cystatin C (CYS_C), albumin (ALB), alanine 
aminotransferase (ALT), and total bilirubin (TBIL). The robustness of the selected features was further confirmed 
through a boxplot of importance scores across multiple iterations (n=20), presented in Figure 3G. This visualization 
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highlighted the stability and variability of feature rankings, with cystatin C, hematocrit and eGFR consistently ranking 
high in importance.

The univariate analysis conducted on the forty features revealed distinct differences in various health biomarkers (P < 
0.05), as shown in Supplementary Figure 1. Neutrophil levels were elevated in the osteoporosis group, while hemoglobin 
(HB) levels were lower. The erythrocyte sedimentation rate (ESR) was significantly higher in individuals with osteo-
porosis compared to healthy controls. Lipid profiles demonstrated significant alterations in total cholesterol (TC) and 
low-density lipoprotein (LDL) levels in the osteoporosis group. Potassium (K) levels were also reduced in this group. 
Kidney function markers, including estimated glomerular filtration rate (eGFR) and cystatin C (CYS_C) levels, were 
significantly different, suggesting impaired kidney function in individuals with osteoporosis. Additionally, total protein 

Figure 3 Feature Selection. Feature Selection illustrates the process of identifying the most relevant features for the predictive model through several methodologies. (A): 
LASSO coefficient profiles demonstrate how the coefficients of each feature shrink as the regularization parameter log(α) increases, progressively eliminating less important 
features. (B): The cross-validation curve for LASSO, where the mean squared error (MSE) is plotted against different values of the regularization parameter λ, identifies the 
optimal λ at the minimum MSE to determine the selected features. (C): A bar plot of the non-zero feature coefficients retained by LASSO, ranked by their absolute 
magnitude, highlights the most influential predictors in the model. (D): The relationship between the number of features selected and model performance, measured by 
cross-validated Area Under the Curve (AUC), is depicted using Recursive Feature Elimination (RFE) based on a Support Vector Classifier (SVC). This plot reveals the trade- 
off between model complexity and predictive accuracy, with the optimal number of features identified at the peak AUC. (E): A horizontal bar chart ranks the features 
selected by the SVC-based RFE process, ordered by their importance scores or rankings, which reflect their contribution to the model’s classification performance. (F): The 
feature importance scores obtained through the Boruta feature selection algorithm are illustrated, which evaluate the relevance of each feature by comparing it to 
randomized shadow features, identifying the truly significant predictors. (G): A boxplot of the importance scores for the features selected by Boruta across multiple 
iterations (n=20) highlights the stability and variability of feature rankings and confirms the robustness of the selected features.

Infection and Drug Resistance 2025:18                                                                                             https://doi.org/10.2147/IDR.S520062                                                                                                                                                                                                                                                                                                                                                                                                   2805

Yasin et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/article/supplementary_file/520062/520062%2520Revised%2520%2509Supplementary%2520File.docx


(TP) and albumin (ALB) levels were lower in the osteoporosis group. Detailed comparison of biomarkers can be seen in 
Supplementary Table 5.

Above the selected features obtained from different methods, we selected Neutrophil (NEU), Hemoglobin (HB), 
Erythrocyte Sedimentation Rate (ESR), Total Cholesterol (TC), Low-Density Lipoprotein (LDL), Potassium (K), 
Estimated Glomerular Filtration Rate (eGFR), Cystatin C (CYS_C), Total Protein (TP), Albumin (ALB). Then we 
conducted correlation analysis in Figure 4, discovered significant strong correlation between selected features.

Feature Importance
We conducted a comprehensive analysis of feature importance across four tree-based models: Random Forest (RF), 
XGBoost (XGB), LightGBM (LGB), and Decision Tree (DT). In Figure 5A, the feature importances for the RF model 
are displayed, with eGFR, HB, and CYS_C emerging as the top three features, underscoring their significant impact on 
model predictions. The length of each bar indicates the relative importance of the corresponding feature, with longer bars 
signifying higher importance. Figure 5B illustrates the feature importances for the XGB model, where eGFR again ranks 
as the most important feature, followed by HB and CYS_C, like the RF model. This consistency across models suggests 
that these features play a crucial role in the prediction process. In Figure 5C, the feature importances for the LGB model 
are shown, where HB, ESR, and CYS_C take the top ranks, with a slight variation in feature ranking compared to RF and 
XGB. Figure 5D presents the feature importances for the DT model, where eGFR, HB, and CYS_C again emerge as the 
most influential features, reaffirming their critical role across all models analyzed. The consistency of eGFR, HB, and 
CYS_C as key predictors across all four models highlights their pivotal importance in the predictive tasks at hand.

Figure 4 Correlation analysis using Heatmap. This figure presents a heatmap of the correlation analysis conducted on the selected features. Each cell represents Pearson’s 
correlation coefficient between two features, with color intensity reflecting the strength of the correlation. Red cells denote positive correlations, while blue cells indicate 
negative correlations. The diagonal elements show the correlation of each feature with itself, always equal to 1. This heatmap provides a clear overview of feature 
relationships, enabling the identification of highly correlated features and their potential impact on model performance.
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Furthermore, we also utilized the LIME method to disclosure the importance of each feature. Figure 6A and B present 
bar charts that depict the feature importances as determined by the LIME method for two distinct machine learning 
models: Random Forest and XGBoost, respectively. Figure 6A shows that for the Random Forest model, the feature HB 
has the highest importance value, significantly exceeding other features such as ESR, TC, and eGFR. This suggests that 
HB plays a crucial role in the model’s predictions. The feature importances decrease progressively from HB to TP, 
indicating a varying degree of influence on the model’s outcomes. Figure 6B, representing the XGBoost model, mirrors 
a similar trend where HB is the most important feature, followed by TP and TC. However, the values for ESR and eGFR 
are relatively higher in the XGBoost model compared to the Random Forest model.

Resampling Techniques Validation
To assess the impact of various resampling techniques on model performance, we applied a range of strategies, including both 
over-sampling and under-sampling, to address class imbalance. We then compared the results of different resampling methods 
in combination with various algorithms to evaluate their effectiveness. Figure 7A, a scatter plot, presents the F1 scores for 
a variety of models including logistic regression, random forest, and support vector machines, each combined with sampling 
methods such as SMOTE, ROS, and ADASYN. The plot reveals that certain combinations of models and sampling techniques 

Figure 5 Feature Importances Across Tree-based Models. (A): Bar chart showing the feature importances for the Random Forest model. (B): Bar chart showing the feature 
importances for the XGBoost model. (C): Bar chart showing the feature importances for the LightGBM model.(D): Bar chart showing the feature importances for the 
Decision Tree model.
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result in higher F1 scores, indicating superior performance. For instance, the combination of SVM with SMOTE-ENN shows 
a notably high F1 score, suggesting its effectiveness in handling imbalanced datasets. Figure 7B, a box plot, compares the F1 
scores across different samplers including RUS, SMOTE-ENN, SMOTE, SMOTE-TOMEK, and ADASYN. This plot 
highlights the variability and central tendency of the F1 scores for each sampler, indicating that SMOTE-ENN and SMOTE- 
TOMEK generally yield higher scores, suggesting their reliability in improving model performance. Figure 7C, a bar chart, 
compares the mean F1 scores for various samplers, emphasizing the effectiveness of each method in handling imbalanced 
datasets. The chart clearly shows that SMOTE-ENN and SMOTE-TOMEK achieve higher mean F1 scores, indicating their 
superior performance in improving model accuracy compared to other methods like ADASYN and K-Means-SMOTE. Based 
on the above results, we chose smote for further analysis.

Figure 6 Feature Importances in Machine Learning Models. (A) Bar chart representing the LIME feature importances for the Random Forest model. (B): Bar chart 
representing the LIME feature importances for the XGBoost model.

Figure 7 Performance of Different Sampling Techniques (A): Scatter plot showing the F1 scores for various machine learning models combined with different sampling 
techniques. (B): Box plot comparing the F1 scores across different samplers. (C): Bar chart comparing the mean F1 scores for various samplers.
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Performance of Classifiers
To screen the algorithm that has the best discrimination ability towards osteoporosis, we have carried out a series of 
analysis. Figure 8A presents a Receiver Operating Characteristic (ROC) curve, which is a graphical representation of the 
model’s ability to distinguish between classes. The curve shows the trade-off between sensitivity (true positive rate) and 
specificity (1 - false positive rate) across different threshold settings. The area under the curve (AUC) values are provided 
for each model, with LR showing the highest AUC of 0.826, indicating its superior performance in distinguishing 
between classes compared to other models such as XGB and (RF. Figure 8B depicts a calibration plot, which assesses 
how well the predicted probabilities align with the actual outcomes. The plot shows the fraction of positives (positive 
class: 1) against the mean predicted probability. The closer the plot follows the dotted line representing perfect 
calibration, the better the model’s predictions align with actual outcomes. Figure 8C illustrates decision analysis curve 
plot, which evaluates the clinical utility of the models at different threshold probabilities. The plot compares the net 
benefit of treating all patients versus treating none, with Logistic Regression showing a higher net benefit across most 
threshold probabilities, suggesting its potential effectiveness in clinical decision-making. Detailed assessments of these 
models, including their predictive accuracy, generalizability, are presented in Table 1.

To assess the generalized predictive capability of the logistic regression (LR) algorithm, we tested it on an external 
dataset. As shown in Figure 9A, the ROC curve highlights the model’s ability to differentiate between classes effectively. 
The area under the curve (AUC) of 0.796 indicates robust discriminatory performance, significantly surpassing random 
chance. In Figure 9B, a net benefit analysis further evaluates the clinical utility of the model across varying threshold 
probabilities. The results reveal a consistently positive net benefit over a wide range of thresholds, underscoring its 
practical relevance. The narrow-shaded area, representing the uncertainty of the net benefit estimate, reinforces the 
model’s reliability and strengthens confidence in its performance. These findings collectively demonstrate the LR model’s 
potential for clinical application and its ability to generalize across datasets.

Threshold Optimalization
The best-performing LR model initially yielded relatively low F1 scores. To address this, we implemented threshold 
tuning to enhance performance. Figure 10A illustrates box plots comparing key performance metrics—accuracy, 
balanced accuracy, F1 score, precision, recall, sensitivity, specificity, NPV, and PPV—across both training and testing 
datasets. While training scores marginally outperformed test scores, indicating slight overfitting, the balanced accuracy 
and F1 score demonstrated minimal variation between datasets. This consistency suggests the model effectively balanced 
the identification of both classes. Figure 10B presents box plots for the Brier score and negative log loss, which assesses 
the accuracy of probabilistic predictions. The distributions of these metrics were closely aligned across training and 
testing datasets, underscoring the model’s reliability in producing accurate and consistent predictions. Finally, Figure 10C 

Figure 8 Performance Metrics of Machine Learning Models. (A) This graph shows the ROC curves for various machine learning models, including Logistic Regression, 
XGBoost, and Random Forest. The plot includes AUC values for each model, providing a measure of their ability to distinguish between classes. (B): This plot is a calibration 
curve that compares the predicted probabilities of a model to the actual outcomes. The dotted line represents perfect calibration, and the plot shows how closely the 
Logistic Regression model’s predictions align with actual results. (C): The decision analysis curve plot evaluates the clinical utility of the models at different threshold 
probabilities. It compares the net benefit of treating all patients versus treating none, with Logistic Regression showing a higher net benefit across most threshold 
probabilities.
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depicts a density plot of the best decision threshold during tuning, revealing a peak at 0.32. This optimal threshold 
highlights a clear decision boundary, ensuring robust classification of new instances. Then we used 0.32 as the threshold 
and made cv-roc (cv=10) on the whole dataset as shown in Figure 11, revealed AUC=0.79.

Model Interpretation
To enhance the clinical applicability of the model, we applied the SHAP method to identify key features influencing 
osteoporosis screening predictions in patients with TS. SHAP values were used to assess the importance of features and the 
prediction accuracy of the algorithm. Interpreting these values involves examining both the magnitude and the sign of each 
feature’s SHAP value. The x-axis of the plots represents the magnitude, while colors (red for positive and blue for negative) 
indicate the sign. Features are ranked according to their contribution to the predictions, with larger values signifying stronger 
impacts. The analysis revealed how biomarker contributions interact with the model’s decision-making process. Figure 12A, 
a SHAP beeswarm plot, illustrates the impact of each feature on the model’s output. The plot shows that features such as eGFR 
and HB have the most significant positive impact, as indicated by their high SHAP values on the right side of the plot. In 

Table 1 Detailed Information of Performance

Classifier Brier loss Log loss Precision Accuracy Recall F1 Sen. Spe. Npv. Ppv.

RF 0.172 0.511 0.146 0.741 0.500 0.226 0.500 0.760 0.949 0.146
XGB 0.152 0.674 0.087 0.804 0.167 0.114 0.167 0.856 0.926 0.087

LGB 0.131 0.498 0.100 0.823 0.167 0.125 0.167 0.877 0.928 0.100

LR 0.209 0.620 0.185 0.709 0.833 0.303 0.833 0.699 0.981 0.185
SVC 0.099 0.478 0.133 0.854 0.167 0.148 0.167 0.911 0.930 0.133

KNN 0.196 7.072 0.172 0.804 0.417 0.244 0.417 0.836 0.946 0.172

NB 0.181 0.791 0.140 0.728 0.500 0.218 0.500 0.747 0.948 0.140
DT 0.254 4.525 0.116 0.715 0.417 0.182 0.417 0.740 0.939 0.116

Ensemble mode1 1 0.151 0.459 0.147 0.772 0.417 0.217 0.417 0.801 0.944 0.147
Ensemble mode1 2 0.107 0.342 0.150 0.835 0.250 0.188 0.250 0.884 0.935 0.150

Ensemble mode1 3 0.130 0.415 0.174 0.829 0.333 0.229 0.333 0.870 0.941 0.174

Ensemble mode1 4 0.132 0.421 0.273 0.861 0.500 0.353 0.500 0.890 0.956 0.273
Ensemble mode1 5 0.130 0.411 0.222 0.829 0.500 0.308 0.500 0.856 0.954 0.222

Notes: Model 1: LR + LR + NB, Model 2: SVC + KNN + NB, Model 3: XGB + RF + DT, Model 4: LGB + NB + LR, Model 5: LGB + NB + LR + DT. 
Abbreviations: Sen, Sensitivity; Spe, Specificity; NPV, Negative Predictive Value; PPV, Positive Predictive Value.

Figure 9 Performance Evaluation of Logistic Regression Models. (A) This graph depicts the ROC curve for a logistic regression model, showing the trade-off between 
sensitivity and specificity. The curve illustrates the model’s ability to correctly identify positive cases compared to negative ones. (B): This plot presents a net benefit analysis 
for the logistic regression model, evaluating its clinical utility across different threshold probabilities. The plot includes a shaded area representing the confidence interval 
around the net benefit estimate.
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contrast, features like TP have a more neutral or slightly negative impact, as shown by their positions closer to or on the left 
side of the zero line. Figure 12B, a decision plot, visualizes the distribution of SHAP values across all features for different 
model output values. The plot reveals that features like eGFR and HB have a wider distribution of SHAP values, suggesting 
a more variable impact across different model predictions. In Figure 12C, which represents an osteoporosis case, ALB (+0.24) 
and TP (+0.01) were identified as key risk factors, positively influencing the prediction of osteoporosis. Additionally, eGFR 
(+0.55), HB (+0.38), and K (+0.27) demonstrated the most substantial positive contributions to the predictions, while LDL 

Figure 10 Model Performance Metrics During Threshold Tuning Cross-Validation (A) Box plots comparing key performance metrics between training and testing datasets, 
including accuracy, balanced accuracy, F1 score, precision, recall, sensitivity, specificity, NPV, and PPV. (B): Box plots showing the Brier score and negative log loss for both 
training and testing datasets. (C): Density plot of the decision threshold, with a peak indicating the optimal threshold value.
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(−0.06) exhibited a minor negative impact, suggesting a protective effect. The color gradient and distribution of data points 
highlighted the variability in biomarker effects across individual samples. In contrast, the normal case (Figure 12D) revealed 
that declining eGFR (106.64, −0.44) and HB (145, −0.39) were associated with reduced prediction confidence, as indicated by 
their downward trajectories on the scale (−1.50 to 0.25). Elevated levels of CYS_C (SHAP value: −0.16) and ESR (−0.41) 
were identified as significant negative drivers, further reducing the likelihood of osteoporosis. These findings underscore the 
differential roles of biomarkers in disease prediction and emphasize the importance of context-specific interpretations in 
clinical decision-making.

Model Online Development
To enhance clinical practicality and facilitate bedside usage, we have developed a user-friendly online application that 
incorporates the trained model. This application not only provides predictions but also offers interpretations of the results 
generated by the model. It is freely accessible and can be conveniently utilized by healthcare professionals (https://ts- 
osteoporosis.streamlit.app/) (Figure 13).

Figure 11 10-fold cross-validation receiver operator characteristics curve (ROC). The ROC curve was derived from a 10-fold cross-validation process, a method designed 
to evaluate model performance across multiple subsets of data. This approach ensures a more comprehensive assessment of the model’s predictive capabilities by averaging 
its performance over different data partitions. The ROC curve illustrates the relationship between the true positive rate (sensitivity) and the false positive rate (1 - 
specificity) across various classification thresholds. This visualization highlights the trade-off between sensitivity and specificity, offering a clear depiction of the model’s ability 
to distinguish between positive and negative instances. By employing 10-fold cross-validation, the evaluation becomes more robust, minimizing the impact of data variability 
or potential bias inherent in a single train-test split. The resulting ROC curve not only provides a reliable measure of the model’s generalization ability but also assists in 
identifying an optimal classification threshold for practical application.
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Discussion
Tuberculosis spondylitis (TS), a rare condition characterized by an insidious onset and slow progression, is more 
prevalent in regions with high rates of pulmonary tuberculosis. The thoracic and thoracolumbar spine are the most 
affected sites. TS can lead to severe complications, including invasion of adjacent vertebral structures and intervertebral 
discs, resulting in Pott’s disease. This condition often manifests as abscess formation, spinal cord compression, vertebral 
collapse, and significant kyphotic deformity.32 In our previously published study, we developed a machine learning 
model to predict prolonged length of stay (PLOS) in hospitals following surgery for TS patients, employing feature 
selection techniques such as LASSO, RFE, correlation analysis, and permutation importance.33 Building upon this 
foundation, the current study aims to advance clinical decision-making by developing an interpretable machine learning 
model specifically for screening osteoporosis in TS patients. In this study, osteoporosis was diagnosed in 60 out of 906 
patients based on DXA measurements, while the remaining 846 patients were classified as non-osteoporotic. The 
osteoporotic group, predominantly older females, exhibited lower bone mineral density, reduced physical activity, and 
a higher prevalence of comorbidities. While our previous work centered on predicting PLOS using inflammatory markers 
(eg, C-reactive protein) and imaging-derived features, this study shifts focus to osteoporosis prediction. Employing 
advanced feature selection techniques—including LASSO regression, SVC-RFE, and Boruta—we identified hemoglobin 
(HB), estimated glomerular filtration rate (eGFR), and cystatin C (CYS_C) as novel biomarkers strongly associated with 

Figure 12 Model general interpretation. General interpretation of the model’s performance and behavior obtained from training. (A): Feature importance ranking as 
indicated by SHAP. The bar plot describes the importance of each covariate in the development of the final prediction model. (B): The figure displays the key features 
contributing to the model’s predictions for each functional cluster. It includes raw data labels for each feature, a SHAP value plot showing the distribution of SHAP values 
across all cases, and an x-axis representing the impact of a feature on the predicted functional status classification. The color of a data point represents its feature value, 
while the vertical heat map highlights high feature values in red. (C): The waterfall plot illustrates the progression of feature contributions (SHAP values) for a representative 
high-risk osteoporosis case (D): The waterfall plot delineates the additive contributions of features to a representative normal case.
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Osteoporosis Risk Predictor for Spinal Tuberculosis Patients

Indicators
Neutrophil:

6.61

HB (Hemoglobin):

95.00

ESR (Erythrocyte Sedimentation Rate):

58.00

TC (Total Cholesterol):

4.13

K (Potassium):

3.34

eGFR (Estimated Glomerular Filtration Rate):

71.76

CYS_C (Cystatin C):

1.68

TP (Total Protein):

72.04

ALB (Albumin):

30.66

LDL (Low-Density Lipoprotein):

2.84

Positive
Outcome
Explanation

SHAP Force Plot

SHAP Waterfall Plot

Negative
Outcome
Explanation

SHAP Force Plot

SHAP Waterfall Plot

Predict

Predicted Class: Positive Outcome

Prediction Probabilities: 87.7%

According to our model, you have a high risk of osteoporosis. The model predicts that your probability of having osteoporosis is 87.7%. While this is 

just an estimate, it suggests that you may be at significant risk. I recommend that you consult a healthcare professional for further evaluation and to 

ensure you receive an accurate diagnosis and necessary treatment.

Figure 13 Online free web application. The screenshot of web application which runs the developed model in backend.
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osteoporosis risk. Tree-based machine learning models further corroborated the importance of these factors, consistently 
prioritizing HB, eGFR, and CYS_C as the most influential predictors in osteoporosis risk stratification. To mitigate class 
imbalance, resampling techniques such as SMOTE were employed, significantly enhancing model performance. Prior 
ML studies focused on postmenopausal or age-related osteoporosis using imaging or genetic data. In contrast, our model 
targets TS-specific pathways by incorporating inflammation (ESR), renal function (CYS_C), and nutritional markers 
(HB) reflective of TB-associated metabolic dysregulation. This approach avoids reliance on DXA, which is often 
inaccessible in TB-endemic regions, and provides a scalable solution for low-resource settings.

Machine learning models have demonstrated significant potential in osteoporosis risk screening, outperforming 
conventional machine learning models and clinical tools. For instance, a deep learning model developed for osteoporosis 
risk prediction achieved AUC values of 0.851 and 0.922 for different bone mineral density sites using the NHANES 
dataset, and 0.827 and 0.912 using the KNHANES dataset, highlighting its robust performance across diverse 
populations.34 Similarly, AI applications leveraging CT imaging for osteoporosis classification reported AUCs ranging 
from 0.582 to 0.994, reflecting variability in effectiveness depending on the specific AI model and imaging technique 
employed.35 Radiomics-based machine learning approaches have also shown promise, with a study utilizing abdomen- 
pelvic CT radiomics features achieving AUCs of 95.9% and 96.0% in training and validation cohorts, respectively, 
underscoring high predictive accuracy for femoral osteoporosis.36 Furthermore, various AI models, including artificial 
neural networks (ANN), support vector machines (SVM), and random forests, have consistently outperformed traditional 
methods, with AUCs ranging from 0.762 to 0.901 across different datasets.37 Notably, opportunistic screening using deep 
learning models applied to chest radiographs achieved AUCs of 0.91 and 0.88 in internal and external test sets, 
respectively, suggesting their potential for widespread osteoporosis screening in routine clinical settings.38 These findings 
collectively emphasize the transformative role of AI in enhancing osteoporosis risk prediction and screening, offering 
a pathway for more accurate and accessible diagnostic tools. In this research, logistic regression achieved the highest area 
under the curve (AUC) of 0.826, with external validation confirming the model’s robustness (AUC=0.796).

Class imbalance presented a significant challenge in our study, as classifiers employing a default decision threshold of 
0.5 frequently underperformed on imbalanced datasets, particularly when the minority class was the primary focus. To 
address this, threshold tuning—a critical process in machine learning—was employed to adjust the decision threshold 
used by classifiers, thereby improving their performance in imbalanced data scenarios. This adjustment was essential for 
enhancing the accuracy and reliability of machine learning models across various applications. By optimizing the 
threshold, we ensured that the models could better distinguish between classes, even when one class was under-
represented. This approach not only improved the predictive performance but also provided a more robust framework 
for handling imbalanced datasets, which is a common issue in medical research. The findings underscore the importance 
of threshold tuning as a practical strategy to mitigate the effects of class imbalance, ultimately contributing to more 
reliable and generalizable machine learning models in clinical and biomedical applications. To address this, adjusting the 
decision threshold emerged as a practical and effective solution, significantly improving classification performance by 
reducing the misclassification rate of the minority class without the need for model retraining or data resampling.39 

Through threshold tuning with cross-validation, we identified that most optimal thresholds clustered around 0.32, 
corresponding to the highest performance peak. This approach proved especially valuable in optimizing critical metrics 
such as precision, recall, and false alarm rates, which are crucial in applications like predictive monitoring. The 
successful implementation of threshold optimization strategies across diverse domains highlights their efficacy in 
balancing these metrics.40 By addressing these challenges, our findings emphasize the potential to enhance the robustness 
and real-world applicability of machine learning models, offering a pathway to more reliable and accurate predictive 
outcomes in medical research.

A critical consideration in osteoporosis prediction is the undeniable influence of advancing age, a primary and well- 
established risk factor [cite landmark epi studies]. Our demographic data confirms a significant age difference between 
the OP and Normal cohorts in our study. However, during our model development process, which included initial feature 
selection incorporating age and sex, these demographic variables were not retained among the top predictors by the 
algorithm. Furthermore, subsequent exploratory analyses forcing the inclusion of age and sex alongside the selected 
biomarkers did not yield an improvement in model performance (AUC) on our current dataset, with preliminary cross- 
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validation suggesting potentially slightly lower predictive accuracy compared to the biomarker-only model. This 
counterintuitive result likely does not reflect the true biological or clinical importance of age but may instead be an 
artifact stemming from the specific limitations of this dataset, including the relatively modest sample size, the 
pronounced class imbalance, and potential complex interactions between variables that our models struggled to capture 
effectively within this data regime. Consequently, while our study focused on identifying a potential biomarker signature, 
this finding underscores a significant limitation: the inability of our current analysis, constrained by data characteristics, 
to fully integrate the known dominant effect of age. It highlights the imperative for future research using larger, more 
robust datasets where the crucial contributions of age and sex can be reliably modeled alongside biomarkers to develop 
clinically comprehensive predictive tools.

We found neutrophil was the key element related osteoporosis in our research. Neutrophils play a critical role in 
fostering a proinflammatory environment that drives osteoporotic bone remodeling. In aging individuals, neutrophils 
exhibit diminished chemotaxis, phagocytosis, and apoptosis, which may worsen bone deterioration.41 Elevated neutrophil 
levels have been shown to inhibit the synthesis of mineralized extracellular matrix by bone marrow stromal cells, 
potentially impairing bone regeneration and contributing to the progression of osteoporosis.42 Furthermore, systemic 
inflammation in osteoporosis is reflected by increased neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte 
ratio (PLR), both of which are significantly elevated in affected individuals. Notably, these markers are particularly 
higher in postmenopausal women with osteoporosis, underscoring their potential utility as non-invasive screening tools 
for the disease.43 Together, these findings highlight the intricate interplay between neutrophil dysfunction, systemic 
inflammation, and bone loss, offering insights into potential diagnostic and therapeutic avenues for osteoporosis.

Furthermore, bone quality and fracture risk are significantly influenced by anemia, particularly in older adults, who 
exhibit poorer bone quality and a higher susceptibility to fractures. Studies have demonstrated that anemic individuals 
often present with lower bone mineral density (BMD) and an elevated risk of fractures, a trend that is especially 
pronounced in aging populations.44,45 These were in line with our findings. Furthermore, hemolytic anemia has been 
specifically associated with an increased risk of osteoporosis, likely due to heightened hematopoietic stress and the 
impact of dysregulated iron metabolism on bone health.46 In patients with chronic kidney disease (CKD), anemia is 
highly prevalent and closely linked to disruptions in bone metabolic biomarkers. Emerging evidence suggests that 
therapeutic interventions targeting bone metabolic disorders may offer a dual benefit by concurrently managing anemia in 
this patient population.47 These findings underscore the intricate interplay between anemia and bone health, highlighting 
the need for integrated approaches to mitigate fracture risk and improve outcomes in affected individuals.

Increased ESR in osteoporosis has been consistently observed in postmenopausal women, with studies demonstrating 
higher levels in those with osteoporosis compared to individuals with normal bone mineral density (BMD) or osteopenia, 
suggesting a connection between elevated ESR and systemic inflammation in this condition.48,49 This inflammatory 
response is further supported by the elevation of additional markers, such as C-reactive protein (CRP), which are known 
to associate with osteoporosis; however, CRP was not identified as a key predictive feature in our analysis.50 While both 
ESR and CRP are utilized to assess systemic inflammation, CRP is generally regarded as a more sensitive indicator. 
However, in our cohort, most TS-osteoporosis cases were observed in women, contrasting with prior research that has 
predominantly associated elevated inflammatory markers (eg, CRP) with impaired bone quality in older male popula-
tions. While this relationship is well-documented in men, its significance in female cohorts remains less clearly 
established.50 These findings underscore the role of systemic inflammation in the pathophysiology of osteoporosis and 
highlight the potential utility of inflammatory markers in understanding bone health and disease progression.

Our findings revealed a notable relationship between lipid profiles and bone health, with dyslipidemia emerging as 
a significant factor influencing bone integrity. Elevated levels of TC and LDL were associated with reduced bone mass 
and increased fracture risk, likely mediated by heightened oxidative stress and systemic inflammation. These conditions 
promote osteoclastic activity while impairing bone formation, thereby disrupting bone homeostasis.51 Lipid metabolism 
plays a pivotal role in this process, as imbalances in lipid levels can modulate immune cell activity and the secretion of 
inflammatory factors, driving osteoclast differentiation and bone resorption, which contribute to osteoporosis.52 Notably, 
specific lipid profiles within the bone marrow, such as elevated triglycerides and altered fatty acid compositions, have 
been identified as potential biomarkers for osteoporosis, offering promising avenues for early diagnosis and intervention. 
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The interplay between lipid-induced inflammation and oxidative stress further underscores their role as key mechanisms 
that inhibit osteogenesis and accelerate bone resorption, exacerbating osteoporosis progression. Additionally, dietary 
lipids significantly impact bone health, with certain unsaturated fats, such as omega-9, potentially enhancing bone 
strength and architecture, while diets high in saturated fats may worsen osteoporosis.53 Collectively, these findings 
highlight the intricate connections between lipid metabolism, inflammation, oxidative stress, and bone health, providing 
valuable insights into the pathogenesis of osteoporosis and identifying potential therapeutic targets.

Our findings revealed that renal function-related indicators were associated with osteoporosis in TS patients, 
suggesting a potential link between chronic kidney disease and bone health. Chronic Kidney Disease-Mineral and 
Bone Disorder (CKD-MBD), a systemic condition characterized by dysregulation of calcium, phosphorus, parathyroid 
hormone (PTH), and vitamin D metabolism, likely contributes to bone abnormalities, increased fracture risk, and 
cardiovascular complications in this population.54,55 These metabolic disturbances are directly tied to the progressive 
decline in kidney function. Renal osteodystrophy, a component of CKD-MBD, encompasses bone diseases such as 
osteitis fibrosa, osteomalacia, and adynamic bone disorder, all stemming from mineral metabolism imbalances caused by 
impaired kidney function.54,56 The kidney plays a pivotal role in maintaining bone health by regulating calcium and 
phosphate homeostasis, which are critical for bone mineralization. Additionally, the kidney synthesizes essential 
substances like 1,25(OH)2D3 and erythropoietin, which are vital for bone formation and repair.57 Kidney donation, 
while lifesaving, can induce acute disruptions in mineral metabolism, including reduced phosphate levels and alterations 
in bone-related hormones, potentially impacting bone health.58 Post-transplantation, mineral and bone disorders may 
persist or evolve due to changes in kidney function and the effects of immunosuppressive therapy, necessitating 
continuous monitoring and management to mitigate complications.59

It is crucial to interpret these findings within the specific clinical context of Tuberculous Spondylitis (TS). Unlike 
primary osteoporosis, where the focus is often on predicting long-term minimal trauma fractures in the general 
population, osteoporosis in TS is predominantly a secondary phenomenon driven by a distinct pathophysiology involving 
chronic inflammation, malnutrition, and immobilization associated with the infection itself. Consequently, the primary 
clinical implication shifts towards peri-operative risks, such as instrumentation failure and compromised fusion healing 
following spinal surgery. While we employed the standard WHO definition for osteoporosis diagnosis based on BMD 
T-scores, the underlying mechanisms and the immediate clinical relevance differ significantly from age-related bone loss. 
Our biomarker-based model attempts to capture aspects of this specific TS-related pathophysiology. Therefore, readers 
should consider that this tool is designed for risk stratification within this unique, high-risk patient group facing potential 
surgical intervention, rather than as a direct substitute for general population fracture risk calculators like FRAX®, whose 
calibration may not fully extend to this specific secondary cause of osteoporosis.

We developed a user-friendly, freely accessible online calculator to integrate our predictive model into clinical 
practice. This tool enables healthcare professionals to easily input key demographic and laboratory data, generating real- 
time predictions of osteoporosis risk in patients with tuberculosis spondylitis. Designed for simplicity and efficiency, the 
calculator simplifies decision-making by offering immediate, actionable insights without requiring specialized software 
or extensive training. The interface also features intuitive visualizations and explanations based on our machine learning 
models, improving the transparency and reliability of predictions. By providing open access to this tool, we aim to help 
clinicians identify high-risk patients more quickly, optimize surgical planning, and enhance patient outcomes. This online 
calculator extends our research’s practical application, fostering the adoption of evidence-based practices and bridging 
the gap between complex analytical models and daily clinical use. Envisioning the clinical impact, this biomarker-based 
tool could transform decision-making in TS patients by enabling preoperative risk stratification, such as selecting 
augmented fixation techniques or initiating bone-protective therapies to mitigate fracture risks. For instance, a high- 
risk prediction might prompt conservative management delays or targeted interventions, potentially reducing complica-
tions like implant failure. However, as a screening aid with inherent limitations in sensitivity, it should complement BMD 
assessments and existing tools like FRAX, with future validations needed to refine its integration into routine practice.
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Limitations
This study has several limitations that must be considered. First, its retrospective design may introduce selection bias, as 
it relies on existing records which may not capture all relevant variables. Second, the study was conducted at a single 
medical center in northwestern China, potentially limiting the generalizability of the findings to other populations and 
regions. Additionally, while we employed SMOTE to address class imbalance, the generation of synthetic samples may 
not fully replicate the complexity of real-world data, possibly affecting model performance. The reliance on routine blood 
test data, while practical, may omit other important predictors of osteoporosis that were not available in the dataset. 
Furthermore, although we utilized multiple feature selection methods to identify key predictors, there is a possibility of 
residual confounding factors influencing the results. Finally, the external validation was performed on a limited dataset, 
and larger-scale studies are necessary to confirm the robustness and applicability of the developed models across diverse 
clinical settings.

Conclusions
In conclusion, our study successfully developed and validated machine learning models that predict osteoporosis in 
patients with tuberculosis spondylitis using accessible demographic and blood test data. The logistic regression model 
demonstrated strong predictive performance, supported by external validation, and its interpretability was enhanced 
through explainable AI techniques. By reducing dependence on DXA measurements, these models offer a practical and 
efficient tool for early osteoporosis screening, which can inform surgical decisions and improve patient outcomes in 
clinical settings. The deployment of an online application further facilitates the integration of this predictive tool into 
routine healthcare practices. Future research should focus on expanding the dataset, incorporating additional predictive 
factors, and conducting multicenter studies to enhance the generalizability and accuracy of the models. Ultimately, 
leveraging machine learning in this context holds promise for advancing personalized medicine and optimizing the 
management of osteoporosis in TS patients.
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