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Background: Asthma is the world’s second most prevalent chronic respiratory disease. Current clinical decisions regarding 
hospitalization for adult asthma patients in emergency departments (EDs) primarily rely on presenting clinical status, acute exacer-
bation severity, therapeutic response and high-risk factors. Assessing the need for hospitalization of patients with complex comorbid-
ities remains a significant challenge.
Research Question: This study aims to develop models that integrate various environmental and clinical factors to predict the 
hospitalization of adult asthma patients in EDs and to interpret these models.
Study Design and Methods: A retrospective analysis was conducted utilizing data from asthma patients at a single ED from 2016 to 
2023; the data included demographics, vital signs, illness severity, laboratory test results, and comorbidities, along with environmental 
variables. Predictive models were constructed using the extreme gradient boosting (XGBoost), light gradient boosting machine 
(LightGBM), support vector machine (SVM), logistic regression (LR), and random forest (RF). Area under the receiver operating 
characteristic curve (AUC), accuracy, and F1 score were the primary metrics used to assess model performance.
Results: The analysis included 1140 ED visits. The median age was 51.0 years (interquartile range: 31.0 to 67.0 years), and 56.5% of 
the patients (644) were female. Overall, 21.8% of patients (249) required hospitalization after their ED visits. The AUC results for 
predicting hospitalization without external environmental factors were 0.8075 for XGBoost, 0.8233 for LightGBM, 0.7935 for SVM, 
0.8033 for LR, and 0.8272 for RF. After integrating ambient air pollutant and meteorological features, the RF model consistently 
outperformed the other models, achieving an AUC of 0.8555. The most critical parameters for predicting hospitalization were found to 
be illness severity, oxygen saturation, age, and heart rate.
Interpretation: Machine learning (ML) models based on clinical, meteorological, and air pollution data can rapidly and accurately 
predict hospitalization of adult asthma patients in EDs.
Keywords: asthma exacerbation, machine learning, emergency department

Asthma is a severe global health issue and ranks as the world’s second most common chronic respiratory disease,1 

affecting 1–18% of the population in various nations.2 In China, the overall prevalence of asthma in adults over the age 
of 20 is estimated at 4.2%, representing 45.7 million individuals. Among these, 15.5% have visited the emergency 
department (ED) at least once in the past year due to worsening respiratory symptoms.3 Following the COVID-19 
pandemic, the demand for emergency medical services has surged, intensifying the challenges faced by emergency 
medical systems. Asthma-related visits have exacerbated the shortage of emergency medical resources. Although most 
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asthma exacerbations are managed in outpatient settings or EDs, severe cases may require hospitalization, significantly 
impacting healthcare expenses.4–7 Therefore, prompt identification of patients needing hospitalization is necessary to 
reduce ED boarding times,8 optimize resource allocation, and ensure early and intensive care for those at a high risk of 
admission.

With the growing availability of large data sources and advancements in computational power,9–11 predicting the risk 
of hospitalization for asthma has entered a new era. Zein et al12 employed a machine learning (ML) approach, finding 
that the light gradient boosting algorithm was optimal for predicting hospitalization for asthma in outpatients. Patel et al13 

concluded that the gradient-boosting algorithm surpassed other algorithms in predicting pediatric asthma patient 
hospitalizations in the ED. Similarly, Goto et al14 reported that the random forest (RF) algorithm demonstrated the 
highest discriminative ability and sensitivity in predicting hospitalization for adult asthma patients in the ED.

However, although meteorological factors and airborne pollutants are recognized as asthma risk factors,15–18 no study 
has yet combined clinical, meteorological, and air pollution data to predict hospitalization for adult asthma patients in 
EDs. This study aims to fill this void. We believe that this approach will enable clinicians to determine quickly whether 
asthma patients require hospitalization, and thus will reduce ED boarding times, accelerate patient recovery, and promote 
rational use of emergency medical resources.

Materials and Methods
Study Design and Setting
A retrospective analysis was conducted utilizing data from the electronic health records (EHRs) of a single healthcare 
system. The study protocol received approval from Peking University Third Hospital Medical Science Research Ethics 
Committee (Approval No: IRB00006761-M2021582).

Study Samples
All ED visits by adult patients (aged ≥ 18 years) diagnosed with asthma by a physician from November 1, 2016, to 
July 1, 2023, were included. Pregnant women and patients without EHRs during their ED visits were excluded.

Predictors
Input variables included demographic information, vital signs, laboratory test results, comorbidities, and initial illness 
severity at triage. If multiple laboratory tests were conducted during ED visits, only the results from the first test were 
used. The severity of the initial illness was assessed using the Chinese Emergency Triage Scale (CETS), which 
categorizes the urgency of a patient’s condition on a four-point scale, with one indicating the highest urgency.19 

Covariates were selected based on biological plausibility and evidence from prior research.
Additional input variables included external environmental factors. Concentrations of ambient air pollutants (O3 and 

PM2.5) were sourced from Tracking Air Pollution in China (TAP), a near real-time air pollutant concentration database.20 

Concentrations of other pollutants (CO, NO2, SO2, and PM10) were obtained from ChinaHighAirPollutants (CHAP), 
which provides long-term, comprehensive, high-resolution, and high-quality datasets of ground-level air pollutants in 
China.21,22 Meteorological variables, including temperature and relative humidity, were derived from the fifth generation 
of European ReAnalysis (ERA5), provided by the European Centre for Medium-Range Weather Forecasts (ECMWF).23 

Geocoding of each subject’s residential street into latitude and longitude was performed using the programming interface 
of the mapping application Amap (AutoNavi Software). Specifically, by matching geographic coordinates and the dates 
of the visit to the ED, we obtained the initial 32 environmental variables, including levels of PM2.5, O3, CO, NO2, SO2, 
and PM10 at 24, 48, 168, and 336 hours prior to the patients’ visits to the ED (hereafter designated as 24 h prior, 
48 h prior, 168 h prior, and 336 h prior, respectively).

Data Pre-Processing
The data pre-processing procedure encompassed outlier detection, handling of missing values, standardization, and re- 
sampling to address class imbalances.
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A multivariate model approach known as “Cook’s distance”24 was employed to identify outliers, which were removed 
from the dataset as necessary. Missing values were imputed using the median statistic for each respective column. To 
mitigate the impact of varying scales among different features on model training, the values of each continuous variable 
were standardized to a range of 0 to 1. After these pre-processing steps, the dataset comprised 1140 observations and 54 
variables, including 22 base in-hospital variables and 32 external environmental factors. The initial dataset revealed that 
21.8% of the samples belonged to the hospitalization class, indicating a class imbalance. To enhance the model’s 
performance across both classes, a technique called SMOTEENN25 combining undersampling and oversampling was 
applied to balance the dataset.

Feature Engineering
The initial input variables captured conditions at specific instants but lacked information on dynamic changes. To address 
this and further explore the impact of environmental conditions on asthma severity, the study incorporated feature 
engineering of environmental factors. Specifically, for each of the environmental factors, we calculated the difference in 
values at 24, 48, 168, and 336 h prior. These differential variables enabled the examination of the dynamic influences of 
environmental factors on asthma. Consequently, the final dataset was expanded to include 102 variables, encompassing 
48 new differential variables.

Statistical Analysis
The dataset was randomly partitioned into two subsets: (1) a training dataset comprising 80% of the patients, utilized for 
model training, and (2) a test dataset consisting of 20% of the patients, used to evaluate the final performance of the 
model. The proportion of positive cases was maintained equally in both the training and test datasets. A five-fold cross- 
validation procedure was applied to each model within the training dataset. The model performance was assessed using 
the test dataset.

The performance of the models was evaluated by calculating the area under the receiver operating characteristic 
(ROC) curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

Predictive models were developed using various techniques, specifically the extreme gradient boosting (XGBoost), 
light gradient boosting machine (LightGBM), support vector machine (SVM), logistic regression (LR), and RF techni-
ques. To enhance the interpretability of the results, the Shapley additive explanations (SHAP)26 approach was employed. 
This method represents the average contribution of each feature to the overall predictions made by the model through its 
mean absolute SHAP value. Additionally, the cumulative effect study method was utilized to further improve model 
interpretability. Figure 1 provides a comprehensive overview of the procedures established for each predictive model, 
covering data pre-processing, feature engineering, model training, and evaluation.

The research was conducted using Python v3.12.4 with the following key dependency versions: scikit-learn v1.5.2 for 
ML model development and pipeline construction, XGBoost v2.1.4 for gradient boosting implementation, pandas v2.2.3 
for data processing and manipulation, NumPy v2.0.2 for fundamental numerical operations, and SHAP v0.46.0 for 
explainable analysis.

Outcome Measures
The outcome measure in this study was the hospitalization event, defined as admission to a respiratory ward, an internal 
medicine ward, or an intensive care unit. A binary outcome (Yes/No) was determined based on whether a patient 
experienced a hospitalization event during the study period.

Results
Patient Characteristics
Between November 1, 2016, and July 1, 2023, a total of 1507 patients with asthma met the inclusion criteria for the 
study. From this group, exclusions were made for 293 patients who lacked electronic medical records during ED visits, 
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44 patients who were return visitors to the ED, and 30 pregnant patients (e-Figure 1). Consequently, 1140 ED visits were 
included in the analysis.

The median age of the included patients was 51.0 years, with an interquartile range of 31.0 to 67.0 years; 56.5% (644 
patients) were female. After receiving ED treatment, 21.8% of the patients (249) required hospitalization. The epide-
miological data of the patients included in the study are detailed in Table 1.

Figure 1 Overview of Model Design.

Table 1 Epidemiological Data of Patients

Characteristics All Patients (N = 1140) Hospitalization 
(249)

No Hospitalization 
(891)

P value

Age, y 51.0(67.0–31.0) 62.0(76.0–48.0) 46.0(63.0–29.0) <0.05

Female sex 644(56.50) 153(61.40) 491(55.10) 0.074

Vital signs

Pulse, bpm 96.0(108.0–83.0) 104.0(117.0–91.0) 93.0(106.0–82.0) <0.05
Systolic blood pressure, mmHg 138.0(154.0–122.0) 147.0(164.8–131.0) 135.0(150.0–120.0) <0.05

Diastolic blood pressure, mmHg 81.0(90.0–71.0) 84.5(96.0–74.3) 80.0(89.0–70.0) <0.05

Oxygen saturation, % 96.0(98.0–94.0) 94.0(97.0–90.0) 97.0(98.0–95.0) <0.05

Triage level (CETS)

CETS 1 3(0.30) 3(1.20) 0(0.00) <0.05
CETS 2 95(8.70) 77(32.00) 18(2.10)

CETS 3 784(71.50) 125(51.90) 659(77.10)

CETS 4 214(19.50) 36(14.90) 178(20.80)

(Continued)
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Table 1 (Continued). 

Characteristics All Patients (N = 1140) Hospitalization 
(249)

No Hospitalization 
(891)

P value

Laboratory tests

White blood cell, ×109/L 8.5(10.9–6.9) 8.8(11.9–7.2) 8.4(10.5–6.8) <0.05

Red blood cell, ×1012/L 4.8(5.2–4.4) 4.7(5.1–4.3) 4.9(5.2–4.5) <0.05
Hemoglobin, g/L 144.0(156.0–133.0) 143.0(156.0–130.0) 145.0(156.0–134.8) <0.05

Platelet, ×109/L 241.0(288.0–200.5) 241.0(296.0–201.0) 241.0(285.0–200.0) 0.608

Lymphocyte, ×109/L 1.8(2.4–1.2) 1.5(2.2–1.1) 1.8(2.4–1.3) <0.05
Neutrophil, ×109/L 5.6(7.8–4.2) 6.2(9.4–4.5) 5.5(7.4–4.1) <0.05

Eosinophil, ×109/L 0.3(0.6–0.1) 0.2(0.5–0.0) 0.3(0.6–0.1) <0.05

Monocyte, ×109/L 0.5(0.7–0.4) 0.5(0.7–0.4) 0.5(0.7–0.4) 0.11

Comorbidities

Hypertension 371(32.50) 133(53.40) 238(26.70) <0.05

Allergic rhinitis 397(34.80) 121(48.60) 276(31.00) <0.05

Eczema 203(17.80) 61(24.50) 142(15.90) <0.05
COPD 170(14.90) 80(32.10) 90(10.10) <0.05

GERD 164(14.40) 60(24.10) 104(11.70) <0.05

Sinusitis 132(11.60) 46(18.50) 86(9.70) <0.05
Bronchiectasis 106(9.30) 26(10.40) 80(9.00) 0.482

Environmental factors: Air pollution data

24 h prior PM2.5, μg/m3 36.0(59.0–19.7) 35.0(62.0–19.0) 36.0(58.0–20.0) 0.601

O3, μg/m3 85.0(133.4–55.4) 85.5(133.4–55.1) 85.0(133.7–55.7) 0.918
CO, mg/m3 0.8(1.1–0.5) 0.8(1.1–0.5) 0.8(1.1–0.5) 0.807

NO2, μg/m3 40.3(56.3–28.0) 37.7(55.2–26.3) 41.5(56.7–28.4) 0.201
SO2, μg/m3 5.7(10.6–3.1) 5.4(9.2–3.1) 5.7(10.9–3.1) 0.371

PM10, μg/m3 71.8(107.2–46.2) 70.2(109.0–44.6) 71.8(106.6–46.6) 0.814

48 h prior PM2.5, μg/m3 35.0(59.0–20.0) 33.7(60.0–19.0) 36.0(59.0–20.3) 0.363
O3, μg/m3 83.4(134.5–56.2) 83.3(141.4–55.6) 83.5(133.2–56.3) 0.885

CO, mg/m3 0.8(1.1–0.6) 0.7(1.1–0.6) 0.8(1.1–0.5) 0.586

NO2, μg/m3 41.5(56.9–28.1) 41.0(56.3–28.7) 41.9(57.3–27.9) 0.668
SO2, μg/m3 5.6(11.2–3.1) 5.2(10.6–3.2) 5.6(11.3–3.1) 0.782

PM10, μg/m3 71.4(106.8–44.2) 69.2(104.6–43.0) 71.8(107.0–44.7) 0.495

168 h prior PM2.5, μg/m3 35.0(56.3–18.5) 32.0(54.0–16.2) 36.0(56.8–20.0) 0.054
O3, μg/m3 84.0(127.0–55.8) 86.1(126.6–56.7) 83.6(127.1–55.4) 0.662

CO, mg/m3 0.8(1.1–0.6) 0.7(1.0–0.5) 0.8(1.1–0.6) <0.05

NO2, μg/m3 39.8(54.9–28.5) 34.7(49.4–24.7) 41.6(56.6–29.8) <0.05
SO2, μg/m3 5.7(11.0–3.0) 4.7(8.5–3.0) 6.1(11.5–3.1) <0.05

PM10, μg/m3 65.8(99.8–44.7) 58.8(90.0–39.2) 68.1(102.1–47.3) <0.05

336 h prior PM2.5, μg/m3 34.0(59.0–18.0) 37.0(57.3–19.0) 33.2(59.0–18.0) 0.663
O3, μg/m3 81.0(124.5–55.0) 80.8(116.1–52.3) 81.3(127.1–55.9) 0.183

CO, mg/m3 0.8(1.1–0.5) 0.8(1.1–0.5) 0.8(1.1–0.5) 0.642

NO2, μg/m3 38.2(56.1–27.5) 37.2(58.9–26.3) 38.3(54.5–28.0) 0.964
SO2, μg/m3 5.2(10.4–3.2) 4.9(10.3–3.1) 5.4(10.5–3.2) 0.379

PM10, μg/m3 68.2(100.6–40.9) 69.6(96.4–39.6) 67.8(102.8–41.5) 0.469

(Continued)
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Hospitalization Without External Environmental Factors
The models were initially trained and evaluated using 22 in-hospital variables. Table 2 illustrates the prediction 
performance of five models on the training dataset, assessed via five-fold cross-validation. XGBoost achieved the highest 
mean sensitivity, although RF exhibited a slightly superior maximum sensitivity of 0.558 (compared with 0.5512 for 
XGBoost). Both SVM and LR demonstrated specificities greater than 0.96. The PPV for LR and RF exceeded 71%, 
while XGBoost and LightGBM presented NPVs better than 0.85. All models yielded relatively low F1-Score results, 
with SVM registering the lowest at 0.3. The RF algorithm achieved high accuracy and AUC (both exceeding 0.82); 
however, it encountered challenges in terms of high variance and slightly reduced stability.

Table 3 compares the prediction performance of the five models based on the test dataset. RF performed at high levels 
on all metrics except Specificity and PPV, achieving an optimal AUC of 0.8272 compared with the other models. 
Figure 2 presents the ROC curve for each model.

Table 1 (Continued). 

Characteristics All Patients (N = 1140) Hospitalization 
(249)

No Hospitalization 
(891)

P value

Environmental factors: Meteorological data

24 h prior Temperature, K 285.5(296.0–273.6) 286.2(296.2–274.1) 285.2(295.9–273.6) 0.66

Relative humidity, % 46.5(65.0–30.3) 46.9(64.8–30.5) 46.4(65.1–30.1) 0.636
48 h prior Temperature, K 285.3(295.7–273.4) 285.6(295.7–273.5) 285.1(295.6–273.4) 0.614

Relative humidity, % 46.7(65.1–30.5) 44.5(63.1–30.6) 47.4(65.4–30.5) 0.792

168 h prior Temperature, K 285.2(295.8–273.7) 285.3(296.1–273.7) 285.2(295.8–273.7) 0.665
Relative humidity, % 46.8(65.6–29.8) 46.8(63.3–29.6) 46.8(65.8–29.8) 0.745

336 h prior Temperature, K 285.7(295.7–273.7) 286.2(296.1–274.7) 285.4(295.6–273.6) 0.384

Relative humidity, % 47.4(67.1–30.3) 47.4(67.8–30.2) 47.5(66.8–30.6) 0.915

Note: Data are presented as number (%) or median (interquartile range). 
Abbreviations: CETS, Chinese Emergency Triage Scale; COPD, chronic obstructive pulmonary disease; GERD, gastroesophageal reflux disease; PM2.5, particulate matter 
with an aerodynamic diameter ≤2.5 μm; O3, ozone; CO, carbon monoxide; NO2, nitrogen dioxide; SO2, sulfur dioxide; PM10, particulate matter with an aerodynamic 
diameter ≤10 μm; h prior, hours prior to the emergency department visit.

Table 2 Comparison of Receiving Operator Characteristic Curves of Five-Fold Cross-Validation Based on Training Data

Sensitivity Specificity PPV NPV F1_score Accuracy AUC

XGBoost 0.4999 (0.4486–0.5512) 0.9207 (0.8990–0.9424) 0.6626 (0.5997–0.7255) 0.8580 (0.8452–0.8708) 0.5671 (0.5268–0.6074) 0.8222 (0.8062–0.8382) 0.8249 (0.8142–0.8356)

LightGBM 0.4760 (0.4380–0.5140) 0.9314 (0.9195–0.9433) 0.6805 (0.6418–0.7192) 0.8533 (0.8406–0.8660) 0.5585 (0.5344–0.5826) 0.8246 (0.8172–0.8320) 0.8202 (0.8061–0.8343)

SVM 0.2149 (0.1559–0.2739) 0.9695 (0.9569–0.9821) 0.6856 (0.5925–0.7787) 0.8020 (0.7887–0.8153) 0.3230 (0.2469–0.3991) 0.7930 (0.7789–0.8071) 0.7706 (0.7480–0.7932)

LR 0.3113 (0.2656–0.3570) 0.9602 (0.9410–0.9794) 0.7163 (0.6407–0.7919) 0.8202 (0.8045–0.8359) 0.4306 (0.3842–0.4770) 0.8082 (0.7885–0.8279) 0.7906 (0.7552–0.8260)

RF 0.4484 (0.3388–0.5580) 0.9451 (0.9292–0.9610) 0.7107 (0.6261–0.7953) 0.8487 (0.8182–0.8792) 0.5447 (0.4532–0.6362) 0.8281 (0.7981–0.8581) 0.8213 (0.7885–0.8541)

Abbreviations: XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine; SVM, support vector machines; LR, logistic regression; RF, random 
forest; NPV, negative predictive value; PPV, positive predictive value; AUC, area under the receiver operating characteristic curve.

Table 3 Comparison of Receiving Operator Characteristic Curves Based on Test Data

Sensitivity Specificity PPV NPV F1_score Accuracy AUC

XGBoost 0.4677 0.9283 0.6444 0.8625 0.5421 0.8281 0.8075

LightGBM 0.2742 0.9821 0.8095 0.8295 0.4096 0.8281 0.8233

SVM 0.1935 0.9776 0.7059 0.8134 0.3038 0.8070 0.7935
LR 0.3871 0.9596 0.7273 0.8492 0.5053 0.8351 0.8033

RF 0.5323 0.8879 0.5690 0.8722 0.5500 0.8105 0.8272

Abbreviations: XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine; SVM, support 
vector machines; LR, logistic regression; RF, random forest; NPV, negative predictive value; PPV, positive predictive 
value; AUC, area under the receiver operating characteristic curve.
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Cumulative Effect of Environment Variables
We sequentially integrated ambient air pollutant and meteorological features to enhance the RF model’s predictive 
capability. Initially, the 22 in-hospital variables formed the baseline. We then progressively added environmental 
variables at different time points, incorporating eight variables in each phase to achieve total counts of 30, 38, 46, and 
54 variables. To minimize the impact of random variation and enhance robustness, the model was trained five times for 
each configuration.

Figure 3 illustrates the trends in cumulative effects as environmental characteristics were integrated at various time 
intervals. The blue dashed line represents the mean of five AUC scores, while the light blue shaded area indicates the 

Figure 2 Receiver Operating Characteristic (ROC) Curves for Models Excluding External Environmental Factors. This figure compares the performance metrics Negative 
Predictive Value (NPV), Positive Predictive Value (PPV), and Area Under the Curve (AUC) for various models: Extreme Gradient Boosting (XGB), Light Gradient Boosting 
Machine (LightGBM), Support Vector Machines (SVM), Logistic Regression (LR), and Random Forest (RF).
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range of the means ± standard deviations. Notably, the cumulative effect reached its peak at 168 h prior, indicating the 
optimal integration of temporal environmental data for predicting hospitalization. Based on this finding, the subsequent 
phase of model training included a total of 46 features.

Hospitalization with External Environmental Factors
Based on the findings outlined in the previous section, the input dataset for the analysis was composed of 46 variables, 
which included 22 hospitalization and 24 environmental variables. Following the feature engineering processes detailed 
in the Data Pre-processing section, an additional 48 features were incorporated to capture the dynamics of the 
environmental conditions. As a result, the total number of variables used in the analysis increased to 94.

Table 4 presents a comparison of the prediction performance of five models based on the training dataset, assessed 
through five-fold cross-validation. Both SVM and LR exhibited the lowest values for Sensitivity, NPV, F1-Score, 

Figure 3 Trends in the Cumulative Effects of Environmental Features at Different Time Points. This figure depicts the influence of environmental factors introduced at 
different times on the model’s performance. Baseline (Base) represents predictions without environmental data. Different times are specified as 24 h, 48 h, 168 h, and 
336 h prior to the ED visit.

Table 4 Comparison of Prediction Performance Across Five Models Using Training Data and External Environmental Factors

Sensitivity Specificity PPV NPV F1_score Accuracy AUC

XGBoost 0.4856 (0.4182–0.5530) 0.9238 (0.9074–0.9402) 0.6624 (0.6252–0.6996) 0.8550 (0.8378–0.8722) 0.5568 (0.5148–0.5988) 0.8211 (0.8116–0.8306) 0.8464 (0.8382–0.8546)

LightGBM 0.4772 (0.4019–0.5525) 0.9512 (0.9264–0.9760) 0.7603 (0.6611–0.8595) 0.8562 (0.8345–0.8779) 0.5803 (0.5171–0.6435) 0.8398 (0.8157–0.8639) 0.8483 (0.8204–0.8762)

SVM 0.2100 (0.1506–0.2694) 0.9802 (0.9699–0.9905) 0.7669 (0.6667–0.8671) 0.8027 (0.7884–0.8170) 0.3257 (0.2459–0.4055) 0.8000 (0.7837–0.8163) 0.7718 (0.7423–0.8013)

LR 0.3359 (0.2995–0.3723) 0.9587 (0.9401–0.9773) 0.7205 (0.6259–0.8151) 0.8252 (0.8101–0.8403) 0.4570 (0.4083–0.5057) 0.8129 (0.7901–0.8357) 0.7979 (0.7587–0.8371)

RF 0.4982 (0.3994–0.5970) 0.9603 (0.9472–0.9734) 0.7934 (0.7329–0.8539) 0.8622 (0.8342–0.8902) 0.6072 (0.5283–0.6861) 0.8515 (0.8244–0.8786) 0.8432 (0.8167–0.8697)

Abbreviations: XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine; SVM, support vector machines; LR, logistic regression; RF, random forest; 
NPV, negative predictive value; PPV, positive predictive value; AUC, area under the receiver operating characteristic curve.
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Accuracy, and AUC. Table 5 details the prediction performance comparison of the five models based on the test dataset. 
As shown in Table 5, the RF model consistently outperformed the others across all evaluated metrics, achieving an 
accuracy of 0.8491 and an AUC of 0.8555. Consequently, the RF model is established as the optimal model for this 
study. Figure 4 displays the ROC curve for each model, further illustrating the comparative performance of the predictive 
models. The hyperparameters and configurations of all models are summarized in Table 6.

SHAP Analysis of RF Model
Figure 5 displays the SHAP value distribution for the top 20 features, ranked by importance and shown on the vertical 
axis to the left, with the SHAP values plotted on the horizontal axis. The color bar on the right indicates the actual values 
of the features. The analysis reveals that CETS is the most significant feature, where lower values are strongly predictive 
of hospitalization. This is followed by oxygen saturation and age, then heart rate, lymphocytes, and eosinophils. Among 
the top 20 features, three engineered attributes are presented: the difference in NO2 levels 48 h and 168 h prior, the 
difference in PM10 values 24 h and 48 h prior, and the difference in CO values 24 h and 48 h prior. These attributes 
represent changes in pollutant levels, where higher values (closer to red) correlate with increased pollution and a greater 
predicted likelihood of hospitalization. The inclusion of these engineered features in the top 20 highlights their practical 
value in enhancing the model’s predictive accuracy.

Figure 6 illustrates the relative risk of hospitalization associated with the top three features and a significant air 
pollution attribute, as follows:

(a) CETS (Figure 6a): This is a crucial feature in assessing the risk of hospitalization for asthma. A CETS score below 
2 significantly increases the likelihood of hospitalization, indicating a high risk.

(b) Oxygen Saturation (Figure 6b): This is another crucial indicator. A saturation level of 93% is identified as the 
critical threshold. The blue dots in the figure represent patients with oxygen saturation below this level, indicating 
a heightened risk of hospitalization.

(c) Age (Figure 6c): This plays a significant role in hospitalization risk, with 58 years identified as a critical turning 
point beyond which the probability of requiring hospitalization increases.

(d) NO2 (Figure 6d): This feature represents the difference in the NO2 concentrations at 48 h and 168 h prior. 
A differential value of 0 is the turning point, with values exceeding this mark significantly raising the 
probability of hospitalization. This indicates that increases in NO2 levels over time correlate with a higher 
risk of hospitalization.

Top-20-Feature Cumulative Effect
To examine the impact of different variables on our prediction model, we utilized cumulative feature effect methods. We 
began by identifying the top 20 features through a ranking based on both SHAP values and the inherent feature 
importance of the RF model. The experiment involved removing these top 20 features from a set of 94, then training 

Table 5 Comparison of Prediction Performance Across Five Models Using Test Data and 
External Environmental Factors

Sensitivity Specificity PPV NPV F1_score Accuracy AUC

XGBoost 0.5323 0.9327 0.6875 0.8776 0.6000 0.8456 0.8201

LightGBM 0.5161 0.9417 0.7111 0.8750 0.5981 0.8491 0.8398

SVM 0.1774 0.9821 0.7333 0.8111 0.2857 0.8070 0.8046
LR 0.3548 0.9552 0.6875 0.8419 0.4681 0.8246 0.8136

RF 0.5000 0.9462 0.7209 0.8719 0.5905 0.8491 0.8555

Abbreviations: XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine; SVM, support 
vector machines; LR, logistic regression; RF, random forest; NPV, negative predictive value; PPV, positive predictive 
value; AUC, area under the receiver operating characteristic curve.
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five base models and calculating the mean values of the metrics to establish the base values. Features were incrementally 
reintroduced in ascending order of importance, undergoing five training sessions and subsequent metric evaluations. This 
approach yielded 21 sets of outcomes, with feature counts progressively increasing from 74 to 94, as depicted in 
Figure 7. We applied min-max scaling to normalize each metric for enhanced visualization. The normalized results were 
plotted along the horizontal axis, with zero as the midpoint; the left side depicted features selected based on SHAP 
values, and the right side depicted those based on the importance of the RF features.

The diagram shows that the top three features—CETS, oxygen saturation, and age—remained consistent across both 
model interpretation methodologies, highlighting their strong correlation with hospitalization for asthma. The primary 

Figure 4 Receiver Operating Characteristic (ROC) Curves for Models Incorporating External Environmental Factors. This figure displays ROC curves for models enhanced 
with environmental data. 
Abbreviations: XGB, Extreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine; SVM, Support Vector Machines; LR, Logistic Regression; RF, Random 
Forest; NPV, Negative Predictive Value; PPV, Positive Predictive Value; AUC, Area Under the Receiver Operating Characteristic Curve.
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difference between the methodologies was observed in the variable Allergic Rhinitis and in the difference in SO2 levels 
at 48 h and 168 h prior. Notably, the difference was significant in the classification process of the RF model, affirming the 
importance of this engineered feature.

Table 6 Hyperparameter Combination of Each Model

Model Optimal hyperparameters

XGBoost Learning_rate=0.09, max_depth=25, n_estimator=28

LightGBM Learning_rate=0.1, num_leaves=30, max_depth=25, n_estimators=54

SVM C=0.9, kernel=‘rbf’, degree=5, class_weight=‘balanced’, probability= ‘True’, tol=1×10⁻³

LR Penalty=‘L2’, C=0.85, class_weight=‘balanced’, tol=1×10-4

RF n_estimators=25, max_depth=35, min_samples_leaf=1, min_samples_split=2, class_weight=‘balanced’

Abbreviations: XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine; SVM, support vector machines; LR, 
logistic regression; RF, random forest.

Figure 5 Prediction Model Using Random Forest (RF). This figure outlines the importance of different features in the RF model for predicting hospitalizations. Features are 
ranked by the magnitude of their SHAP values; higher absolute values indicate greater influence. Conditions include COPD, Hypertension, and Allergic Rhinitis (coded as 1 
for present, 0 for absent). 
Abbreviations: CETS, Chinese Emergency Triage Scale; COPD, Chronic Obstructive Pulmonary Disease; NO2, nitrogen dioxide; PM10, particulate matter with an 
aerodynamic diameter ≤10 μm; CO, carbon monoxide; ΔNO2, difference in values of NO2 concentrations at 48 h and 168 h before the ED visit; ΔPM10, difference in values 
of the PM10 concentrations at 24 h and 48 h before the ED visit; ΔCO, difference in values of the CO concentrations at 24 h and 48 h before the ED visit.
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Discussion
In this study, prediction models were initially trained and evaluated using 22 in-hospital variables. RF performed at high 
levels on all metrics except Specificity and PPV, achieving an optimal AUC of 0.8272. We sequentially integrated 
ambient air pollutant and meteorological features to enhance the model’s predictive capability. And the RF model 
consistently outperformed the others, achieving an AUC of 0.8555. To the best of the authors’ knowledge, this is the first 
study to use multiple sources of data to construct predictive models that assist clinicians in identifying adult asthma 
patients at high risk of hospitalization.

Over the past decade, the expansion of large clinical data sources and advances in computational power have fueled 
the growth of ML applications in healthcare.9 The line between ML and statistical modeling has been described as 
a continuum.9 Unlike statistical models that rely on theory and assumptions, ML models learn directly and automatically 
from data.27 No definitive threshold exists at which a model is considered to be a “machine learning model”, as all 
methods exist on a continuum depending on the degree of human assumptions imposed.9 Compared with traditional 
methods, ML algorithms enable a more flexible relationship between predictor variables and outcomes, rendering them 
preferable for predictive rather than explanatory studies.10 Our study demonstrated that the RF algorithm exhibited 

Figure 6 Relative Risk of Different Outcomes with Independent Variables in Hospitalization Prediction Models. (A) Relative risk of different outcomes with CETS; 
(B) Relative risk of different outcomes with Oxygen saturation; (C) Relative risk of different outcomes with Age; (D) Relative risk of different outcomes with 
ΔNO2. 
Abbreviations: CETS, Chinese Emergency Triage Scale; ΔNO2, the difference in values of the NO2 concentrations at 48 h and 168 h before the ED visit.
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superior performance in predicting hospitalization outcomes among adult asthma patients presenting to the emergency 
department. The algorithm’s effectiveness stems from its ensemble approach, which utilizes multiple decision trees to 
capture complex hierarchical relationships and interaction effects among variables. This enables it to handle high- 
dimensional datasets with collinear features proficiently, as seen in our study integrating clinical, meteorological, and air 
pollution data.

ML models are often called “black boxes”, as they input data and produce outcomes without visible internal 
processes.28 To address this issue, the SHAP method was used in this study to explain the outcomes of the prediction 
model. Emergency triage is crucial in high-acuity EDs, and since the 1990s, several triage scales have been implemented 
in developed countries. In China, emergency triage faces unique challenges compared to developed countries.19 CETS, 
which relies on vital complaints and objective data, is a reliable and valid method for ED triage in mainland China.19 

This study corroborated previous findings that lower CETS scores, indicating greater illness severity, were associated 
with a higher risk of hospitalization for asthma. Consistent with earlier research,8 initial oxygen saturation was also 
a significant predictor of hospitalization.13,14,29 Older age, which is linked to reduced lung function and a higher 
prevalence of chronic disease comorbidities, increased the likelihood of hospitalization.2,30,31 Eosinophil levels typically 
drop during severe asthma exacerbations,12 because the strong inflammatory response recruits eosinophils to the airways 

Figure 7 Top-20-Feature Cumulative Effect. 
Abbreviations: CETS, Chinese Emergency Triage Scale; COPD, Chronic Obstructive Pulmonary Disease; NO2, nitrogen dioxide; PM10, particulate matter with an 
aerodynamic diameter ≤10 μm; CO, carbon monoxide; ΔNO2, difference in values of the NO2 concentrations at 48 h and 168 h before the ED visit; ΔPM10, difference in 
values of the PM10 concentrations at 24 h and 48 h before the ED visit; ΔCO, difference in values of the CO concentrations at 24 h and 48 h before the ED visit; ΔSO2, 
difference in values of the SO2 concentrations at 48 h and 168 h before the ED visit.
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and tissues. Air pollution factors, notably NO2 and PM10, have been significantly associated with asthma 
exacerbations,32,33 potentially because of oxidative stress, airway hyper-responsiveness, and remodeling.34–38

The rapid development of electronic medical record systems presents a unique opportunity to create clinical decision 
support systems (CDSS). These are computer programs that apply knowledge to data stored in EHRs to facilitate 
intelligent applications such as auxiliary diagnosis, treatment assistance, risk warning, medical record quality control, and 
infectious disease management; they have proved to be a valuable and effective tool in clinical practice.39–41 A previous 
study developed a CDSS by integrating EHRs with BMJ Best Practice, achieving accuracy rates of 75.46% in first-rank 
diagnosis and 87.53% in top-three diagnoses;42 this highlights the significant clinical application potential of CDSS in 
EHRs.42 The predictive models developed in this study could be embedded in a CDSS to guide clinicians in making 
informed decisions about hospitalizing asthma patients and to enhance resource utilization.

This study has several limitations. First, the sample size was limited, and future research will require larger samples to 
enhance model accuracy. Second, data on ambient air pollutants and meteorological variables may not fully reflect 
individual exposure levels due to the omission of activities conducted away from home. Finally, the retrospective design 
of this study is constrained by missing data; for instance, only 31.6% of patients had recorded respiratory rate data, 
a factor associated with hospital admission.13

In conclusion, ML models based on clinical, meteorological, and air pollution data can rapidly and accurately predict 
hospitalization of adult asthma patients in EDs. This study lays a foundational framework for future research where 
similar methodologies can be applied to other chronic conditions influenced by environmental factors. Future work will 
focus on incorporating these models into clinical decision tools to assist clinicians in determining the need for 
hospitalization of asthma patients and to improve resource utilization for maximizing ED efficiency.

Abbreviation
AUC, area under the curve; CETS, Chinese Emergency Triage Scale; CHAP, China High Air Pollutants; ECMWF, 
European Centre for Medium-Range Weather Forecasts; ED, emergency department; ERA5, fifth generation of European 
ReAnalysis; LightGBM, light gradient boosting machine; LR, logistic regression; ML, machine learning; NPV, negative 
predictive value; PPV, positive predictive value; RF, random forest; ROC, receiver operating characteristic; SHAP, 
Shapley additive explanations; SVM, support vector machines; TAP, Tracking Air Pollution in China; XGBoost, extreme 
gradient boosting.
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