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Abstract: Bone Morphogenetic Proteins might be the most prospective in glioma treatment because of the facts that they can 
differentiate glioma cells, inhibit tumor growth and manage glioma stem cells. Its clinical application is hindered by several 
challenges, including limited permeability across the blood–brain barrier, which impedes effective delivery to the central nervous 
system; high susceptibility to enzymatic degradation, which compromises stability and therapeutic efficacy; and nonselective binding, 
which reduces specificity and may result in unintended off-target effects. This review systematically covers the advanced BMP 
delivery systems such as nanoparticles, smart carriers, gene therapy, and exosome-based system. Hydrogels, scaffolds, and micro-
spheres’ local delivery methods are also discussed as prospective options. The in vitro studies reveal that BMPs are effective and using 
in vivo glioma models there is also evidence of the effectiveness of BMPs. In addition, new clinical trials reveal concern with safety, 
tolerability, and therapeutic effects of BMPs, especially their combination with chemotherapy and immunotherapy. BMP specificity 
and therapeutic performance are further optimized by Personalized medicine and CRISPR/Cas engineering. However, regulatory 
barriers and product commercialization are challenging issues. This review highlights the need for novel approaches and advanced 
technologies to address the challenges associated with BMP delivery, aiming to establish BMP-based therapies as an effective 
treatment strategy for glioma. 
Keywords: bone morphogenetic proteins, glioma treatment, blood–brain barrier, nanoparticle-based delivery, gene therapy strategies

Introduction
Gliomas, particularly glioblastomas (GBMs), present significant management challenges due to their high heterogeneity, 
invasive characteristics, and resistance to treatment.1 Glial tumors encompass various subtypes, including astrocytoma, 
oligodendroglioma, and ependymoma, classified according to histopathological and molecular characteristics.2 Recent 
advancements in surgical techniques, radiotherapy, and chemotherapy have resulted in a median survival rate for GBM, 
the most aggressive variant, of only 15 to 18 months.1 Standard therapy for GBM includes surgical resection, radiation, 
and the alkylating agent temozolomide (TMZ).3 However, resistance to treatment is common, and recurrence in these 
patients is nearly inevitable Resistance may arise from mutations in tumor suppressor genes and the overexpression of 
oncogenes, presenting a significant challenge for effective management.4
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The World Health Organization (WHO) classifies gliomas according to their grade (I–IV).5 Lower-grade gliomas 
(Grades I and II) exhibit slow growth, whereas higher-grade gliomas (Grades III and IV) proliferate rapidly and 
demonstrate increased malignancy. The most aggressive variant (WHO Grade IV, GBM) is characterized by widespread 
infiltration of brain tissue, genetic diversity, and significant resistance to treatment.6 For instance, GBM demonstrates 
heightened amplification of the epidermal growth factor receptor (EGFR) gene, IDH mutations, and loss of hetero-
zygosity on chromosome 10. The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) gene 
promoter is a critical factor in predicting response to alkylating agents like TMZ, with methylated tumors showing 
a more favorable response to treatment.7

Bone Morphogenetic Proteins (BMPs) offer potential for glioma treatment by differentiating glioma cells, inhibiting 
tumor growth, and regulating glioma stem cells. However, their clinical application is limited by challenges such as poor 
permeability across the Blood–Brain Barrier (BBB), degradation, and nonselective binding.8 Advanced delivery systems, 
including nanoparticles, gene therapies, and localized methods like hydrogels and microspheres, aim to enhance BMP 
targeting and efficacy. Studies confirm the effectiveness of BMPs in preclinical models, and clinical trials are exploring 
its combinations with chemotherapy and immunotherapy.9 Personalized medicine and CRISPR/Cas technologies are 
being used to improve BMP delivery, but regulatory and commercialization remains the current challenges. Overcoming 
these barriers is essential for the successful use of BMPs in glioma treatment.10

Currently, targeted therapies such as EGFR inhibitors have demonstrated limited efficacy, indicating a necessity for 
additional research to formulate innovative therapeutic strategies. Recent advancements in tumor treating fields (TTF), 
a non-invasive electrical field therapy, have shown potential in extending survival for GBM patients; however, the 
treatment remains contentious regarding its standard application.11

This manuscript evaluates the potential of BMPs in glioma treatment, particularly focusing on advancements in 
delivery systems. The discussion covers the role of BMPs in regulating cancer stem cells, influencing the tumor 
microenvironment, and interacting with other signaling pathways. The main focus of this review is to highlight the 
challenges and opportunities in BMP-based therapies, guiding future research toward improving glioma treatment 
efficacy.

BMPs in Cancer Biology
BMPs, part of the transforming growth factor beta (TGF-β) superfamily, play a crucial role in embryogenesis, bone 
development, and tissue homeostasis.12 BMP signaling inhibits glioma tumorigenesis by promoting the differentiation of 
cancer stem cells (CSCs) into non-proliferative astrocyte-like cells. However, certain BMP isoforms may facilitate cancer 
progression by fostering a microenvironment that supports cancer cell survival and invasion.13 BMP4 has been 
extensively researched for its anti-tumor effects in glioblastoma and increasing their susceptibility to conventional 
therapies.14 BMP signaling for glioma treatment is explored through approaches that either use recombinant BMPs or 
block downstream targets to slow glioma growth.15

The impact of BMPs on the tumor microenvironment and their relationship with these effects must be carefully 
considered for effective modulation. Ongoing studies aim to optimize BMP signaling to selectively target CSCs while 
enhancing the efficacy of conventional therapies, such as radiation and chemotherapy, in glioblastoma patients.16 

Analysis of BMPs interactions with pathways like Wnt and TGF-β suggests potential applications in gliomas.17

Mechanism of BMP Action in Glioma Regulation
BMPs play significant roles by influencing various complex signaling pathways that regulate cancer cell differentiation, 
proliferation, and the cancer microenvironment. BMPs interact with heterodimeric receptor complexes composed of type 
I and type II serine/threonine kinase receptors, which then transmit their signals via intracellular signaling pathways 
primarily mediated by SMAD proteins. Activated receptor-SMAD complexes translocate to the nucleus to regulate target 
gene expression, influencing differentiation, apoptosis, and invasion.18

BMPs act as antagonists to pathways like Notch and Wnt, which are crucial for sustaining CSC characteristics. 
Nonetheless, BMPs play a context-dependent role in gliomas. BMP4 has been shown to reduce the self-renewal capacity 
of cancer stem cells and their ability to induce tumor recurrence. Conversely, BMP2 and BMP7 may facilitate glioma 
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progression in certain contexts by enhancing glioma cell invasiveness and angiogenesis. Furthermore, BMPs influence 
immune modulation by regulating macrophage polarization and the recruitment of immune cells to the tumor micro-
environment, thereby impacting immune evasion.19 Furthermore, additional oncogenic signaling pathways, including 
TGF-β, influence BMP signaling via intricate feedback loops, complicating therapeutic targeting significantly (Figure 1).

The regulation of BMP is influenced by the tumor microenvironment. Hypoxia can alter BMP receptor expression and 
downstream signaling, shifting BMP activity from tumor suppressive to pro-tumorigenic. The dual roles of BMP biology 
in gliomas underscore the significance of understanding this relationship for therapeutic potential. Current research is 
investigating the potential of the BMP pathway to enhance tumor suppression while mitigating negative effects, such as 
increased invasiveness.21

Role of BMPs in Glioma Biology
BMPs roles in glioma biology are very context-dependent, acting as either tumor suppressors or promoters of invasive-
ness, contingent upon microenvironmental circumstances or related pathways. The therapeutic potential of BMPs is 
constrained by an insufficient comprehension of their intricate functions.22,23

Figure 1 GBM has several characteristic features that can or do contribute to its virile phenotype and that can also be viewed as the targets for therapy. Some of the 
features of infiltrating cells, genomic alterations, abnormal angiogenesis, immune escape and reprogramming of the stroma outside the tumor cells are observed in most of 
these tumors. Adapted from Cruz JVR, Batista C, Afonso B, et al. Obstacles to glioblastoma treatment two decades after temozolomide. Cancers. 2022;14(13):3203. 
Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).20
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BMPs as Tumor Suppressors: Inducing Differentiation and Apoptosis
Specifically, BMPS, including BMP-2, BMP-4, and BMP-7, have been identified as tumor suppressors in gliomas that 
promote the differentiation of cancer stem cells into non-tumorigenic astrocyte-like cells.24 Glioma stem cells (GSCs) are 
a subset of cells implicated in tumor recurrence and resistance to standard treatments, with their destruction or 
differentiation recognized as a possible therapeutic objective.25 Certain BMPs inhibit GSC self-renewal by altering the 
expression of genes associated with cell fate determination and halting their proliferation.22 BMP-4 induces the 
production of the astrocytic marker gene GFAP (glial fibrillary acidic protein) and inhibits the tumor’s growth potential 
consequently.26

Furthermore, BMPs can influence apoptosis via both SMAD-dependent and independent mechanisms, as well as 
differentiation. BMPs can activate pro-apoptotic genes and downregulate anti-apoptotic genes through SMAD-dependent 
pathways, including as BIM, while simultaneously downregulating BCL-2.27 Besides its pro-apoptotic action, noncano-
nical BMP signaling is augmented via p38 MAPK and JNK pathways to eradicate cells with carcinogenic potential. 
Conversely, IDH wildtype glioblastomas exhibit greater resistance to BMP signaling-induced apoptosis, a finding that is 
less consistent among different molecular subtypes of glioma.28

Furthermore, BMPs inhibit tumor angiogenesis, so restricting nutritional availability to the tumor. It was demon-
strated that BMP-4 downregulates VEGF (vascular endothelial growth factor) to inhibit angiogenesis.29 The existence of 
this anti-angiogenic action is essential, as gliomas are highly vascular tumors, and the suppression of blood supply 
negatively impacts their development and spread.30

BMP Signaling Pathways in Glioma Cells
The BMP ligands (BMP 2, 4) bind to type I and type II receptors, initiating the BMP signaling cascade in glioma cells.24 

SMAD1/5/8 proteins undergo phosphorylation through this interaction and, in conjunction with SMAD4, translocate to 
the nucleus to modulate the expression of genes involved in differentiation and apoptosis.31 The modulation of BMP 
signaling effect is influenced by several intracellular variables and crosstalk signaling, complicating therapeutic 
targeting.32

BMP-2 and BMP-4 in Glioma Inhibition
BMP-2 and BMP-4 possess unique yet synergistic functions in glioma inhibition, both promoting glioma development, 
apoptosis, and tumor suppression. Significant emphasis has been directed towards BMP-4 due of its ability to markedly 
impede GSC self-renewal. This promotes astrocytic differentiation by reducing the quantity of remaining cells capable of 
initiating new repetitions.33 BMP-2 exhibits a greater capacity for inhibiting angiogenesis, making it suitable for targeting 
highly vascularized gliomas.34

Nonetheless, these defenses are constrained by the inadequate distribution of BMP-2 and BMP-4 to the brain for 
therapeutic purposes. The restrictive characteristics of the BBB hinder the infiltration of exogenous BMPs into the tumor 
site, rendering new delivery strategies, such as nanoparticle-based carriers,35 essential. Moreover, BMPs may paradoxi-
cally facilitate invasion in some gliomas at elevated delivery levels, underscoring the necessity of regulating and 
precisely targeting delivery.22

Crosstalk Between BMPs and Oncogenic Pathways
Glioma blood vessels exhibit resistance to BMP inhibition and simultaneously engage in oncogenic signaling pathways. 
The pathways (Figure 2) are crucial for sustaining the stemness and viability of glioma cells. BMP-4 suppresses Wnt 
signaling, thereby decreasing β-catenin mediated transcription of genes essential for GSC maintenance.36 Like Notch 
signaling, BMPs also inhibit Notch signaling, which is recognized for its protective role in CSCs, thereby restricting 
glioma proliferation.36

Second, direct antagonism and myRNA expression caused by BMPs promote proliferation of glioma. Specifically, 
BMP-2 downregulates the oncomiR, miR-21 associated with glioblastoma invasive and therapy resistance. BMPs 
regulatory effects widen their therapeutic potential and are promising agents in glioma treatment.22,38 Nevertheless, 
the introduction of many feedback loops makes the therapeutic landscape difficult. Both BMPs and TGF-β can coopt 
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tumor promoting signals providing resistance to therapeutic intervention. It has been demonstrated that tumors exploit 
components in the SMAD signaling pathway which share components with BMPs and TGF-β, leading to Bmp and TGFb 
Immunotherapy to address the dependence of tumors on this pathway for survival and metastasis.39 Furthermore, BMPs 
act as both tumor suppressors and possible invasion enhancers, and a detailed understanding is crucial before application 
of any therapeutic.40

BMPs and Glioma Stem Cells: Differentiation Therapy
Glioma stem cells (GSCs) impede effective glioma treatment due to their ability to promote tumor recurrence and high 
resistance to conventional therapies, such as radiotherapy and chemotherapy, owing to their stemness. One current 
approach is to differentiate GSCs into non-tumorigenic, differentiated cells, rather than target malignant cells. BMPs are 
known to be major regulators of GSC differentiation (Figure 3) and although not conclusively proven, BMP2, BMP4, 
and BMP7, are a promising approach to reduce tumor malignancy.34 GSC differentiation by BMPs into cell types 
resembling astrocytes or neurons mitigates their tumorigenic characteristics. GFAP (glial fibrillary acidic protein) can be 
activated by BMP-4 and decrease GSC proliferation and block GSCs forming neurospheres.41 Associated to gene 
differentiation is the loss of expression of stemness transcription factors including SOX2 and OLIG2 which are required 
for the maintenance of GSC identity.42

The SMAD dependent signaling pathways regulate the impact of BMPs in differentiation therapy. BMPs bind to their 
receptors on the surface of GSCs leading to activation of SMAD1/5/8 proteins which form complexes with SMAD4, 
translocate nuclear and recruit DNA and RNA polymerases.43,44 ID1 (inhibitor of differentiation 1) is regulated by them 

Figure 2 Signaling pathway of BMP4 as well as activators and inhibitors of BMP4 cellular signaling. BMP4 may interact with preformed complexes (PFCs), in which, BMPR 
Type I and Type II receptors are bound at the cell surface and with Type I receptors that form BMP4 induced signaling complexes (BISC) in association with Type II receptors. 
RGMs, DRAGON, and BAMBI can increase BMP4 dimer binding of Type I receptors in both PFCs and BISCs. Signal recognition leads to the phosphorylation of receptor 
associated SMADs (Smad1/5/8). Signaling activated SMADs merge with co-SMAD4 to affect the nucleus and in mutants with p300 or stat, they act as transcription 
initiationers which broaden neural and astroglial genes. BMP-1 as well as sulfated polysaccharides act as extracellular activator while Noggin, Chordin and Gremlin interact 
with BMP4, thus inhibiting the activity of this signal pathway. Pathway activity can be blocked using intracellular inhibitors SMAD6/7, Smurf1/2 and dorsomorphin. BMP4 may 
also use SMAD-independently signalling pathways for instance MAPK/p38, JNK, Erk etc Pseudo-receptors like BAMBI can bind to BMP4 dimers, however these pseudo- 
receptor complexes do not transduce signals due to absence of kinase domains on them. Adapted from Xi G, Best B, Mania-Farnell B, James CD, Tomita T. Therapeutic 
potential for bone morphogenetic protein 4 in human malignant glioma. Neoplasia. 2017;19(4):261–270. Creative Commons license (https://creativecommons.org/licenses/ 
by-nc-nd/4.0/).37
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during differentiation, when it inhibits cell cycle and contributes to lineage-specific development.45,46 Furthermore, 
BMPs activate non-canonical signaling pathways including p38 MAPK and PI3K/AKT pathways which help improve 
differentiation and decrease cell survival under stress conditions.24,44

This therapeutic approach has the potential to enhance glioma sensitivity to standard treatments by exploiting BMP- 
induced differentiation therapy. More specifically, differentiated cells are less sensitive to chemotherapy and radiotherapy 
than their undifferentiated, stem-like counterparts.15 Previous studies show that preculating glioma cells with BMP4 
sensitizes these cells to the first-line chemotherapy for glioblastoma, TMZ, by inhibiting MGMT (O6 methylguanine 
DNA methyltransferase).47 This combinatorial strategy improves therapeutic outcome and minimizes the chance of 
tumor relapse.

Although there have been some small developments, most of them have been impeded by various challenges in the 
use of BMP-based differentiation treatment.48 In some gliomas, resistance BMP signaling is also associated with Smad4 
mutations or overactivation of Wnt/β-catenin pathways that maintain stem cell characteristics in the presence of 
BMPs.49,50

While BMP-induced differentiation holds promise, its effects may not be permanent due to the plasticity of 
differentiated cells, which can revert to a stem-like state under certain conditions. As such, the long-term efficacy of 
differentiation therapy requires further investigation. Research is focusing on identifying effective combination therapies 
that maintain a differentiated state of GSCs while enhancing therapeutic efficacy. A promising approach is the combined 

Figure 3 BMP Signalling Pathways in Glioma Cells.

https://doi.org/10.2147/IJN.S518340                                                                                                                                                                                                                                                                                                                                                                                                                                                 International Journal of Nanomedicine 2025:20 7098

Bao et al                                                                                                                                                                             

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



inhibition of BMP signaling with oncogenic pathways such as Notch and TGF-β. Blocking BMP signaling can prevent 
GSCs from reverting to a stem-like state, while inhibiting Notch and TGF-β, which are involved in maintaining GSCs’ 
stemness and survival, further diminishes the tumor’s regenerative potential. Additionally, combining BMPs with 
molecular compounds or chemotherapeutic agents may offer a synergistic effect, improving treatment outcomes by 
promoting differentiation and enhancing the response to radiation and chemotherapy.17

Despite the promising therapeutic potential of BMPs in glioma, their clinical application is hindered by challenges in 
delivery and stability. The following section examines these challenges, specifically the short half-life, rapid degradation, 
limited blood–brain barrier penetration, non-specific distribution, off-target effects, and immune response to exogenous 
BMPs.

Challenges in Delivering BMPs to Glioma
Short Half-Life and Rapid Degradation of BMPs
BMPs are a promising approach to treating glioma but have a short half-life, which substantially limits their use. 
A significant presence of matrix metalloproteinases in the tumor microenvironment contributes to the rapid degradation 
of BMPs, limiting their therapeutic efficacy. Moreover, upon systemic circulation, BMPs can be drawn from their 
reservoirs, reducing their availability at sites of inflammation and hindering their capacity to exert therapeutic effects 
until they are released. This rapid degradation requires high or frequent dosing to maintain therapeutic levels and prevent 
unwanted side effects such as ectopic bone formation, inflammation, and immune responses. In certain conditions, BMPs 
might promote tumor growth, particularly in environments where they can activate pro-tumorigenic pathways. For 
example, BMPs can stimulate cancer cell survival and invasion by enhancing the expression of genes involved in cellular 
migration and epithelial–mesenchymal transition (EMT). Additionally, BMPs may contribute to tumor progression by 
inducing angiogenesis or immune suppression in the tumor microenvironment. The effect of BMPs is highly context- 
dependent and varies across different microenvironments, where they can either suppress tumor growth by inducing 
differentiation and apoptosis or, conversely, drive tumor progression by activating pathways that promote cell prolifera-
tion, invasion, and immune evasion.51,52

Given the dual roles BMPs can play in tumor progression or suppression, addressing their delivery challenges is 
crucial for optimizing their therapeutic potential. To overcome these problems, researchers have developed advanced 
drug delivery systems, such as encapsulating BMPs inside biodegradable hydrogels, polymeric microspheres, or 
nanoparticles.53,54 These carriers release the BMPs at the target site with sustained release enabling elimination of 
repeated dosing. It has been demonstrated that the BMP is released in a gradual manner, protected from enzymatic 
degradation within internal hydrogels such as alginate and chitosan.55 To increase BMP stability and facilitate localized 
delivery to glioma cells, polymer-based carriers such as poly (lactic-co-glycolic acid) (PLGA) nanoparticles have been 
studied.55,56 The stabilization of engineered BMP analogs or fusion proteins represents a promising strategy. These issues 
inhibit the retention and degradation of BMPs. More recently, studies indicate that BMPs conjugated to heparin-based 
carriers increased half life and provided protection from enzymatic degradation and are more efficacious for glioma 
treatment.57,58

Limited Blood–Brain Barrier (BBB) Penetration
A major barrier to the delivery of therapeutic agents, such as bone morphogenetic proteins, to gliomas is the blood–brain 
barrier. Factors such as size, charge and hydrophilicity of proteins limit their transport across the BBB, thus requiring 
other strategies.48,55 Systemic delivery methods do not achieve therapeutic concentrations of BMPs within the brain, 
limiting the efficacy of BMPs in the treatment of gliomas.15,37

A delivery strategy currently being formulated to alleviate these limitations is innovative. The first strategy is to 
encapsulate BMPs within nanoparticles that can cross the blood–brain barrier. Receptor-mediated transport across blood– 
brain barrier is achieved by ligand-functionalized liposomes and polymeric nanoparticles. Nanoparticles covered by 
peptides targeting low-density lipoprotein receptors (LDLr) enable brain uptake of BMPs.59 Additionally, gold nano-
particles functionalized with cell-penetrating peptides can deliver therapeutic proteins across the blood–brain barrier and 
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to glioma tissues.60,61 Ultrasound combined with microbubbles is an innovative approach that can transiently disrupt the 
BBB.62 Delivery of BMPs, into the brain parenchyma was improved using this technique. Localized, non-invasive 
delivery is a key feature of focused ultrasound (FUS), though it poses risks of tissue damage and inflammation.63,64 

Therefore, their safety and efficacy for clinical application need to be optimized.
In addition, there has been strong interest in localized delivery methods including intracranial injection and 

implantation of BMP loaded scaffolds. Due to the fact that BMPs are administered at the tumor site with these methods, 
they act as an alternate to the blood–brain barrier.65 However, surgery, infection and potential damage to tissues 
introduced with these invasive techniques pose a risk. Existing challenges with local delivery of BMP do not preclude 
local delivery as a viable glioma treatment option based on advancements in scaffold design with biocompatible 
polymers.55

Non-Specific Distribution and Off-Target Effects
The main restriction on the application of BMPs in glioma therapy is their nonselective dispersion in the whole body. The 
systemic delivery of BMPs can induce excess BMPs accumulation in non-targeted tissues (ectopic bone formation or 
inflammation in healthy tissues), and systemic delivery can result in selective BMP delivery to targeted sites.66 There are 
significant challenges in cancer therapeutics, where precise targeting is needed, and normal physiological functions 
disrupted should be minimized, but specificity is absent. In addition, the leakage of BMPs into healthy brain regions 
disrupts normal differentiation of the neural cell process and can become neurotoxic.67

To overcome these issues, methods for targeted delivery have been developed. In vivo, BMP delivery becomes more 
specific with nanoparticles functionalized with tumor homing peptides or antibodies. While selective ligand nanoparticles 
toward glioma-specific receptors, such as integrins or epidermal growth factor receptor (EGFR), have shown modest 
improvements in preclinical models, selectivity for glioma has not been achieved yet.68,69 Through the guided accumula-
tion of magnetic nanoparticles under an external magnetic field, the accumulation of BMPs in tumor tissues was shown to 
be effective.55,70 Additional innovation in the delivery of BMPs limits off target effects and increases the therapeutic 
potential of BMPs.37,71

Immune Response to Exogenous BMPs
Another challenge in the practical therapeutic application of exogenous BMPs is the immune response they elicit. In the 
absence of these proteins within the tumor microenvironment, immunity is notably activated, particularly following 
systemic administration. Abnormalities in the anti-BMP immunities which put forward the scenario where immune 
system recognizes BMPs as antigens and this creates an immune response including generation of the inhibitory 
antibodies and pro-inflammatory signals which causes the ineffectiveness of BMPs.72,73 Exacerbating tumor associated 
inflammation may further complicate glioma treatment.74

There are several ways researchers can overcome immune-related challenges. The stealth nanoparticles of interest are 
those coated with polyethylene glycol (PEG), which have been used to encapsulate BMPs. TEGylation (or protein 
masking via PEGylation) of protein prolongs its circulation time and increases its bioavailability.75 Further, engineering 
BMP analogs with reduced immunogenicity, or fusing BMPs with immunosuppressive molecules, may further reduce 
immunogenicity while retaining the ability to mediate therapeutic efficacy.55,76 Localization of delivery is explored by 
preclinical studies in various forms, such as intracranial implants, in order to minimize systemic exposure and reduce the 
likelihood of an immune reaction.77

Strategies for BMP Delivery Across the Blood–Brain Barrier
Regulation of BBB permeability is highly restricted and influenced by various tissue characteristics, making the systemic 
delivery of therapeutic molecules particularly challenging.78,79 To address this issue, the objective is to explore advanced 
nanoparticle-based strategies, where BMPs can be encapsulated within nanoparticles. This encapsulation not only 
protects BMPs from degradation but also facilitates their passive or active transport across the BBB, thereby enhancing 
their therapeutic efficacy.55
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Nanoparticle-Based Delivery Systems
Due to the capacity of nanoparticles to penetrate through the blood–brain barrier and deliver to the gliomas, its use in 
systemic delivery of therapeutic medication has gained popularity. Lipid nanoparticles (LNPs) are an efficient delivery 
system with benign biocompatibility and the ability to cross biological membranes.80 In these particles, BMPs are 
centered in a lipid bilayer to protect them from enzymatic breakdown and immune clearance. Lipid nanoparticles can be 
functionalized with specific ligands or peptides to facilitate transcytosis through the BBB mediated by receptor 
processes.81 Receptor interactions of LNPs with brain endothelial cells enhance the transport of LNPs with transferrin 
or apolipoprotein ligands.82 Endosomal escape of completed LNPs containing BMPs allows them to reach their target 
cells in glioma, where they are essential, facilitating BMP delivery. Lipid nanoparticles associated with polyethylene 
glycol (PEG) stabilizers suppress immune clearance and increase the concentration of BMPs at the tumor site resulting in 
enhanced circulation time. As demonstrated by liposome application in approved mRNA vaccines, lipid-based nanopar-
ticles also hold great promise for clinical translation.83

Advantages of polymeric nanoparticles include adjustable size; customizable surface properties; and ability to 
facilitate sustained release of BMPs over an extended period. They are biodegradable polymers-based nanoparticles 
such as poly (lactic-co-glycolic acid) or chitosan, releasing their cargo during degradation progressively.84 To optimize 
efficacy, BMPs are administered by sustained release, which both deliver therapeutic concentrations at the tumor site and 
minimize systemic exposure. Ligands, for example folic acid or antibodies targeting glioma markers, can be surface 
modified with polymeric nanoparticles to allow selective uptake by tumor cells.85 We design polymeric nanoparticles 
which can selectively release BMPs within the tumor microenvironment in response to specific environmental stimuli, 
such as pH or enzymatic activity. Dual drug-BMP delivery systems in the form of polymeric nanoparticles are used to 
deliver chemotherapeutic agents and BMP to inhibit glioma growth.86 Finally, these systems can successfully traverse the 
blood–brain barrier and concentrate within the glioma tissue; thus, they hold great promise for future clinical 
applications.87

The use of inorganic nanoparticles, including gold nanoparticles, silica nanoparticles, and magnetic nanoparticles, for 
BMP delivery is gaining significant attention. These systems can respond to external stimuli, including electromagnetic 
fields, and generate imaging signals, making them suitable for theranostic applications. They hold promise not only for 
targeted therapy but also for monitoring treatment efficacy in real-time.88 Gold nanoparticles with adjustable size and 
surface characteristics may diffuse or be taken up by their surface by receptor mediated uptake in active transport across 
the blood–brain barrier.61 Through photoacoustic techniques, this conjugation enables delivery of therapeutic proteins to 
gliomas.64 The high surface area of silica nanoparticles for BMP loading are functionalized for increased targeting 
efficiency. Remote control movement of magnetic nanoparticles, especially those of iron oxide, can be performed by 
external magnetic field. These BMPs can be incorporated into nanoparticles and delivered across the BBB to reach 
glioma locations, to bypass off target effects.37

Carrier-Mediated Transport Techniques
Carrier-mediated transport techniques utilize biological carriers to enhance BMP delivery across the blood–brain barrier, 
aiming to improve the specificity and efficacy of glioma treatment.89

Transferrin-Modified Delivery Systems
Iron transport in the bloodstream is primarily facilitated by transferrin, a glycoprotein known for its role in transporting 
therapeutic agents across the BBB. However, the selectivity of the BBB poses a challenge for transporting large 
molecules such as BMPs. The transferrin receptor (TfR), which transferrin uses to bind, is abundantly expressed on 
the endothelial cells of the BBB, making it a potential target for enhancing the delivery of therapeutic agents.90,91

There are now numerous data which show that the transport efficiency of BMPs can be greatly enhanced through 
modifications of BMP delivery systems with transferrin.68 BMPs loaded into transferrin-coated nanoparticles exhibit 
enhanced cellular uptake in glioma cells that enhances anti-tumor efficacy. For example, it has been shown that delivery 
and retention of BMP-2 linked to transferrin modified liposomes is superior compared to free BMP-2 and reduces tumor 
size in preclinical models to an impressive extent.92
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In addition, these systems possess dual role of delivering both BMPs and chemotherapeutic agents, which may work 
in synergistic fashion to overcome treatment resistance in typically chemoresistant gliomas.4,93 With targeted delivery, 
this approach not only improves the efficacy of BMPs, but reduces side effects due to the systemic exposure minimizing 
with traditional chemotherapeutics. In addition, transferrin carriers maintain high versatility, allowing for the cosmetic 
special of different BMPs as well as therapeutic agents into the same delivery platform.94

However, stability and release kinetics issues continue for transferrin modified systems. Implicit to achieving optimal 
therapeutic outcomes is ensuring the sustained release of BMPs while maintaining their bioactivity.95 There is ongoing 
research to refine the formulation and mechanism of targeting of transferrin modified delivery systems to further improve 
the performance of these systems in glioma therapy.61,78

Peptide-Based BBB Targeting
Therefore, peptide-based strategies have become a new approach to augment delivery of BMPs across BBB. Specific 
peptides able to bind receptors on the BBB are used for these techniques that utilize transcytosis of the BMPs. For 
example, T7 peptides which have shown potential to increase permeability of therapeutic agents across the BBB by 
modulating receptor mediated endocytosis.96

We have shown that T7 peptide-modified nanoparticles incorporating BMPs can effectively take up in glioma cells 
and substantially augment anti-tumor activity. BMPs are thus allowed to “target” their intended site of action by the 
peptide’s ability to target specific receptors of the BBB. Zhu et al (2023) research indicated that T7 modified BMP 
delivery systems induced significant glioma cell proliferation suppression in vitro, indicating the possibility of T7 
modified BMP delivery systems for targeted glioma therapy.97

The use of RGD (arginine-glycine-aspartic acid) peptides represents another promising approach, since RGD peptides 
are known to selectively bind the integrins overexpressed in glioma cells. Researchers have enhanced the specificity and 
efficiency of BMP delivery by conjugating BMPs to RGD peptides or RGD modified nanoparticles. Recent work has 
indicated that RGD targeted BMP formulations have shown highly enhanced internalization in glioma cells in compar-
ison with non-targeted counterparts resulting in higher therapeutic effects.98

Peptide-based strategies hold exciting promise for BMP delivery, however, peptide-based strategies present chal-
lenges regarding peptide stability, specificity, and the possibility of immunogenicity. However, research is ongoing to 
develop peptide design and delivery systems that will safely deliver BMPs to gliomas without triggering harmful immune 
responses.99

Local Delivery Systems for BMPs in Glioma Treatment
BMPs delivery, either in local or systemic delivery systems, has emerged as an innovative and potentially more effective 
approach for their therapeutic use in glioma treatment.100 Sustained, localized release of these systems is possible with 
minimal systemic side effects and maintains the highest BMP concentrate in the tumor site.55 Local delivery strategies 
that are promising include injectable hydrogels and implantable scaffolds (Figure 4).

Injectable Hydrogels for BMP Delivery
Injectable hydrogels constitute a versatile nanomedicinal platform for local delivery of BMPs owing to their inherent 
biocompatibility, tunable mechanical strength, and its capability for in situ formation. The system can encapsulate BMPs 
and release them in a sustained manner, delivering dose levels over time at the tumor site.101 The advantage of this 
approach is that it requires fewer repeated injections, as well as improving patient compliance.

Materials for hydrogels can be engineered from natural polymers (alginate, chitosan) and synthetic polymers 
(polyethylene glycol). Studies have also demonstrated that alginate-based hydrogels can be used to achieve sustained 
release over several weeks of encapsulated BMP-2. In addition, this sustained release helps prolong cell differentiation 
and improves the therapeutic effect on glioma cells.54 In addition to their ability to promote cell infiltration and 
integration within the surrounding tissue, injectable hydrogels also improve their efficacy. More recently, hydrogel 
formulations have included incorporation of bioactive molecules or growth factors with BMPs, that while synergistic for 
tissue regeneration, also inhibit glioma growth.102 Moreover, the employment of stimuli responsive hydrogels that 
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liberate BMPs in response to environmental stimuli (pH, temperature) is suggested to provide BMP delivery on them, in 
an allegedly controlled fashion for the tumor microenvironment.103 However, challenges in optimizing hydrogel 
composition for BMP stability and activity despite their advantages remain. Development of hybrid hydrogels with 
the potential of combining the complementary properties of various polymer types as well as improving the retention and 
release profile of BMP is suggested as future research.

Implantable Scaffolds for Sustained Release
Another effective local delivery system of BMPs for glioma treatment is implantable scaffolds. Typically designed to 
deliver structural support while allowing for sustained BMPs release, these scaffolds are. In contrast to injectable 
systems, BMPs can be directly implanted into the tumor by surgical means rendering the supply of these factors local 
and continuous. Natural (collagen, gelatin) and synthetic (polylactic acid, polyglycolic acid) polymers are scaffold 
materials that can be grouped into. For example, collagen-based scaffolds have been promising to encourage cell 
adhesion and proliferation as well as suitable environment for BMP action.104 These unique features indicate that BMP- 
loaded scaffolds could be used to achieve combination therapy.105

In addition, the design of scaffolds can be modified to optimize controlled release kinetics, permitting the sustained 
delivery of BMPs over an extended period. It has been found that by embedding BMPs into a porous scaffold, local BMP 
concentrations can be gradually released towards tumor resection.106 Further, the inclusion of additional therapeutic 
agents between and within the scaffold matrix allows a multi-fold therapeutic approach encompassing both tumor growth 
and the surrounding microenvironment.107

Figure 4 Local Delivery Systems for Bone Morphogenetic Proteins in Glioma Treatment.

International Journal of Nanomedicine 2025:20                                                                                   https://doi.org/10.2147/IJN.S518340                                                                                                                                                                                                                                                                                                                                                                                                   7103

Bao et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



However, the challenges around implantable scaffolds are foreign body reactions and the requirement for implanta-
tion. To account for these concerns, biocompatible and biodegradable materials are used, to prevent complications from 
occurring as the scaffolds degrade over time.108 Being a therapeutic application of Glioma, scaled investigations are 
being carried out on how to refine the scaffold design to optimize the delivery of BMP as a therapy to increase the 
outcomes of treatment.

Microspheres and Nanofibers for Localized BMP Delivery
BMPs in the treatment of glioma lend themselves to local delivery using microspheres and nanofibers. These systems 
deliver precise control over the release kinetics: sustained delivery with reduced risk of exposure to the systemic 
circulation. The microspheres are spherical particles composed of biodegradable polymers, for example poly (lactic-co- 
glycolic acid) (PLGA) that dissolve in time to release encapsulated BMPs.86,109 Unlike the polymer fibers, nanofibers are 
polymer fibers based with a high surface area for BMP adsorption and delivery for interaction in the tumor microenvir-
onment. Particularly favorable are microspheres for having the capacity to enwrap BMPs without negatively affecting 
their bioactivity. The gradual and sustained BMP release from the polymer matrix facilitated a slow degradation of the 
polymer matrix that is the prerequisite for maintaining a gradual BMP release and promoting the differentiation of glioma 
cells and suppression of tumor growth.110

These systems can also be given locally, circumventing the BBB and lowering off target effects. In addition, some 
formulations contain dual-release systems in which BMPs are used in combination with chemotherapeutics to suppress 
tumors synergistically.111 An alternative platform based on nanofibers offers unique mechanical and biological properties. 
These materials can be functionalized with BMPs and other growth factors to electrospun nanofibers, which facilitate 
improved therapeutic results. BMP loaded nanofibers have been shown to differentiate glioma stem cells, while at the 
same time inhibiting proliferation.112 Nanofibers have tunable degradation rates and high porosity, making them good 
candidates for long-term implantation with subsequent continuous BMP release. However, microspheres and nanofibers 
have their challenges, including being susceptible to an immune reaction and not having a precise way to precisely 
control release. Biocompatibility of platinized nanoparticles and fine tuning the degradation rates to match the therapeutic 
requirements for glioma treatment aims at improving the effectiveness of therapy.113

Intratumoral Injection of BMPs: Limitations and Benefits
Direct method of BMPs delivery to glioma tissues is intratumoral injection, which delivers localized treatment, that avoids 
systemic circulation. This technique enables delivery of high concentrations of BMPs to benefit the tumor site. Gliomas 
resistant to conventional therapy can be particularly well treated with intratumoral injection for the direct modulation of 
tumor cell behavior through BMP-induced differentiation and apoptosis. The circumvention of the barrier posed by the BBB 
is one of the main advantages of intratumoral injection. This approach avoids the need for carriers or modifications 
permitting BBB penetration by delivering BMPs directly to the tumor. BMP-2 and BMP-4 have been shown to decrease 
glioma proliferation and induce differentiation of malignant to non-malignant cancerous phenotypes.37,114

In addition to reducing the systemic toxicity with high BMP doses, this localized delivery also reduces BMP dose to 
the patient. Nevertheless, there are some limitations regarding intratumoral injection. Short half lives coupled with rapid 
degradation of BMPs in the extra cellular environment require repeated injections to achieve and maintain desired levels 
of BMP. Furthermore, this invasive nature may be of patient safety concern since it may possibly lead to tumor 
dissemination during such a procedure.115 The stability and activity of BMPs in the tumor microenvironment is being 
improved using strategies including administering stabilizing agents or encapsulating the BMPs in protective matrices.

Emerging Advances in BMP Delivery Technologies
Smart Nanocarriers for Stimuli-Responsive Release
Delivery of BMPs has been revolutionized by smart nanocarriers with stimuli responsive, precise and controlled release. These 
systems are triggered by environmental stimulus, including pH, temperature, or oxidative stress, within the tumor microenvir-
onment. To illustrate, gliomas develop an acidic microenvironment that may inadvertently facilitate the release of encapsulated 
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BMPs from pH sensitive micelles or hydrogels, thereby minimizing premature release and enhancing targeting efficiency.99 In 
addition, it is possible to design thermosensitive lipid nanoparticles to disassemble at body temperature thereby increasing BMP 
release around the glioma site. This localized delivery is further ensured by the fact that enzyme-sensitive systems release their 
cargo when they interact with the specific proteases overexpressed in gliomas, including matrix metalloproteinases (MMPs).116 

Synchronizing BMPs release with biological environment, these smart nanocarriers bolster the therapeutic potential and 
minimize off-target effects of BMPs. Nevertheless, there are still challenges in scaling up production and stability of these 
nanocarriers in blood circulation.60

Gene Therapy Approaches for BMP Expression in Glioma
Suppression of miR200 Fusion and direct delivery of BMP coding sequences into tumor cells represent promising gene 
therapy strategies for sustained BMP expression in glioma tissues.117 As an alternative to this approach, the short half life 
and rapid degradation of BMP proteins in circulation is bypassed. This purpose is usually conducted using viral vectors, 
such as adenoviruses or lentiviruses, which enable BMPs continuous production in glioma cells.118 There exists a great 
deal of difficulty in inducing immune responses by viral vectors, and research has focused on non-viral alternatives, 
namely lipid nanoparticles and polymeric carriers.

BMP-2 and BMP-7 gene delivery has recently been shown in glioma stem cells to cause differentiation, which 
decreases this tumorigenic potential.119 Furthermore, additional effects have been found using BMP gene therapy in 
conjunction with chemotherapeutic agents and together, they have synergistically inhibited tumor growth. Promising 
however, clinical translation of BMP gene therapy is hindered by the need for precise control of transgene expression and 
minimization of off target effects.120

Exosome-Mediated Delivery of BMPs to Glioma Cells
Naturally occurring extracellular vesicles, exosomes, have been shown to be effective delivery vehicles for BMPs due to 
their ability to cross the BBB and to deliver to glioma cells with minimal immunogenicity. To manifest specificity for 
glioma tissues, these vesicles can be loaded with BMP proteins or BMP-encoding RNA sequences and modified with 
targeting ligands. Exosome-based delivery systems have many advantages: low toxicity, ability to deliver to many 
different cell types, and ability to be repeatedly dosed without a strong immune response.121

Based on these preclinical models, exosome-mediated BMP delivery at therapeutic concentrations seems promising in 
promoting glioma cell differentiation, differentiation, reduction of stemness, and ensuing reduction in tumor growth.122 

Despite these challenges, the yield of exosomes remains low and there is variability in targeting efficiency; this approach 
cannot be clinically adopted.

CRISPR/Cas-Based BMP Engineering for Enhanced Efficacy
CRISPR/Cas forms the genetic engineering hammer of precision, virtually rewiring gene expression. To control BMP 
expression at the genomic level within glioma therapy, researchers are looking into regulating BMP expression as 
a function of the CRISPR/Cas system either by inserting BMP coding sequences into tumor cells or upregulating BMP 
receptors. In combination, this strategy can increase glioma sensitivity to endogenous and exogenous BMPs, thus 
improving therapeutic outcome.123

Additionally, BMP signaling in glioma cells is being investigated via CRISPRa systems to activate the system and 
drive differentiation and apoptosis of the cells. However, due to the BBB, it is a great challenge to deliver CRISPR 
components across the BBB, and one would have to use advanced vehicles such as lipid nanoparticles or viral vectors. 
Furthermore, the risk of off target gene editing must be minimized to achieve the safety and efficacy of this.124

Preclinical and Clinical Studies on BMP Delivery in Glioma
Key Findings from Preclinical Studies
Innovative strategies for overcoming the delivery challenges in the brain microenvironment for BMP delivery in glioma 
have been investigated in preclinical studies. Insights into how BMPs can modulate tumor behavior, induce 
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differentiation in cancer stem cells, limit tumor progression are derived from both in vivo animal models and in vitro 
glioma cell lines.19,22 These studies also point to the development of advanced delivery technology (nanoparticles or 
hydrogel) to maintain BMP stability, decrease degradation, and improve therapeutic outcome. Promising results in 
in vivo studies (rodent glioblastoma models, eg, murine orthotopic models) have been reported. When encapsulated in 
polymeric nanoparticles or delivered through hydrogel scaffolds, BMPs such as BMP-2, BMP-4 and BMP-7 both 
reduced tumor volume and improved survival outcomes.55,125 In a mouse model study using BMP-4 loaded chitosan 
nanoparticles, survival rates were greatly increased, and glioma cell differentiation was enhanced. In addition, researchers 
have investigated methods of local delivery (intracranial injections) that would bypass the BBB to maintain sufficiently 
high BMP concentrations at the tumor site.20,48

The advantage of the sustained-release formulations is the ability to have BMP bioactivity over sustained periods of 
time, which is important in glioma therapy reasoning the aggressive nature of the disease. Current challenges include 
immune reactions to exogenous BMPs, and variable tumor response. BMPs promote glioma stem cell differentiation 
in vitro to a nonproliferative state which degrades tumor aggressiveness in glioma cell lines (U87, U251).99,126 BMP2 
and BMP7 studies show that these molecules inhibit glioma stem cell-like cell self renewal, which improves the 
chemotherapy and radiation treatment. BMPs have also been shown in combination with other therapeutic agents to 
work in synergy with effect on apoptosis and reduce the migratory potential of cancer cells.74 Also, crosstalk between 
BMP pathways and key oncogenic signaling cascades, such as PI3K/AKT and Wnt, was observed during the in vitro 
studies.19 These interactions also convey a glioma cell network that is intricately regulated and hints at the possibility of 
combination therapies targeting multiple pathways.

Clinical Trials and BMP-Based Glioma Therapies
Early phase clinical trials have been initiated to evaluate the safety, tolerability, and potential therapeutic application of 
BMPs in glioma patients with the clinical translation of BMP-based therapies still in its infancy. The aim of these trials is 
to determine optimal dosing strategy and safety profile as well as optimal delivery routes. BMPs have been first used to 
test their safety in glioma patients, and this has shown them to be feasible using localized delivery methods where 
systemic exposure is limited and off target effects are reduced. Immune responses to BMP-loaded nanoparticles and 
scaffolds used in these trials are minimal, with the only adverse effects slow resolution of inflammation around the 
injection site.127

Differentiated localized BMP delivery has been achieved via intracranial delivery using either catheters or injectable 
hydrogels to bypass BBB and reduce systemic toxicity.128 Additionally, these approaches greatly facilitate the precise 
dosing of BMPs directly at the tumor site minimizing potential off target effects. Preliminary trials show that BMP-based 
therapies can improve overall response and quality of life for patients with recurrent glioblastomas. BMP loaded 
nanoparticles have been shown in some, albeit limited, clinical studies to provide longer progression-free survival and 
reduced rates of tumor recurrence than standard therapies alone. Moreover, BMPs have been used in combination with 
conventional treatments, such as temozolomide chemotherapy and radiotherapy, to improve therapeutic outcomes, 
presumably through BMP consequent glioma stem cell differentiation.129

Nevertheless, these findings should be confirmed in larger, randomized clinical trials before these BMP-based 
therapies become routine clinical practice. Likewise, the variability in the individual responses to BMP treatment 
underscores the need for personalized treatment approaches that deliver BMP strategies that target these same tumor 
characteristics on a patient-specific basis. Table 1 shows the latest research about the BMPs Affecting Gliomas. It 
summarizes important empirical data, delivery strategies, potential direct therapeutic applications, and citations of studies 
reviewing the use of BMPs in glioma management.

Challenges and Future Prospects
BMPs delivery to glioma is an enormous challenge, which is due mainly to the BBB, that impedes the transportation of 
therapeutics into the brain. Nevertheless, nanotechnology driven solutions, such as lipid, polymeric and inorganic 
nanoparticles, that have demonstrated their ability to enhance BMP delivery by stabilizing the proteins, encapsulating 
proteins, and controlled delivery.132 Additional precision in delivery is provided by stimuli-responsive carriers which are 
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activated upon exposure to environmental changes (pH, temperature). Hybrid platforms featuring nanoparticles with 
surface modifications (PEGylation) also enhance penetration of the BMP, while minimizing immune recognition.55

New synergies can be formed by combining BMPs with standard chemotherapeutic agents such as temozolomide 
(TMZ). BMPs direct glioma cells to differentiate, leading to a drop in the invincible cancer stem cell pool for recurrence 
and resistance.65 The combination of BMPs with these modalities improved survival and slowed tumor progression 
compared to any of the modalities alone in murine glioma models, according to preclinical data.133

Personalized medicine, with molecular profile tailored treatments, however, represents a major advantage given the 
heterogeneity of gliomas. RNA sequencing and tumor-specific biomarker identification can be used to choose the most 
efficient BMP-based treatment per patient. In addition, the CRISPR/Cas9-based engineering of BMPs provides enhanced 
selectivity in which BMP signaling pathways that are relevant to each tumor are precisely targeted.134 As this approach 
protects against off target effects and optimizes therapeutic outcome, it is preferred to earlier design approaches.

To use exogenous proteins such as BMPs, and indeed to use gene-editing technologies, has regulatory and ethical challenges. 
Comprehensive safety assessments are a requirement of regulatory bodies such as the FDA of new delivery platforms and new 
therapeutic combinations. Gene-edited cells, genetically modified BMP constructs and their applications pose ethical issues too 
including transparency in protocols for patient consent and clinical trial design. In addition, GMP compliant scalable production 
processes will be necessary for the development and safety and availability of these therapies.135

BMPs have demonstrated efficacy in reducing revision surgery rates for pseudarthrosis in adult spinal deformity 
cases. However, their clinical application is limited by their high production costs. For instance, a study reported that the 
mean direct cost of BMP for index surgery was $14,000 ± $6400.136 Similarly, another analysis indicated that the mean 
direct cost of BMP per patient was $10,444 ± $4607.137 To reduce these costs, researchers are exploring alternative 
strategies, such as generating shorter peptides that mimic the therapeutic effects of full-length BMPs. These shorter 

Table 1 Overview of the Latest Research About the BMPs Affecting Gliomas. It Summarizes Important Empirical Data, Delivery 
Strategies, Potential Direct Therapeutic Applications, and Citations of Studies Reviewing the Use of BMPs in Glioma Management

No. Study Key Findings Delivery Method Clinical Implications Reference

1 BMP4 Targeting 

Glioma Stem-Like 

Cells

BMP4 reduces glioma stem-like cells (GSCs) 

through differentiation and apoptosis, 

enhancing therapeutic sensitivity.

Biocompatible 

peptide amphiphile 

nanostructures for 
BMP4 binding.

Potential as a therapeutic 

molecule for pediatric 

malignant gliomas.

[15]

2 Growth-Inhibitory 
Activity of BMP4 in 

Human Glioblastoma

Identified heterogeneity in BMP4 
responsiveness among glioblastoma 

initiating cells (GICs); SOX2 mediates 

response.

Evaluation across 
40 human GIC 

cultures.

Highlights the need for 
biomarkers to predict 

treatment outcomes.

[130]

3 Therapeutic Potential 
for BMP4 in Human 

Malignant Glioma

Favorable results with BMP4 bioengineered 
for tumor-targeted delivery.

Human NSC virus 
and other materials.

Suggests new avenues for 
targeted glioma therapy.

[37]

4 BMP Signaling in 

Pediatric Diffuse 

Midline Gliomas

Discusses BMP pathway activation’s role in 

pediatric gliomas and its therapeutic 

potential.

Not specified; 

focuses on pathway 

activation.

Emphasizes the need for 

targeted therapies in 

pediatric cases.

[65]

5 BMP2 as a Therapeutic 

Target in Glioblastoma

Inhibition of BMP2 signaling leads to 

reduced proliferation and increased 
apoptosis of glioblastoma cells in vitro and 

in vivo models.

Small molecule 

inhibitors targeting 
BMP2 pathways.

Highlights potential for 

developing targeted 
therapies against 

glioblastoma growth.

[46]

7 Role of BMP7 in 

Modulating Tumor 

Microenvironment in 
Glioblastoma

BMP7 alters the tumor microenvironment, 

promoting anti-tumor immunity while 

inhibiting tumor growth in preclinical 
models.

Localized delivery via 

hydrogels in animal 

studies.

Suggests a dual role for 

BMP7 in therapy and 

immune modulation.

[131]
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peptides could potentially retain the biological activity of BMPs while being more cost-effective to produce. 
Additionally, advanced drug delivery systems like biodegradable hydrogels, polymeric microspheres, and nanoparticles 
are being developed to enhance BMP stability and targeted delivery, thereby reducing the required dosages and 
associated expenses. Pharmaceutical companies are working on advanced delivery platforms, implantable BMP-loaded 
scaffolds that can maintain protein release and long-term efficacy. Demonstrating cost-effectiveness, scalability and 
safety is going to be pivotal in enabling clinical adoption. Furthermore, the challenges to bringing these novel solutions 
into the mainstream of oncology care need to be addressed by healthcare providers and regulatory authorities.138 In 
addition, academic institutions collaborating with industry will be crucial to successful commercialization and patient 
access to treatments based on BMPs.

Methodology
A systematic literature review was conducted to assess recent advances in BMP delivery for glioma treatment. Key words 
“Bone Morphogenetic Proteins”, “Glioma treatment”, “Blood-Brain Barrier”, “Nanoparticle-based delivery”, and “Gene 
therapy strategies” were used to search PubMed, Scopus, and Google Scholar for published studies. Selected articles 
focused on BMP delivery methods, challenges, and preclinical/clinical outcomes. Data were extracted and synthesized to 
highlight emerging trends and therapeutic efficacy, ensuring the inclusion of high-quality, relevant studies.

Conclusion
This review examines the potential of BMPs in differentiating, inducing apoptosis, and modulating glioma stem cells, 
highlighting their therapeutic promise for glioma treatment. However, several challenges remain in the effective delivery 
of BMPs to gliomas, including issues related to degradation, limited penetration across the blood–brain barrier, and the 
risk of immune responses. Overcoming these obstacles relies on recent advancements in nanoparticle delivery systems, 
gene therapy, and CRISPR/Cas-based engineering. Additionally, exosome-mediated BMP delivery to differentiated cells 
has emerged as a novel approach for targeted therapy. Future research should focus on integrating these advanced 
delivery platforms with personalized medicine strategies to enhance therapeutic precision. BMPs hold significant 
potential for combinatorial treatments, synergistically working with chemotherapy, immunotherapy, and other targeted 
agents to reduce tumor recurrence and improve clinical outcomes. The development of new gene-editing technologies 
underscores the need to address ethical, regulatory, and safety challenges to enable clinical translation and commercia-
lization. Ultimately, optimized BMP delivery systems may enhance glioma patient outcomes and serve as a foundation 
for the development of more effective therapies with broader clinical applications.
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