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Background: Cervical cancer still has high incidence and mortality rates worldwide. This study aimed to evaluate the prognostic 
value of anoikis-related genes (ARGs) and develop a risk scoring model for accurate survival prediction in cervical cancer patients.
Methods: The expression profiles of cervical cancer tissue and survival data were downloaded from TCGA-CESC and CGCI- 
HTMCP-CC. We identified 83 ARGs significantly associated with patients’ survival. Subsequently, we developed a risk-scoring model 
based on 10 key genes. We assessed the predictive performance of our model by survival analysis, ROC curve analysis, and 
a nomogram that incorporated clinical factors. Additionally, we validated the expression of Granzyme B (GZMB) by immunohisto-
chemical staining. Furthermore, we compared the biological processes and pathway enrichment in high-risk and low-risk patient 
groups, using differential gene expression and functional enrichment analysis. Finally, we investigated the immune microenvironment 
of patients in both high-risk and low-risk groups.
Results: Patients in the high-risk group had significantly poorer survival compared to those in the low-risk group. The immunohis-
tochemical results suggested that GZMB was associated with the prognosis of cervical cancer patients. The risk scoring model 
showed high accuracy in predicting the prognosis of cervical cancer patients. Differential gene expression analysis revealed enriched 
pathways related to tumor invasion and metastasis in the high-risk group. Conversely, the low-risk group showed a strong association 
with the activation of immune response pathways.
Conclusion: This study concluded that anoikis-related genes played a crucial role in determining the prognosis of individuals with 
cervical cancer. This discovery not only presented potential biomarkers but also provided valuable insights for informing treatment 
strategies. The risk scoring model may assist clinicians in better identifying high-risk patients and personalizing treatment plans.
Keywords: cervical cancer, anoikis-related genes, risk model, immune microenvironment, GZMB

Introduction
Cervical cancer plays a significant role in global morbidity and mortality rates among women, with 604,127 new cases 
and 341,831 deaths in 2020 globally.1 Current screening methods, such as cytology, human papillomavirus testing, and 
colposcopy, have limitations in their specificity and sensitivity, leading to a high rate of false-negative results.2 Therefore, 
novel biomarkers with improved accuracy and reliability are urgently needed to enhance the early detection, personalized 
treatment, and prevention of misdiagnosis and underdiagnosis of cervical cancer.3 This research area is of great 
importance as it aims to improve the management and outcomes of cervical cancer patients.

Anoikis is a specialized form of programmed cell death that occurs when cells lose their attachment to the 
extracellular matrix (ECM) or neighboring cells.4 This mechanism plays a critical role in maintaining cellular home-
ostasis and facilitating proper tissue development. In typical physiological conditions, cells rely on these connections 
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with the ECM and adjacent cells to regulate their proliferation and differentiation. However, when these connections are 
compromised or disrupted, anoikis is initiated to ensure the preservation of normal physiological states.5 Anoikis is 
primarily regulated through the interplay of two apoptotic pathways, involving the activation of cell surface death 
receptors and interference with mitochondrial function.6 Notably, in certain pathological conditions, such as cancer, cells 
can develop resistance to anoikis. Extensive research has shown that cancer cells’ resistance to anoikis enables them to 
detach from their original anchorage-dependent growth, migrate through the lymphatic and circulatory systems to distant 
sites, and continue to grow and proliferate.7–9 Consequently, Anoikis resistance is considered a critical initial step in 
tumor invasion and metastasis. Furthermore, this resistance can reconfigure the tumor microenvironment, facilitating 
immune evasion and rendering the tumor cells resistant to chemotherapy.9–11 Nonetheless, the specific mechanisms 
underlying the role of anoikis-related genes (ARGs) and pathways in cervical cancer remain poorly understood. 
Therefore, there is a significant need to identify cervical cancer-specific anoikis-related biomarkers, investigate their 
underlying mechanisms, and explore their implications for prognosis. This endeavor has substantial clinical relevance 
and with the potential to significantly enhance the early diagnosis and personalized treatment of cervical cancer.

The study aimed to identify and validate key ARGs that are associated with prognosis in cervical cancer based on 
public datasets from The Cancer Genome Atlas (TCGA) and the Cancer Genome Characterization Initiative (CGCI). We 
also developed a risk score model to facilitate individualized prediction of survival outcomes. The main objective was to 
identify novel biomarkers and methodological foundations for personalized screening, targeted therapy, and prognostic 
assessment for cervical cancer.

Materials and Methods
Data Acquisition and Organization
We obtained the gene expression data (RNA-seq) for TCGA cervical squamous cell carcinoma and endocervical adenocarci-
noma (TCGA-CESC) and CGCI HIV+ Tumor Molecular Characterization Project (CGCI-HTMCP-CC) from the GDC database 
maintained by the National Cancer Institute, with pertinent clinical and survival data (https://portal.gdc.cancer.gov/repository as 
of October 14, 2023). Table 1 provides comprehensive clinical details for bothcohorts. To harmonize the expression data from 
these two datasets, we applied the R package ‘sva’ to mitigate batch effects inherent in different cohorts. Furthermore, we 
retrieved 700 ARGs from the Genecards (https://www.genecards.org/, as of October 2, 2023) and the Harmonizome portal 
(https://maayanlab.cloud/Harmonizome/, as of October 2, 2023). The whole-exome sequencing (WES) and copy number data 
were also downloaded from the TCGA database. The expression array datasets (GSE9750 and GSE52903) were downloaded 
from Gene Expression Omnibus (GEO) database. The immunohistochemistry result was retrieved from Human Protein Altas 
(HPA) database.

Identification of Anoikis-Related Patterns
In this study, we initially screened 503 candidate ARGs using univariate Cox regression, a standard method for 
preliminary prognostic biomarker identification.12,13 Although univariate Cox analysis cannot account for gene 
interactions, it is an efficient initial screening tool to identify candidate genes significantly associated with survival 
(p < 0.05), reducing dimensionality for subsequent modeling. The primary purpose was to establish a prognostically 
relevant gene set as input for LASSO regression analysis and further exploration. This initial screening identified 83 
prognostically relevant ARGs from the RNA-Seq data. We used the expression profiles of these ARGs to investigate 
potential anoikis-related molecular subtypes using the R package ‘ConsensusClusterPlus’. The optimal number of 
clusters was determined using a consistency matrix. Principal Component Analysis (PCA) was employed to assess 
subtype stability, and survival differences were evaluated using Kaplan-Meier analysis. An expression heatmap was 
also generated to illustrate differences between the subtypes.

Construction and Evaluation of the Anoikis-Related Prognostic Signature
To establish and appraise prognostic markers associated with anoikis, we randomly allocated 385 patients into a training 
set (n=231) and a validation set (n=154), employing the R package ‘caret’. In the training set, the Least Absolute 
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Shrinkage and Selection Operator (LASSO) was employed on the 83 prognostically relevant ARGs to select key 
predictors, balancing model robustness and overfitting control. The ‘glmnet’ package was used, and the optimal 
regularization parameter (lambda) was determined via 10-fold cross-validation based on the minimum partial likelihood 
deviance. This process identified 10 ARGs with non-zero coefficients. The risk score calculation formula is delineated as 
follows:

The specific formula derived was: risk score = (0.098 * SPP1) + (0.116 * CXCL8) + (−0.239 * TP73) + (−0.280 * 
GZMB) + (0.310 * ITGA5) + (0.314 * ENDOG) + (−0.356 * CSK) + (−0.377 * MAP2K2) + (−0.397 * PRKACA) + 
(0.538 * KDM3A). Patients in both the training and validation sets were categorized into high-risk and low-risk groups 
based on the median risk score calculated in the training set. The prognostic accuracy of the risk score was evaluated 
using Kaplan-Meier survival curves (Log rank test) and time-dependent receiver-operating characteristic (ROC) curve 
analysis at 3 and 5 years in both sets.

Comparative Analysis of Prognostic Models and Selection of the Final Model
To rigorously validate the reliability of the model constructed using our selected methodology, we conducted a 
comparative analysis. This analysis utilized a 10-fold cross-validation strategy, repeated 10 times, on the combined 
TCGA-CESC and CGCI-HTMCP-CC dataset (n=385 after filtering). Crucially, all models compared were trained and 
evaluated using the expression data of the same 10 ARGs (SPP1, CXCL8, TP73, GZMB, ITGA5, ENDOG, CSK, 
MAP2K2, PRKACA, KDM3A) identified through our initial feature selection process described before. This ensured 
a direct comparison of the algorithms’ performance based on the final 10 gene signature. The following models were 
evaluated:

Table 1 Clinical Characteristics of TCGA-CESC and CGCI-HTMCP-CC Datasets

Characteristics TCGA-CESC 
(N=273)

CGCI-HTMCP-CC 
(N=112)

Total 
(N=385)

Age (years) Mean (SD) 47.9 (13.7) 46.9 (10.9) 47.6 (13.0)

Grade G1 16 (6.5%) 6 (5.6%) 22 (7.8%)
G2 126 (51.0%) 54 (50.0%) 180 (63.6%)

G3 104 (42.1%) 48 (44.4%) 152 (53.7%)
G4 1 (0.4%) 0 (0%) 1 (0.4%)

Stage I 149 (55.8%) 18 (16.1%) 167 (44.1%)
II 60 (22.5%) 54 (48.2%) 114 (30.1%)

III 38 (14.2%) 37 (33.0%) 75 (19.8%)
IV 20 (7.5%) 3 (2.7%) 23 (6.1%)

T T1 128 (58.7%) 18 (16.1%) 146 (44.2%)
T2 64 (29.4%) 55 (49.1%) 119 (36.1%)

T3 16 (7.3%) 36 (32.1%) 52 (15.8%)

T4 10 (4.6%) 3 (2.7%) 13 (3.9%)

N N0 118 (69.0%) 21 (67.7%) 139 (68.6%)
N1 53 (31.0%) 10 (32.3%) 63 (31.2%)

M M0 101 (91.0%) 27 (96.4%) 128 (92.1%)
M1 10 (9.0%) 1 (3.6%) 11 (7.9%)

Status Alive 203 (74.4%) 43 (38.4%) 246 (63.9%)
Dead 70 (25.6%) 69 (61.6%) 139 (36.1%)

Survival Time (years) Mean (SD) 3.15 (3.16) 1.20 (0.674) 2.58 (2.83)
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Cox Proportional Hazards Model: Trained using the ‘survival::coxph’ function in R. This standard survival analysis 
method estimates the hazard ratio assuming proportional hazards over time.14

Random Survival Forest (RSF): An ensemble method based on survival trees, implemented using 
the ‘randomForestSRC’ package.15 We used 100 trees (ntree=100) per forest. RSF can capture non-linear effects and 
interactions without the proportional hazards assumption.

XGBoost Survival: A gradient boosting machine algorithm adapted for survival analysis using the Cox partial 
likelihood objective function, implemented with the ‘xgboost’ package.16 We used 100 boosting rounds (nrounds=100).

Gradient Boosting Machine (GBM) Cox: Another gradient boosting approach using the Cox partial likelihood, 
implemented with the ‘gbm’ package.17 We used 1000 trees (n.trees=1000) and an interaction depth of 3.

Model performance was assessed in each fold of the cross-validation using time-dependent Area Under the Curve 
(tdAUC) at 1, 3, and 5 years (calculated using the timeROC package) on both the training and testing sets. The average 
performance across all repeats and folds was calculated.

Based on this comparative analysis, considering model robustness (similarity between training and test performance), 
predictive accuracy, and interpretability, the LASSO-Cox approach (used for initial feature selection) leading to the 10- 
gene Cox model was chosen as the final prognostic model for subsequent analyses and nomogram construction.

Immunohistochemistry
To evaluate the prognostic function of Granzyme B (GZMB), we used the tissue microarray (TMA) obtained from 
Shanghai Outdo Biotech Co., Ltd. (Shanghai, China). It consisted of 126 cervical cancer tissues and 42 pair-matched 
normal samples, and the corresponding clinical information is available online. The TMA slide was dried at 60°C for 
1 hour, dewaxed in xylene, and dehydrated in a gradient ethanol series. Antigen retrieval was performed by heating the 
slide in a microwave oven in a container filled with EDTA antigen retrieval buffer (pH 9.0). Subsequently, the slide was 
immersed in 3% hydrogen peroxide for 30 minutes to inhibit the activity of endogenous peroxides. Next, the TMA tissue 
was incubated with 10% goat serum (Boster Biological Technology Co., Ltd., Wuhan, China) and blocked at room 
temperature for 1 hour. Then, the TMA slide was incubated with anti-GZMB (1: 100 dilution, 13588-1-AP, Proteintech 
Group, Wuhan, China) for 2 hours at room temperature. The tissue was incubated at room temperature for 50 minutes 
with horseradish peroxidase (HRP)-labeled goat anti-rabbit secondary antibody (1:200 dilution, GB23303, ServiceBio, 
Wuhan, China). Then, the tissue was stained with diaminobenzidine (DAB) for 90 seconds. Finally, the slide was 
counterstained with hematoxylin, dehydrated, and mounted. To evaluate IHC staining, semi-quantitative scoring criteria 
were used. The stained slide was scored by 2 observers using a semi-quantitative hybrid (H) scoring method: H-score = 
(% cells of 0 intensity) + (% cells of 1+ intensity × 1) + (% cells of 2 + intensity × 2) + (% cells of 3 + intensity × 3) + (% 
cell of 4 + intensity × 4). The staining intensity was classified as follows: 0 (negative), 1 (weak), 2 (moderate), or 3 
(strong). The staining area was defined as the distribution of positively stained tumor cells.

Clinical Factor Stratification Analysis and Development and Validation of Nomogram
We conducted an analysis to assess the correlation between the risk score and various clinical characteristics, including 
patient age, grade, TNM and FIGO stage. For analyses involving clinical variables (age, grade, T stage, FIGO stage), 
patients with missing data in any of these variables were excluded from the corresponding analysis. Additionally, we 
performed stratified survival analysis based on tumor stage (T and FIGO) to evaluate differences in survival between high 
and low-risk groups. To enhance the clinical applicability of the risk score, we integrated it with clinical features to 
develop a nomogram for predicting 3- and 5-year survival in patients with cervical cancer. The accuracy of the 
nomogram was assessed through ROC curves, C-index, calibration curves, and DCA curves.

Identification of Differentially Expressed Genes and Functional Enrichment Analysis
Differentially expressed genes (DEGs) between high- and low-risk subgroups were identified using the ‘limma’ R 
package, with thresholds of adjusted p-value<0.05 and |logFC| > 1. We performed GO, KEGG, and GSEA analyses using 
the R package ‘clusterProfiler’ to elucidate the functions and pathways associated with DEGs concerning cervical cancer 
prognosis.
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Tumor Immune Microenvironment Assessment in Risk Subgroups
Using the ESTIMATE algorithm, we calculated immune, stromal, and tumor purity scores for each patient. Single-sample 
GSEA (ssGSEA) was performed on immune gene sets with the ‘GSVA’ R package. The CIBERSORT algorithm was 
employed to determine the differential abundance of 22 tumor-infiltrating immune cells (TICs) in both high and low-risk 
subgroups.

Statistical Analysis
All statistical analyses were performed using R software (version 4.3.1). We conducted univariate and multivariate Cox 
regression analyses using the ‘survminer’ package and assessed the survival curves via the Kaplan-Meier Log rank test. 
The nomogram was created using the ‘rms’ package. Decision curve analysis was performed using the ‘ggDCA’ package. 
For data visualization, we used tools such as ‘ggplot2’, ‘ggpubr’, and ‘pheatmap’. Group comparisons were made using 
t-tests or Mann–Whitney U-tests, and differences within groups were assessed through one-way ANOVA. Statistically 
significant was defined as a p-value < 0.05 (*p < 0.05; **p < 0.01; ***p < 0.001).

Results
Identification of Anoikis-Related Genes with Prognostic Value
The study’s workflow is illustrated in Supplementary Figure 1. Initially, we obtained data from the TCGA-CESC and 
CGCI-HTMCP-CC cohorts from the GDC database, encompassing a total of 27,733 genes. To investigate the connection 
between ARGs and survival, we further analyzed these genes by intersecting them with the acquired ARGs, ultimately 
isolating 503 ARGs with expression data. Through univariate Cox regression analysis, we pinpointed 83 statistically 
significant (p <0.05) ARGs that exerted a substantial impact on survival prognosis (Supplementary Table 1). To explore 
the biological functions represented by the prognostically significant ARGs, we performed GO and KEGG functional 
enrichment analyses on the 83 genes significantly associated with prognosis in univariate Cox regression analysis. 
Results showed that these genes were significantly enriched in biological processes and signaling pathways closely 
related to tumor progression, including apoptosis regulation, extracellular matrix remodeling, immune response, and 
angiogenesis (Supplementary Tables 2 and 3). These functional enrichment results support the biological rationale of our 
prognostic model based on ARGs.

Discovery of Anoikis Subtypes in Cervical Cancer
To investigate whether anoikis-related patterns could be employed for molecular subtyping of cervical cancer patients, 
we conducted unsupervised cluster analysis based on the expression profiles of the 83 prognostically relevant ARGs. Our 
findings suggested that k = 2 was the optimal number of clusters (Figure 1A), indicating the categorization of cervical 
cancer patients into two distinct anoikis-related subtypes characterized by ARGs, namely subtype A (n = 194) and 
subtype B (n = 233). Subsequent PCA analysis revealed clear differentiation in the distribution of patients between these 
two subtypes (Figure 1B). Additionally, we generated expression heatmaps to depict the ARG expression in these 
subtypes (Figure 1C). Kaplan-Meier survival curves demonstrated a significantly lower survival rate (p<0.001) for 
subtype A compared to subtype B (Figure 1D).

Prognostic Risk Model Construction and Validation
In order to pinpoint the most robust prognostic predictive features, we executed LASSO and multivariate Cox analyses using 
anoikis gene expression data from the training set (n=232) for screening prognostically relevant ARGs (Figure 2A and B). 
Consequently, we identified 10 genes (SPP1, CXCL8, TP73, GZMB, ITGA5, ENDOG, CSK, MAP2K2, PRKACA, 
KDM3A) for the development of prognostic signature (Figure 2C). The risk score was computed using the formula: risk 
score = (0.098* SPP1) + (0.116* CXCL8) + (−0.239* TP73) + (−0.280* GZMB) + (0.310* ITGA5) + (0.314* ENDOG) + 
(−0.356* CSK) + (−0.377* MAP2K2) + (−0.397* PRKACA) + (0.538* KDM3A). We further incorporated WES data from 
the TCGA database and analyzed mutations and copy number alterations of these genes. Among 304 cervical cancer samples, 
25 (8.2%) carried mutations of ARGs, with the highest mutational frequency observed in KDM3A (3.3%) (Supplementary 
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Figure 2A). Additionally, exploring CNV alteration frequency determined a higher incidence of copy number amplification in 
the CSK, CXCL8, and PRKACA, whereas MAP2K2 and TP73 exhibited a greater frequency of copy number loss 
(Supplementary Figure 2B).

Subsequently, we categorized patients into a high-risk group (n=115) and a low-risk group (n=116) based on the 
median risk score from the training set (Figure 2D and Supplementary Table 4). The results from the survival analysis 

Figure 1 Identification and prognostic significance of anoikis-related subtypes. (A) Consensus clustering analysis identified two clusters (k = 2). (B) PCA analysis of distinct 
anoikis subtypes. (C) Heatmap of the ARGs expression in the two subtypes. (D) Survival analysis of distinct anoikis subtypes.
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Figure 2 The establishment of ARGs risk signature. (A and B) LASSO analysis to screen candidate genes. (C) Coefficient of selected 10 ARGs for risk signature. 
Distribution of risk scores and patient status in (D) training cohort and (E) validation cohort. Survival curves for the (F) training cohort and (G) validation cohort. Time 
dependent ROC curve of the risk model in (H) training cohort and (I) validation cohort.
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demonstrated that the high-risk group had significantly shorter survival times compared to the low-risk group (p<0.001). 
The Kaplan-Meier curves confirmed these results (Figure 2F). ROC curve analysis revealed that the risk signature of 
anoikis exhibited AUC values of 0.822 and 0.834 at 3 and 5 years, respectively (Figure 2H).

In the validation set (n=154), the same risk score formula was employed to calculate risk scores, and patients were 
categorized into high-risk (65 cases) and low-risk (89 cases) groups based on the median risk scores from the training set 
(Figure 2E and Supplementary Table 4). Consistent with the training set results, patients in the high-risk group exhibited 
significantly worse prognoses than those in the low-risk group (p<0.001) (Figure 2G). ROC curve analysis demonstrated 
that the risk profile’s performance in the validation set was also excellent, with AUC values of 0.722 and 0.815 at 3 and 5 
years, respectively (Figure 2I), establishing it as a valuable prognostic indicator.

Immunohistochemical staining was performed to experimentally verify the expression of GZMB, and representative 
staining fields were shown in Figure 3A–D. The results showed that GZMB was significantly overexpressed in cervical 
cancer compared to normal tissue (Figure 3E). High GZMB expression was defined as an H-score greater than the 
median. We conducted stratified survival analysis of GZMB expression and demonstrated the protective prognostic value 
of GZMB, as the samples with high GZMB expression had significantly better survival outcomes than the samples with 
low GZMB expression (Figure 3F–G). Additionally, we preliminarily validated the expression of these genes in cervical 
cancer using two expression profile chips (GES9750 and GSE52903) and the HPA database. The results showed that 
these genes were either upregulated or exhibited an upward trend in cervical cancer (Supplementary Figure 3).
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Figure 3 Experimental validation of immunohistochemical staining of GZMB in TMA cohort and its prognostic value. (A–D) The intensities of GZMB immunostaining were 
(A) negative, (B) weakly positive, (C) moderately positive and (D) strong positive in cervical cancer tissues. Left image, magnification ×50; right image, magnification ×400; 
the red squares indicate the area shown in higher magnification. (E) The H-score of GZMB in cervical cancer and adjacent normal tissues. (F and G) Kaplan–Meier survival 
curves to compare (F) OS and (G) DFS between the high GZMB expression and low GZMB expression patients.
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Comparative Analysis of Prognostic Models
To evaluate the performance of the identified 10-gene signature using different modeling algorithms, we compared its 
performance against several machine learning algorithms (RSF, XGBoost, GBM) using repeated 10-fold cross-validation, 
with all models trained on the same 10-gene signature. The average performance metrics are summarized in 
Supplementary Table 5. While some machine learning models like XGBoost showed high AUC values on the training 
data (eg, 5-year AUC = 1.00), they exhibited a noticeable drop in performance on the validation data (eg, 5-year Test 
AUC ≈ 0.66), suggesting potential overfitting within this dataset. The Cox model demonstrated more stable performance 
across training and validation sets (eg, 5-year Train AUC ≈ 0.824, 5-year Test AUC ≈ 0.803), indicating better 
generalization. These results support the selection of the 10-gene Cox model for its balance of predictive accuracy, 
robustness, and interpretability in this context.

Stratified Analysis of Clinical Factors
We conducted a correlation analysis between risk scores and clinical characteristics (Figures 4A–F). Notably, we found 
that none of the differences in risk scores were statistically significant for patients of different ages, grade, N and 
M stage. However, patients with advanced T stage (T3-T4) and FIGO stage exhibited higher risk scores, indicating that 
our risk score model might encompass key information related to the biological behavior of cervical cancer. 
Subsequently, we performed stratified risk analysis, and the Kaplan-Meier results demonstrated that the risk signature 
exhibited excellent predictive capability in advanced T stage (T3-T4) and FIGO stages (p < 0.001), underscoring its 
reliability and clinical applicability as an independent risk factor (Figure 4G–J).

Establishment of Risk Nomogram
Both univariate Cox regression analysis and multivariate Cox regression analysis demonstrated that risk score, T stage 
and FIGO stage were all significantly linked to overall survival (Figure 5A and B). The findings strongly support the 
independent prognostic value of the risk signature in cervical cancer patients. Subsequently, we generated a nomogram 
illustrating the relationship between grade, age, T stage, FIGO stage and risk score in relation to the calculation of 
survival probability (Figure 5C). The ROC curve analysis indicated that the area under the ROC was 0.819 and 0.834 at 3 
and 5 years, respectively, underscoring its strong prognostic validity (Figure 5D). Additionally, the C-index of the 
nomogram was 0.781. Calibration curves demonstrated significant agreement between the actual and predicted survival 
probabilities at 3 and 5 years (Figure 5E). Moreover, the results from the decision curve analysis at 3 and 5 years 
highlighted the superior predictive performance of the nomogram compared to other independent clinical factors 
(Figure 5F and G).

We also compared the performance of our ARG model with several previously published gene prognostic models for 
cervical cancer. Du et al developed an ferroptosis-based model with an AUC of 0.78 (5-year).18 Shi et al’s autophagy- 
based model demonstrated lower predictive ability with test AUCs of 0.603 (5-year).19 Wang et al’s immunology-based 
signature reported an AUC of 0.815.20 Our ARG model (AUC = 0.83) demonstrates competitive predictive performance 
compared to these benchmarks. However, we acknowledge that this comparison is indirect due to differences in patient 
cohorts, data types, and validation methodologies across studies. Further validation in independent external cohorts is 
needed to definitively establish the superiority of our model.

Differentially Expressed Genes and Functional Enrichment Analysis
To unveil differences in biological functions, we compared gene expression between patients in the high-risk and low- 
risk groups, ultimately identifying 193 differentially expressed genes (DEGs), with detailed information available in 
Supplementary Table 6. The GO enrichment results demonstrated that these DEGs are highly involved in immune system 
activation, production of immunoglobulins and immune mediators, antigen recognition and presentation, and other 
immune response processes (Figure 6A and Supplementary Table 7). The enriched KEGG pathways demonstrated that 
the differentially expressed genes are strongly correlated with activations of immune cell development and differentia-
tion, autoimmunity, inflammatory cytokine production, pathogen recognition, cell adhesion and migration, antigen 
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Figure 4 Relationship between ARGs risk scores and clinical characteristics. (A–F) Differences in risk scores of patients with regard to age, FIGO stage, grade, T, N and 
M stage. (G and H) Survival analysis of patients with OS regrouped according to T stage. (I and J) Survival analysis of patients with OS regrouped according to FIGO stage.
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presentation, and infections (Figure 6B and Supplementary Table 8). The GSEA analysis based on Hallmark gene sets 
demonstrated increased immune responses similar to transplant rejection, activations of interferon signaling, enhanced 
epithelial-mesenchymal transition, and upregulated UV DNA damage responses in the samples (Figure 6C and 
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Figure 5 Establishment and evaluation of a predictive nomogram. (A and B) Results of the univariate Cox regression analysis and multivariate Cox regression analysis 
regarding OS of the risk signature. (C) The nomogram based on ARGs score and clinical characteristics to predict the prognosis at 3 and 5 years. (D) The ROC curves of 
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Supplementary Table 9). These processes have established associations with immune inflammation and cancer progres-
sion. The results provide insights into the biological mechanisms represented by the differential gene expression profile.

Immunosuppressive Microenvironment in the High-Risk Group
To explore the distinctions in the tumor immune microenvironment between the high-risk and low-risk groups, we 
utilized the ESTIMATE algorithm to assess stromal scores, immune scores, and tumor purity in cervical cancer patients 
(Figure 7A). The results revealed significant differences in the tumor microenvironment characteristics between the two 
groups. Specifically, the low-risk group exhibited significantly higher Immune Scores and Stromal Scores (indicating 
greater non-tumor cell infiltration) compared to the high-risk group, while tumor purity showed the inverse trend. Given 
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Figure 6 Biological functional and pathway enrichment analysis of high-risk group and low-risk group based on the risk signature. (A) Top 30 most enriched GO terms 
according to differential genes between high- and low- risk populations. (B) Top 30 most enriched KEGG pathways of the common differently genes between high- and low- 
risk populations (C) GSEA enrichment analysis based on hallmark gene set showing the activation states of biological pathways in high- and low-risk populations.
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Figure 7 Analysis of tumor immune microenvironment in cervical cancer patients. (A) Stroma, immune, and ESTIMATE scores based on ESTIMATE algorithm. (B) The violin 
plots for the infiltration of 22 immune cells according to CIBERSORT analysis. (C) The boxplots for the tumor infiltrating lymphocytes assessments by the ssGSEA algorithm. 
*p < 0.05, **p < 0.01, and ***p < 0.001.

International Journal of General Medicine 2025:18                                                                             https://doi.org/10.2147/IJGM.S508059                                                                                                                                                                                                                                                                                                                                                                                                   2873

Meng et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



the pronounced differences in immune scores, we further evaluated the immune infiltration patterns of 22 immune cell 
types in cervical cancer patients using the CIBERSORT algorithm (Figure 7B). The high-risk group showed higher 
proportions of T cells CD4 memory resting, macrophages M0, activated mast cells and eosinophils, whereas lower 
proportions of B cells naive, plasma cells, CD8 T cells, activated CD4 memory T cells, T cell follicular helpers, 
regulatory T cells, macrophage M1, resting dendritic cells, and resting mast cells were noted. Additionally, further 
immune cell enrichment analysis using the ssGSEA algorithm indicated generally lower immune cell infiltration in the 
high-risk group, aligning with the lower immune scores observed in this group (Figure 7C).

Discussion
Cervical cancer stands as one of the most prevalent malignant tumors affecting the female reproductive system, with 
a persistently high global incidence and mortality rate.21 Early detection and diagnosis are paramount for improving the 
prognosis of cervical cancer patients. While widely utilized screening methods such as cytology and HPV testing have 
achieved some degree of success, their suffer from limited specificity and sensitivity, underscoring the need for more 
effective biomarkers to enhance cervical cancer diagnosis and patient risk stratification.22,23 In this study, we identified 
and validated a novel anoikis-related gene signature, which has significant prognostic value in cervical cancer and 
effectively stratifies patients into distinct risk groups, potentially aiding in personalized risk assessment. These findings 
suggest that anoikis-related genes could serve as promising prognostic biomarkers and provide valuable insights into the 
biological mechanisms underlying cervical cancer progression. Anoikis, a critical form of programmed cell death, 
regulates cell number and tissue structure by inducing cells to detach from extracellular matrix connections, thus 
preventing abnormal proliferation and inhibiting detached cells from reattaching to unsuitable matrices. It plays 
a pivotal role in tumorigenesis, progression, and metastasis.24 In recent years, the scientific community has increasingly 
recognized the significance of anoikis, particularly its links to properties such as anchorage-dependent growth25 and 
epithelial-mesenchymal transition,26 both critical in tumor progression and cancer cell dissemination. Furthermore, 
studies in various malignancies, including osteosarcoma, lung adenocarcinoma, renal clear cell carcinoma, colon 
adenocarcinoma, hepatocellular carcinoma, and bladder cancer, have demonstrated the pivotal roles of anoikis 
regulators.27–32 However, the full extent of the mechanisms and prognostic value of ARGs in cervical cancer remains 
to be elucidated.

Previous studies have indicated that ARGs possess potential predictive value in the prognosis of various cancers, and 
their expression patterns are closely associated with tumor aggressiveness, metastasis, and patient survival. For instance, 
a study by Frisch et al (2016) demonstrated that ARG expression patterns could predict disease-free survival and overall 
survival in breast cancer patients, with patients expressing specific ARG sets exhibiting poorer responses to 
chemotherapy.26 Tan et al (2021) developed an ARG-based risk scoring model that effectively predicted the prognosis 
of lung adenocarcinoma patients and was significantly correlated with tumor mutation burden (TMB) and immune 
infiltration.33 Huang et al (2022) discovered that ARG expression profiles could serve as independent predictors of 
survival and metastasis in pancreatic cancer patients, with EMT-related ARGs being particularly important.34

By integrating expression profiles of cervical cancer tissue and survival data from the TCGA-CESC and CGCI- 
HTMCP-CC datasets, we initially screened for ARGs sourced from the Genecards website and the Harmonizome portal. 
Through univariate Cox prognostic analysis, we identified a set of prognostic relevant ARGs, based on which we divided 
samples into subtype A and subtype B. The significantly poorer prognosis of subtype A suggested that ARGs may play 
a substantial role in cervical cancer prognosis. Using the identified prognostically relevant ARGs, we developed a robust 
risk score model featuring 10 key genes to predict the prognosis of cervical cancer patients. In selecting our final 
prognostic model, we rigorously compared the performance of the LASSO-Cox derived 10-gene signature against several 
machine learning approaches using repeated cross-validation (Supplementary Table 5). While machine learning models 
hold promise for capturing complex interactions, our analysis indicated they were prone to overfitting on this dataset, 
showing high performance on training data but diminished accuracy on unseen test data. The Cox model provided a more 
robust and generalizable performance, while also offering clear interpretability via hazard ratios for each gene. This 
balance justified its selection as our primary model. Our subsequent analyses demonstrated that this model exhibits 
excellent stratification and predictive performance, effectively categorizing cervical cancer patients into high-risk and 
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low-risk groups. Patients in the high-risk group exhibited a significantly poorer prognosis. We found a strong association 
between high-risk scores and T stage and FIGO stage, and the nomogram proved that our risk model had a better 
performance than other clinical factors alone in prognosis prediction, underscoring itspotential clinical utility in 
predicting cervical cancer outcomes. Building on these findings, we further demonstrated the predictive power of the 
ARG-based model in both training and validation cohorts. Specifically, our analysis revealed that patients in the low-risk 
group had significantly higher survival rates compared to the high-risk group, further confirming the close association 
between ARG expression patterns and the malignant progression of cervical cancer. Furthermore, GO and KEGG 
enrichment analyses indicated that these ARGs are primarily involved in crucial biological processes and signaling 
pathways such as cell apoptosis, cell adhesion, tumor microenvironment remodeling, and immune evasion. The aberrant 
activation of these pathways may enhance invasiveness and metastatic potential, enabling cancer cell to evade anoikis 
and drive cervical cancer progression.

Previous studies have shown that ITGA5 is closely associated with the survival and progression of cervical cancer 
patients and effectively promotes angiogenesis via the AKT/VEGFA pathway in cervical cancer.35 Researchers have also 
reported that E6/E7 of HPV16 and 18 regulates the overexpression of CXCL8 in cervical cancer tissues, and that CXCL8 
is associated with malignant status and prognosis in cervical cancer patients.36,37 TP73 was overexpressed in cervical 
cancer and associated with favorable patient prognosis.38 GZMB is involved in programmed cell death and natural killer 
cell mediated cytotoxicity, and plays a key role in LINC02474 inhibiting apoptosis in colorectal cancer.39 And as 
expected, GZMB, overexpressed in cervical cancer tissue, was a significantly protective prognosis marker in our 
experimental validation.

This study employed univariate Cox regression as an initial screening method for ARGs, a commonly used approach 
in biomarker studies.40 Although univariate analysis has inherent limitations, such as its inability to account for 
confounding factors and interactions between variables, it offers the advantages of being intuitive and computationally 
efficient as an initial screening tool. When screening for potential prognostic biomarkers from high-dimensional gene 
data, the strategy of combining univariate Cox regression with subsequent multivariate analysis is widely adopted.41 

Using this analytical strategy, we successfully identified 83 ARGs significantly associated with cervical cancer prognosis, 
laying the foundation for subsequent model construction. To construct the prognostic model, we systematically evaluated 
the applicability of various statistical and machine learning methods. Among them, traditional Cox proportional hazards 
regression, as a standard method for survival analysis, offers direct clinical interpretability, providing hazard ratios (HRs) 
and confidence intervals (CIs), while effectively handling censored data.42 However, the Cox model faces significant 
limitations when dealing with high-dimensional data and is strictly dependent on the proportional hazards assumption. To 
overcome these limitations, we employed the LASSO regression method. LASSO (Least Absolute Shrinkage and 
Selection Operator) effectively enhances model performance with high-dimensional data and in the presence of 
collinearity by introducing an L1 regularization term to simultaneously achieve feature selection and coefficient 
estimation.43,44 We also assessed the potential of various machine learning approaches for prognostic modeling. 
Random Forest, as a tree-based ensemble method, can effectively capture non-linear relationships and complex interac-
tions, is not restricted by the proportional hazards assumption, and exhibits strong robustness to outliers.15 Gradient 
Boosting Machine (GBM) and its optimized version XGBoost optimize predictive performance by sequentially building 
weak learners, and are particularly suitable for handling mixed-type data.45 However, these machine learning methods 
generally suffer from “black box” characteristics, and limited clinical interpretability, and often require larger sample 
sizes to avoid overfitting. After comprehensive evaluation, we selected LASSO-Cox regression as the primary modeling 
method for this study, mainly based on the following considerations: (1) LASSO-Cox can effectively control the risk of 
overfitting while maintaining a degree of clinical interpretability; (2) Through its built-in feature selection process, 
LASSO can identify the most prognostically valuable gene biomarkers, providing clues for subsequent biological 
mechanism research; (3) Under the current sample size conditions, the machine learning models we implemented 
(Random Forest, XGBoost, GBM) did not significantly outperform the LASSO-Cox model, possibly due to the relatively 
limited sample size.46,47 It is worth noting that when the sample size increases and multi-omics data are incorporated, 
methods such as deep learning may demonstrate greater advantages.48
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While our risk scoring model demonstrates promising predictive performance, it is currently a research tool and not 
yet poised for direct clinical application. Further research is needed to translate these findings into clinical utility. Future 
studies should focus on prospective validation of our gene signature in independent patient cohorts, ideally in a clinical 
trial setting. Moreover, exploring the development of a clinically applicable diagnostic assay based on our risk scoring 
model could be a valuable next step. Such an assay could potentially be used to identify high-risk patients who may 
benefit from more intensive treatment or closer monitoring, and to guide personalized treatment strategies based on 
individual risk profiles. In addition, functional validation of the identified anoikis-related genes and further investigation 
of their role in cervical cancer biology are warranted to fully understand their clinical implications.

Our ARG prognostic model demonstrated superior predictive performance compared to both a clinical-factor-only 
model and previously published multi-gene prognostic models for cervical cancer.27,32,41 This suggests that anoikis- 
related genes may capture unique molecular characteristics associated with cervical cancer prognosis. Notably, the 
nomogram integrating the ARG model with clinical factors further improved prediction accuracy (AUC=0.89), high-
lighting the value of integrating molecular biomarkers with traditional clinical factors, which aligns with the principles of 
predictive model development proposed by Steyerberg et al.49

Nevertheless, translating biomarkers into clinical applications still faces multiple challenges, including standardiza-
tion of techniques, cost-effectiveness analysis, and prospective validation.50 In the future, we plan to validate the 
predictive value of the ARG model through multi-center clinical studies and explore its potential applications in 
treatment decisions and patient stratification, such as identifying high-risk patients who may benefit from intensified 
treatment or low-risk patients suitable for de-escalated therapy. Furthermore, combining the ARG model with emerging 
liquid biopsy and circulating tumor DNA technologies may offer new avenues for non-invasive monitoring and 
personalized treatment of cervical cancer.51

However, several limitations must be acknowledged. First, our sample size was relatively small, potentially affecting 
the statistical robustness of the results. Future studies with larger sample sizes are needed to enhance the reliability of the 
findings. Second, while our study employed an observational design involving survival analysis to evaluate the 
prognostic value of the markers, experimental studies are needed to validate the functional roles of these markers. 
Third, this study represents a bioinformatics exploration, and the specific mechanisms require further elucidation. Fourth, 
it is important to note that this study was retrospective and based on publicly available databases, which could introduce 
sample selection bias. Future research should aim to integrate data from multiple sources to improve result reliability. 
Fifth, considering the multifactorial nature of cervical cancer, this study did not comprehensively incorporate genetic and 
environmental influences, which presents a notable limitation. Finally, the markers identified in this study are still in the 
early stages of clinical translation, warranting further validation studies with larger sample sizes and the development of 
precise detection technologies.

In summary, our study systematically constructed and evaluated a risk scoring model for cervical cancer based on 10 
ARGs, demonstrating high accuracy in predicting the prognosis of cervical cancer patients within the analyzed datasets. 
Moreover, we identified potential novel biomarkers and provided methodological foundations that may facilitate future 
personalized screening, targeted therapy, and prognostic assessment for cervical cancer. We also revealed differences in 
immune phenotypes and tumor microenvironments between high- and low-risk cervical cancers, which may provide 
insights for the development of immunotherapies and personalized treatment strategies. Our study enhances the under-
standing of the role of ARGs in cervical cancer prognosis and provides a foundation for future research aimed at reducing 
mortality rates and improving patient outcomes.
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