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Abstract: Phosphodiesterases (PDEs) are enzymes that break down the phosphodiesteric bond 

of the cyclic nucleotides, cAMP and cGMP, second messengers that regulate many biological 

processes. PDEs participate in the regulation of signal transduction by means of a fi ne regula-

tion of cyclic nucleotides so that the response to cell stimuli is both specifi c and activates the 

correct third messengers. Several PDE inhibitors have been developed and used as therapeutic 

agents because they increase cyclic nucleotide levels by blocking the PDE function. In particular, 

sildenafi l, an inhibitor of PDE5, has been mainly used in the treatment of erectile dysfunction 

but is now also utilized against pulmonary hypertension. This review examines the physiologi-

cal role of PDE5 in synaptic plasticity and memory and the use of PDE5 inhibitors as possible 

therapeutic agents against disorders of the central nervous system (CNS).

Keywords: phosphodiesterase 5, NO/cGMP pathway, sildenafi l, synaptic plasticity, memory, 

Alzheimer’s disease

Phosphodiesterases
Introduction
The cyclic nucleotides, cAMP and cGMP are second messengers that regulate signal 

transduction in various biological systems. They respond to extracellular signals 

(neurotransmitters, hormones, olfactive and luminous signals) and activate intracel-

lular targets such as ion channels, kinases, and transcription factors that trigger the 

cellular response to the message. The extracellular signal is thus transferred by the 

cyclic nucleotides to one of the effector proteins, the most important of these are pro-

tein kinase A (PKA) and protein kinase G (PKG) that, in turn, phosphorylate other 

enzymes or transcription factors (Figure 1).

The levels of cAMP and cGMP are maintained thanks to a balance between produc-

tion, carried out by adenyl cyclase (AC) and guanylyl cyclase (GC), and destruction, 

carried out by phosphodiesterases (PDEs) (Figure 1). PDEs regulate the nucleotide 

signal both in amplitude and duration (spatial and temporal regulation) and modulate 

the “cross talk” between various second messengers. For example many effects of Ca2+ 

on cAMP and cGMP are mediated by the activation of the Ca2+-Calmodulin (Ca2+-CaM) 

dependent phosphorylation of PDEs (Sonnenburg et al 1995).

Over the last few years there has been an increasing number of studies on PDEs. This 

is also thanks to the potential use of these enzymes as targets of drugs that can regulate 

the levels of cyclic nucleotides and the various physiological functions connected to 

them. The recognition of the therapeutic potential of PDEs stems from the ubiquitous 

nature of the second messengers on which these enzymes act. Notwithstanding the 

great potential of these inhibitors, the only pathologies currently treated with PDE 

inhibitors are erectile dysfunction and, more recently, pulmonary hypertension. This 

is due to the complexity of the PDE family and the selectivity of the inhibitors used. 

Various studies are now focusing on the role of PDEs in the CNS and on the potential 
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use of PDE inhibitors for nervous system disorders. This can 

be explained by the presence of PDEs in various regions 

of the CNS (Ariano and Appleman 1979; Shinozawa and 

Bitensky 1981; Epplen et al 1982; Shotwell 1983; Kariya and 

Dage 1988; Repaske et al 1993; Lobban et al 1994; Polli 

and Kincaid 1994; Yan et al 1994; Lal et al 1996; Cherry 

and Davis 1999; Shakur et al 2000; Andreeva et al 2001; 

D’Sa et al 2002; Suvarna and O’Donnel 2002; van Staveren 

et al 2002; Houslay and Adams 2003; Kobayashi et al 2003; 

Noyama and Maekawa 2003; Pitts et al 2004; Reyes-Irisarri 

et al 2005) and to the fact that cAMP and cGMP have been 

recognized as secondary messengers of various neuronal 

phenomena such as synaptic plasticity (Dismukes and Daly 

1976; Kandel and Schwartz 1982; Yovell et al 1987; Dixon 

and Atwood 1989; Storozhuk and Balaban 1990; Shibuki 

and Okada 1991; Zhong and Wu 1991; Zhong et al 1992; 

Arancio et al 1995; Wu et al 1995; Southam et al 1996; Lu 

et al 1999; Renger et al 2000; Yoshimura and Kato 2000; Bon 

and Garthwaite 2001, 2003; Esteban et al 2003; Waltereit 

and Weller 2003; Wang and Storm 2003; Barnstable et al 

2004; Feil et al 2005; Makhinson et al 2006; Liu et al 2007; 

Wu et al 2007).

Background
The activity of PDEs was described for the fi rst time in 1886, 

when Dr Henry Hyde Salter noted that caffeine had bron-

chodilator properties (Boswell-Smith et al 2006). In 1958, 

Sutherland and Rall fi rst identifi ed the nucleotide cAMP 

in liver extracts as a second messenger and suggested that 

it could mediate several cellular effects of neurotransmit-

ters and hormones (Sutherland 1958). The existence of an 

enzymatic activity able to catalyze the degradation of this 

molecule was used as one of the initial processes support-

ing the evidence that cAMP is a relevant molecule from 

the physiological point of view (Sutherland 1958). Indeed, 

Sutherland and colleagues discovered that glucagon and 

catecholamines act in the liver by increasing the concentra-

tions of cAMP and that the effect of caffeine on glucagon 

involved the inhibition of cAMP-dependent PDEs (Berthet 

et al 1957; Rall and Sutherland 1958; Butcher and Sutherland 

Figure 1 Cyclic nucleotide signal. The extracellular signal (neurotransmitters, hormones, olfactive and luminous signals) is transferred by the cyclic nucleotides cAMP and 
cGMP to one of the effector proteins, the most important of these are ion channels, protein kinase A (PKA) and protein kinase G (PKG). The kinases, in turn, phosphorylate 
other enzymes or transcription factors such as CREB in the nucleus. Cyclic nucleotides levels are maintained through a balance between production, carried out by adenyl 
cyclase (AC) and guanylil cyclase (GC) from ATP and GTP, respectively, and destruction, carried out by phosphodiesterases (PDEs) that lead to the formation of the inactive 
forms 5'AMP and 5'GMP.
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1962; Exton et al 1971). In 1970 PDEs were differentiated in 

rat and bovine tissue and it was demonstrated that the speci-

fi city of the reaction was due to the hydrolysis of the cAMP 

and cGMP phosphoester bond (Beavo et al 1970). With the 

development of radionucleotides it was possible to measure 

PDE activity at the substrate level at nearly physiological 

concentrations. From then various PDEs have been isolated, 

purifi ed and characterized.

Classifi cation
The superfamily of PDEs is divided into three principle 

classes I, II and III, having different sequences. Class I 

includes all the mammal PDEs (Francis et al 2000) as well 

as Drosophila (Chen et al 1986), Caenorhabditis (Koyanagi 

et al 1998), and yeast (Sass et al 1986, Thomasn et al 1998). 

These enzymes are produced by different genes (Beavo 

et al 1994; Fisher et al 1998) and show high affi nity for the 

cGMP and /or cAMP molecule. Class II includes enzymes 

from fungi such as Saccharomyces cerevisae (Nikawa et al 

1987), Dictyostelium discoideum (Lacombe et al 1986), 

Schizosaccharomyzes pombe (DeVoti et al 1991), Candida 

albicans (Hoyer et al 1994) and one from bacteria, Vibrio 

fi scheri (Dunlap and Callahan 1993). PDE class II shares 

a conserved motif containing three histidine residues that 

may be part of a metal ion binding site such as Zn2+ for 

Vibrio fi scheri (Callahan et al 1995). Class III includes 

only enzymes from prokaryotes such as Escherichia 

coli (Richter 2002). Given that the catalytic site of PDE 

class III is comparable to the purple acid phosphatases, 

these enzymes could be considered as members of a large 

family of structurally related dimetallophosphoesterases 

(Richter 2002).

Twenty-one classes of genes and diverse spliced tran-

scriptional variants for the PDE class I of humans, rats and 

mice have been identifi ed. They have been classifi ed into 

11 families based on particular subcellular distributions, 

structural similarities, mechanisms of regulation, amino 

acid sequences, proteic domains and enzymatic proper-

ties among which are specifi city for the substrate, kinetic 

proprieties, and sensitivity to endogenous regulators and 

inhibitors.

Some PDEs are highly specifi c for cAMP (PDE4, PDE7, 

PDE8); others are highly specifi c for cGMP (PDE5, PDE6, 

PDE9), and some have mixed specifi city (PDE1, PDE2, 

PDE3, PDE10). The nomenclature assigns an Arabic num-

ber to each family with an individual gene expressed by a 

letter and every spliced variant of the gene is identifi ed by a 

number (ie, PDE5A1).

Structure and mechanism of action
All PDEs are dimeric though the importance of this structure 

is not well known. Each has a core of 270 amino acids 

with a high degree of conservation (25%–35%) among the 

various families that is localized at the C-term and contains 

the catalytic domain of the enzyme. Within each family, 

the sequence of the catalytic domain is highly conserved 

(�75%). This makes the identifi cation of the inhibitors of 

the active site possible and distinguishable between the dif-

ferent families, with the exception of the very high homology 

between PDE5 and PDE11 that makes, for example, some 

inhibitors of PDE5 such as tadalafi l also active against 

PDE11 (Weeks et al 2005).

Most PDEs have a regulatory domain at the N-term 

that varies among the families and provides the sites for 

dimerization, phosphorylation and modulatory bonds such 

as Ca2+-CaM and cGMP. For example, PDE1 contains a 

Ca2+/CaM-binding domain that activates the enzyme. About 

half of the genetic families have a GAF domain (PDE2, 

PDE5, PDE6, PDE10, PDE11) that mediates the allosteric 

regulation of the bond with cGMP. The other PDEs belong 

to NON-GAF-PDEs. It is believed that some PDEs also 

possess an auto-inhibitory domain in the structure of the 

enzyme that is detected by some PDE activators (Jin et al 

1992; Sonnenburg et al 1995).

PDEs are ubiquitously distributed and most of them have 

been found in CNS (for a review see Bender and Beavo 

2006). The cGMP-hydrolysing PDE2, PDE5, and PDE9 and 

the cAMP-hydrolysing PDE4 and PDE7 are located in the 

hippocampus where they are likely to be involved in memory 

and/or long-term potentiation (LTP; Beavo 1995; Barad et al 

1998; Houslay 2001; Mirò et al 2001; Boess et al 2004; 

Gong et al 2004; Van Staveren et al 2004; Wunder et al 2005; 

Reyes-Irisarri et al 2005). PDE6 has also been found in the 

hippocampus, although it does not affect synaptic transmis-

sion or synaptic plasticity (Kuenzi et al 2003).

PDEs hydrolyze the phosphodiesteric bond of cyclic 

nucleotides between the atoms of phosphorus and oxygen in 

position 3' with the inversion of the phosphorus atom con-

fi guration (Burgers et al 1979; Goldberg et al 1980) and the 

consequent formation of adenosin monophosphate (AMP) 

and guanosin monophosphate (GMP), which are recycled as 

substrates for the formation of ATP and GTP.

PDEs are regulated by means of 3 principal mechanisms: 

i) Availability of the substrate, such as the stimulation of PDE 

activity after the increase of the levels of cyclic nucleotides or 

after alteration of the ratio of hydrolysis between one nucleo-

tide and another; ii) Regulation of the intracellular signal 
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by extracellular signals (ie, phosphorylation); iii) Feedback 

regulation (Corbin and Francis 1999).

Phosphodiesterase 5
Characteristics
PDE5 is a cGMP-specifi c enzyme that hydrolyzes cGMP. 

The cyclic nucleotid plays a fundamental role in signal 

translation. It stimulates the relaxation of smooth muscle, 

the degranulation of neutrophils, inhibits platelet aggregation 

and initiates translation of the visual signal (Furchgott and 

Vanhoutte 1989; Hofmann et al 1992; Lincoln and Cornwell 

1993; Garbers and Lowe 1994; Moro et al 1996; Lohmann 

et al 1997; Corbin and Francis 1999). cGMP is one of the 

targets for the action of nitric oxide (NO), a particular neu-

rotransmitter, which is the main subject of this review.

As mentioned above, the tissue levels of cGMP depend 

on the balance between the activity of GC that catalyzes the 

formation of cGMP from GTP, and from PDEs that catalyze 

the breakdown of cGMP into GMP.

PDE5 was purifi ed in 1980 by Francis and colleagues from 

rat lungs (Francis et al 1980; Francis and Corbin 1988) and 

cloned in 1993 by McAllister-Lucas (McAllister-Lucas et al 

1993). Two spliced variants have been recognized (Loughney 

et al 1998; Yanaka et al 1998). At fi rst it was believed that 

PDE5 was part of PDE6 (PDE of the photoreceptors) given 

its notable similarity. However, considering that the sequence 

identity is less than 60% (McAllister-Lucas 1993), PDE5 was 

subsequently classifi ed as a separate family.

The tissue distribution of PDE5 generally coincides 

with that of PKG, probably because both enzymes are the 

principal intracellular receptors of cGMP. Moreover, PKG 

is an excellent in vitro catalyst for the phosphorylation of 

PDE5 (Thomas et al 1990). PDE5 has a typical cytosolic 

localization with high levels in smooth muscle, platelets, 

kidney and in some zones of the CNS (Francis and Corbin 

1999; Kotera et al 2000; van Staveren et al 2004; Dolci et al 

2006; Menniti et al 2006).

The NO/cGMP pathway
To understand the function of PDEs it is necessary to know 

the pathway by which they act. cGMP is produced by the 

GC enzyme, an NO target. NO is a molecule that has been 

widely studied since 1800, when the potential therapeutic role 

of nitroglycerin with its vasodilatatory effect was discovered 

for the treatment of angina pectoris (Brunton 1867). It was 

later discovered that the effect of NO was mediated through 

cGMP synthesis, which activated vascular reactions. NO was 

identifi ed in the nervous system in 1988 as a molecule that 

was able to mediate the increase of cGMP after the activation 

of the glutamatergic receptor N-methyl-D-aspartate (NMDA) 

(Garthwaite and Boulton 1995).

Over the last few years the function of NO as a neu-

rotransmitter has been studied (Puzzo et al 2006). A particular 

characteristic is its capacity to function as a retrograde 

neurotransmitter able to transfer information from the 

post- to the pre-synaptic terminal. This completely revolu-

tionized the concept of synaptic transmission and neuronal 

communication.

The formation of NO is catalyzed by the NO synthase 

enzyme (NOS) of which different variants exist: i) the Ca2+-

dependent constitutive form (c-NOS), consisting of the 

endothelial form (e-NOS) or type III and the neuronal form 

(n-NOS) or type I, present in the endothelium, and in glial and 

neuronal cells that produce NO in physiological conditions; 

ii) the Ca2+-independent inducible form (i-NOS) or type II, 

present in macrophages, hepatocytes, smooth muscle, glia 

and endothelium that produces NO following immunological 

stimuli (ie, interferon γ, tumor necrosis factor α, LPS).

The biological receptor of NO is GC, a ubiquitous enzyme 

that, once activated, catalyzes the formation of cGMP. cGMP 

has various targets among which are cGMP-dependent chan-

nels, PKG, and PDEs. PKG are mediators of signal translation 

(Lohmann 1997). PKGI, composed of the α and β subunits, 

is ubiquitous; the monomeric PKGII is expressed in various 

tissues such as the lung, kidney, testicle and brain. cGMP 

can also activate the cAMP pathway acting on the cAMP 

binding site and PKA (Tsukada et al 2002).

Structure and function of PDE5
The human gene for PDE5 has been mapped in the 4q26 

chromosome, which contains 24 exons that occupy approxi-

mately 100 k bases (Yanaka et al 1998). The enzyme PDE5 is 

an active homodimer, with an MW of ~ 3000 kd (Figure 2). 

Each monomer contains a catalytic domain in the C-term with 

2 binding sites for Zn2+. These are involved in the process of 

catalysis and it is believed that the catalytic activity of PDE 

4, 5 and 6 is sustained by submicromolar concentrations of 

Zn2+ (Francis et al 1994; Percival et al 1997; He et al 2000). In 

the C-term catalytic domain there is an allosteric binding site 

for cGMP and in the N-term regulatory domain there are two 

allosteric binding sites called GAF a and b domains (McAl-

lister-Lucas et al 1995). It is likely that GAFa is responsible 

for the allosteric binding of cGMP (Liu et al 2002; Zoraghi 

et al 2005). Both the allosteric and catalytic sites are highly 

specifi c for cGMP. The catalytic domain has high affi nity 

for cGMP (Km ~ 1–5 µM, compared with Km ~ 300 µm of 
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cAMP). Binding of cGMP to the allosteric site is necessary 

for the specifi c phosphorylation of Ser-92 by PKG. The bond 

not only activates the catalytic function but increases the bind-

ing affi nity for cGMP (Corbin et al 2000; Francis et al 2002; 

Zoraghi et al 2005). The two allosteric sites homologous for 

cGMP (a and b) are kinetically distinct. Both sites need to 

bind to cGMP for PDE activation. The increased interaction 

of cGMP with the catalytic site increases the binding of cGMP 

in the allosteric site thus increasing the phosphorylation of the 

enzyme promoting a further increase of cGMP cleavage.

There are three isoforms of PDE5 (PDE5A1-PDE5A3) 

which are distinguished based on their N-term sequence. 

PDE5A1 and PDE5A2 are ubiquitous, but PDE5A3 is 

specifi c to smooth muscle (Lin 2004). A single PDE5A 

gene encodes for the 3 isoforms and the initial three exons 

(A1-A3-A2) encode the isoform-specifi c sequences. The 

promoters are responsive to cGMP or cAMP stimulation, 

and several studies have demonstrated regulation of PDE5 

expression possibly through these promoters (Lin et al 

2006). The potential role of different PDE5A promoters in 

catalytic domain

P NH2

ab

COOH

A
B

A
B

allosteric binding

NH2
P

COOH

Zn 2+-binding sites
Figure 2 Schematic representation of PDE5 structure. PDE5 is a homodimer containing, in each monomer, a C-term catalytic domain and an N-term regulatory domain. The 
catalytic domain contains 2 Zn2+-binding sites (A and B) and an allosteric binding site for cGMP. The regulatory domain contains two allosteric binding sites called GAF a and b, 
domains responsible for the allosteric binding of cGMP. The occupation of the allosteric site by cGMP is necessary for the specifi c phosphorylation of Ser-92 by PKG.
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the effect of PDE5 inhibitors is currently being investigated 

(Lin 2004). Moreover, the study of the 3 isoforms may be 

relevant for future drug development as our knowledge of 

PDE structure-function relations increases.

The principal functions of PDE5 consist of modulat-

ing hemodynamics affecting the contracted state of vessel 

cells by regulating the phasic nature of smooth muscle 

physiology (Jackson et al 1999; Rybalkin et al 2003; Pri-

sant 2006; Cawley et al 2007). PDE5 exerts its action in 

all smooth muscle districts modulating, other then the tone 

of blood vessels, the contractile state of organs such as the 

penis, uterus, and intestines. However, its function has 

been mainly studied in the corpora cavernosa and in the 

pulmonary system given the therapeutical implication of 

the use of PDE5 inhibitors aimed at provoking a relaxation 

of these organs to alleviate erectile dysfunction and pul-

monary hypertension (Ziegler et al 1995; Cohen et al 1996; 

Weimann et al 2000; Lewis and Semigran 2004; Toward 

et al 2004; Larrue et al 2005). PDE5 plays also a key role 

in the peripheral vessel system by regulating systemic 

blood pressure. Moreover, PDE5 is involved in the regula-

tion of the response to the atrial natriuretic peptide (ANF) 

(Weishaar et al 1990) and it might regulate Na+ retention 

(Ghali-Ghoul et al 2007).

Figure 3 shows the effects exerted by cGMP in some 

target organs and the possible therapeutical application of 

PDE5 inhibitors leading to an increase of cGMP.

PDE5 Inhibitors
Sildenafi l and other PDE5 inhibitors
For many years, nonselective PDE5 inhibitors such as 

caffeine, theophylline and IBMX have been used to 

investigate the physiological effects of cyclic nucleotides. A 

more selective inhibitor called sildenafi l has now attracted 
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Synaptic plasticity
Memory
Pain

VESSELS Recovery
after stroke

HEART
and
VESSELS

Vasodilatation

Multiple Sclerosis ?
Alzheimer’s disease ?
NeuropathicPain ?

Stroke ?

Angina pectoris ?
Systemic hypertension
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Pulmonary arterial
pressure

Pulmonary hypertension

KIDNEYS
Na2+ handling

Improve renal function ?
ANP response
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NOGCcGMP

PDE55'-GMP
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X

Figure 3 cGMP functions and possible therapeutic use of PDE5 inhibitors. PDE5 inhibitors block the degradation of cGMP (bottom panel) leading to an increase of the 
level of cGMP that can exert its action on several target organs. On the right side, both the approved and possible (question mark) therapeutical applications of PDE5 
inhibitors in humans.
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the attention of many researchers. Sildenafi l is the active 

agent of the widely diffused drug Viagra used for erectile 

dysfunction (ED).

Sildenafi l, initially synthesized with the aim of treating 

arterial hypertension and angina pectoris, was the fi rst drug 

approved by the USA Food and Drug Administration for 

the treatment of ED (FDA 1998). To date it is the principle 

treatment for ED given its risk-benefi t ratio. Sildenafi l, with 

the commercial name of Revatio (Pfi zer), was also approved 

for the therapy of hypertension of the pulmonary artery in 

June 2005. Various studies indicate that sildenafi l can offer 

new strategies for the treatment of other pathologies such as 

multiple sclerosis (MS), pain, and memory loss (Uthayathas 

et al 2007).

Thanks to these discoveries, thousands of compounds 

have been synthesized and screened against PDE5. Reported 

PDE5 inhibitors can be divided into the following classes: 

1) cGMP-based, represented by sildenafi l (Viagra) and 

vardenafil (Levitra) (Pfizer, Bayer, Sheering-Plough), 

2) β-carboline – derived, represented by tadalafi l (Cialis) 

(Lilly, Johnson&Johnson [J&J], 3) quinazoline and isoquino-

linone derivatives (Bristol-Myers-Squibb [BMS], Japan), and 

4) phthalazine derivatives (BMS, Japan).

Among these vardenafi l and tadalafi l are considered the 

most potent inhibitors (Kulkarni and Patil 2004). Vardenafi l 

is a new drug used for erectile dysfunction. It has an IC50 of 

0.7 nM for PDE5 with respect to other PDEs (PDE1: 180 nm; 

PDE2, 3, 4 �1 µm; PDE6: 11 nm) (Saenz de Tejada et al 

2001). The inhibitory potential of vardenafi l towards PDE5 

is 5 times greater than sildenafi l.

Differently than sildenafi l and vardenafi l, which are 

cGMP-based inhibitors, tadalafi l is a β-carboline-derived 

drug with no effect on PDE1 (selectivity ratio �2000) and 

on PDE6 (selectivity ratio 1000), and an IC50 against PDE5 

of 5.0 nM (Daugan et al 2003). Tadalafi l is a second genera-

tion oral drug. It acts quickly and its effects last longer than 

sildenafi l (Forgue et al 2006).

Sildenafi l, vardenafi l, and tadalafi l are rapidly absorbed 

in the gastrointestinal tract at the level of the small intestine. 

The half life of sildenafi l and vardenafi l is ~ 3–4 h whereas 

tadalafi l has a half-life of ~ 18 h (Kulkarni and Patil 2004; 

Forgue et al 2006). They are all metabolized by means of the 

p450 cytochrome system and also eliminated by this system 

at the hepatic level.

The possible use of these drugs in the CNS is also 

related to their ability to cross the blood – brain barrier 

(BBB). Sildenafi l is reported to clearly cross the BBB 

(FDA 1998). Evidence for the ability of vardenafi l to cross 

the BBB is indirect (Prickaerts et al 2004), and tadalafi l 

is unlikely to cross it (personal communication from V. 

Florio at Icos).

These drugs can have side effects such as headaches, 

facial fl ushing, nasal congestion, and dyspepsia. These effects 

are, however, transitory and disappear with the suspension of 

the drug. Moreover, both sildenafi l and vardenafi l can act on 

PDE6, which is present in the retina, thus high doses can cause 

vision problems. Tadalafi l, moreover, can inhibit PDE11. 

These drugs are not suitable for cardiopathic subjects, due 

to the possible vasodilatatory effects, and hypotensives, as 

well as in subjects who suffer from orthostatic hypotension, 

aortic stenosis, obstructive hypertrophic cardiomyopathy, 

and retinitis pigmentosa (Kulkarni and Patil 2004).

PDE5 inhibitors and neurogenesis
Neurogenesis is the production of new neurons, and it is 

a process that is active mostly during prenatal develop-

ment, though new neurons are also produced during adult 

life in some areas of the brain such as the subventricular 

zone (SVZ) and the subgranular zone (SGZ) of the dentate 

gyrus of the hippocampus of mammals, including humans, 

and other species (Altman and Das 1965; Eriksson et al 

1998; Gould et al 1999; Zhao et al 2003; Taupin 2006; 

Kim and Szele 2007). The functional signifi cance of adult 

neurogenesis is just beginning to be understood and there is 

considerable disagreement in literature. There is evidence 

showing that adult neurogenesis in the hippocampus plays a 

role in synaptic plasticity (Sandeman and Sandeman 2000; 

Bruel-Jungerman et al 2006, 2007; Schmidt-Hieber et al 

2004) and memory (Shors et al 2001, 2002; Snyder et al 

2005; Bischofberger 2007; Bruel-Jungerman et al 2007; 

Dupret et al 2007; Epp et al 2007; Van der Borght et al 

2007). Higher levels of neurogenesis resulting from an 

enriched environment are reported to correspond to better 

acquisition of the Morris Water Maze task in mice (Kem-

permann et al 2002) and new neurons have been shown to 

be necessary for consolidation of memory after water maze 

training (Snyder et al 2005). It seems that new neurons can 

increase mnemonic capacity (Becker 2005), reducing the 

interference between newly formed memories (Wiskott 

et al 2006), and adding spatial-temporal details to the new 

memory (Aimone et al 2006).

It also appears that neurogenesis plays a key role in 

the regulation of stress and that this is in turn linked to 

the integrity of the hippocampus. Some studies have, in 

fact, demonstrated that the positive activity of some anti-

depressants is linked to the stimulation of hippocampal 
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neurogenesis (Malberg et al 2000; Manev et al 2001) and that 

inhibition of hippocampal neurogenesis induced by radiation 

blocks the effects of anti-depressants (Santarelli et al 2003). 

Other studies have shown that memory is correlated with 

mood disorders, particularly with depression, and that mood 

is regulated by the phenomena of neurogenesis and synaptic 

plasticity (Castren et al 2005; Paizanis et al 2007).

Hippocampal neurogenesis is controlled by various fac-

tors such as physical exercise, stress, sleep, environmental 

conditions, hormones (testosterone), neurotransmitters 

(serotonin) and intrinsic growth factors (Cameron and Gould 

1994; Lledo et al 2006), which can affect different stages of 

the neurogenetic process. Neurogenesis is also stimulated 

by hippocampal or cortical damage (Covolan et al 2000; 

Blumcke et al 2001; Jiang et al 2001; Jin et al 2001) and 

could be modifi ed by pathologies such as Alzheimer’s disease 

(Kuhn et al 2007).

It is interesting to note that some studies have shown that 

sildenafi l plays a role in potentiating neurogenesis through 

the increase of cGMP levels. NO infl uenced sensory-induced 

neurogenesis (Cayre et al 2005) and prenatal development 

of the brain through cGMP (Chen et al 2004). Furthermore, 

neuronal growth decreases with age in parallel with the reduc-

tion of cGMP levels (Taddei et al 2001). Several studies have 

demonstrated that sildenafi l can be used to stimulate neuro-

genesis after stroke. In rats, Sildenafi l induces neurogenesis, 

reduces neurological defi cit and promotes the functional 

recovery after stroke and focal cerebral ischemia (Zhang 

et al 2002; 2006b). Tadalafi l has also been used to improve 

neurogenesis in an embolic model of stroke in rats (Zhang 

et al 2006a). Thus, it is possible that in the future PDE5 

inhibitors might be used to stimulate neuronal function and 

improve neurogenesis in older subjects or in patients affected 

by AD and other disorders characterized by hippocampal 

memory impairment.

PDE5 inhibitors and memory
Role of NO/cGMP in synaptic plasticity and memory
Synaptic plasticity is an active phenomenon consisting of 

all the structural and/or neuronal functional modifi cations 

that allow adaptation to new situations (Hebb 1949). It is 

thought to be at the bases of learning and memory and occurs 

in various cerebral structures such as the hippocampus, the 

cerebral cortex and the cerebellum.

The most studied form of synaptic plasticity is long-term 

potentiation (LTP) occurring at the excitatory synapses 

of the hippocampus and consisting of an increase in 

the amplitude of the post-synaptic excitatory potentials 

(EPSPs) after high frequency stimulation (tetanus) of the 

afferent fi bers. LTP can be detected in various areas of the 

hippocampus but it is mostly observed in the CA1 pyra-

midal cells and pre-synaptic fi bers forming the Schaffer 

collateral, which is implicated in learning and memory. 

Many studies support the hypothesis that LTP underlies 

memory (Larson et al 1986; Morris et al 1986; Rose and 

Dunwiddie 1986; Diamond et al 1988; Greenstein et al 

1988; Buchs and Muller 1996; Lynch 2004), although the 

complex mechanisms involved in memory have not yet 

been fully clarifi ed. Various studies have shown that LTP 

and memory depend on a cellular cascade stimulated by an 

increase of the intracellular concentrations of cAMP with 

the subsequent activation of PKA and the phosphorylation 

of the cAMP responsive element binding protein (CREB) 

(Bourtchuladze et al 1994; Huang and Kandel 1994; Yin 

et al 1994; Robertson and Sweatt 1996; Abel et al 1997; 

Montminy 1997; Murphy and Segal 1997; Shieh et al 1998; 

Tao et al 1998; Otmakhova et al 2002; Stanciu et al 2001; 

Gooney et al 2002). Besides cAMP, a fundamental role is 

played by the cGMP/PKG/CREB pathway that seems to act 

in parallel with the cAMP/PKA/CREB pathway.

Studying the role of the cGMP pathway in memory stems 

from the crucial need to identify pre- and post-synaptic 

mechanisms in LTP. In the early 1990s it was suggested that 

the induction of LTP involves a retrograde message released 

at the post-synaptic level and acting at the pre-synaptic level 

(Bohme et al 1991; O’Dell et al 1991; Schuman and Madison 

1991). Various studies have shown that NO is necessary for 

LTP: i) inhibitors of NOS block LTP and this inhibition is 

corrected administering precursors of NO (Schuman and 

Madison 1991; Gribkoff and Lum-Ragan 1992; Haley et al 

1992; Bohme et al 1991, 1993; Bon et al 1992); ii) knock-out 

mice for nNOS and eNOS show LTP impairment (Son et al 

1996); iii) exogenous application of NO induces plasticity 

(Zhuo et al 1993; Arancio et al 1996; Bon and Garthwaite 

2001); and iv) NO is able to stimulate the release of sponta-

neous pre-synaptic neurotransmitter release in cell cultures 

(O’Dell et al 1991).

Given that cGMP is a downstream effector of NO, the 

involvement of the cGMP/PKG/CREB pathway has also 

been investigated. These studies showed that: i) inhibitors of 

GC block the induction of LTP (Haley et al 1992; Zhuo et al 

1994; Andreasen et al 2003); ii) analogs of cGMP produce 

potentiation despite the block of upstream NMDA receptors 

and NO release (Haley et al 1992; Arancio et al 1995); and 

iii) inhibitors of GC and of PKG block LTP (Arancio et al 

1995, 2001).
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Behavioral studies have also shown that NO is involved 

in the phenomenon of learning and memory (Hawkins 1996; 

Susswein et al 2004). Bohme and colleagues (1991) demon-

strated that the inhibition of endogenous NO impaired spatial 

learning tested with a radial arm maze and olfactive memory, 

but had no effect on shock-avoidance learning. Studies on 

nNOS knockout mice or by using inhibitors of NOS have 

shown an impairment of spatial performance with the Morris 

water maze (MWM) and object recognition memory in rats 

(Chapman et al 1992; Prickaerts et al 1997; Zou et al 1998; 

Kirchner et al 2004; Koylu et al 2005). Moreover, the block 

of spatial memory obtained by blocking the NMDA recep-

tors could be restored using NO donors or cGMP analogs 

(Yamada et al 1996). The effect of NO on behavior is medi-

ated by the cGMP/PKG pathway. In fact, passive avoidance 

learning in rats increased cGMP levels in the hippocampus 

and the administration of 8-Br-cGMP, a cGMP analog 

(Bernabeu et al 1996), or zaprinast, a selective cGMP PDE 

inhibitor (Prickaerts et al 1997), improved memory. On the 

other hand, the post-training inhibition of GC or PKG activity 

blocked memory formation (Bernabeu et al 1996).

Role of NO/cGMP in Alzheimer’s disease
One of the most widespread and invalidating pathologies 

that causes a defi cit of cognitive functions is Alzheimer’s 

disease (AD). AD is a progressive neurodegenerative disorder 

characterized by loss of memory and behavioral problems 

leading to dementia. The advanced stages of the pathology are 

characterized by the presence of senile plaques at the cerebral 

level, principally made up of beta-amyloid peptide (Aβ) and 

neurofi brillary tangles (Selkoe 1994). However, the early 

symptoms, which consist in the loss of memory, also occur 

without signs of cerebral alterations and are probably due to a 

synaptic dysfunction caused by Aβ (Cullen et al 1997; Lambert 

et al 1998; Itoh et al 1999; Chen et al 2000; Vitolo et al 2002; 

Walsh et al 2002). It appears, in fact, that Aβ causes a defi cit 

at the excitatory neurotransmission level causing a synaptic 

dysfunction that precedes the structural alteration with a loss 

of neurons (Selkoe 2002).

Aβ has various targets that have been well studied and 

that could identify new therapeutic approaches (Mattson 

1997). Various studies suggest that the NO/cGMP pathway 

can be involved in the pathogenesis of AD. These studies have 

indicated a dual role for NO: neuroprotective and neurotoxic. 

Some authors have shown that by acting on the NO/cGMP 

pathway with NO donors, cGMP analogs, or PDE inhibitors, 

it is possible to obtain an improvement of the Aβ-induced 

damage both at the level of the CNS and the vascular system 

(McCarty 1998; Mattson et al 1999; Paris et al 1999; Troy 

et al 2000; Wirtz-Brugger and Giovanni 2000). In particular, 

inhibition of PDEs appears to block the vasoconstriction and 

infl ammation of the microglia induced by Aβ (Paris et al 

2000). Given that the NO/cGMP/PKG pathway is involved in 

LTP, a phenomenon that is altered in the early phases of the 

pathology in transgenic mouse models (Trinchese et al 2004), 

it has been demonstrated that this pathway has a protective 

role with regards to Aβ-induced LTP impairment (Puzzo 

et al 2005). Moreover, an enhancement of this pathway has 

been associated with a restoration of the phosphorylation of 

CREB (Puzzo et al 2005), a transcription factor linked to 

memory (Bourtchuladze et al 1994; Yin et al 1994; Lonze 

and Ginty 2002). The potential neurotoxic role of NO has 

been focused on in many studies showing that activation 

of iNOS in microglia in response to Aβ is involved in AD 

pathogenesis (Parks et al 2001; Tran et al 2001; Haas et al 

2002; Xie et al 2002). A unifying hypothesis that combines 

studies on protective and toxic roles of NO is that the two 

constitutive NOS, n-NOS and e-NOS, have a potential neu-

roprotective role while i-NOS mediates the oxidative stress 

induced by NO.

Use of PDE5 inhibitors as a memory enhancer
It has been shown that the PDE5 inhibitor sildenafi l infl u-

ences long-term memory retention in mice by modulating 

mechanisms involved in memory storage (Baratti and Boccia 

1999). Moreover, the inhibition of PDE5 improves object 

memory (Prickaerts et al 2002, 2004; Rutten et al 2005) 

and counteracts spatial learning impairment induced by 

NOS inhibition (Devan et al 2005, 2006) and by blockade 

of cholinergic muscarinic receptors in rats (Devan et al 

2005). Other studies have shown that sildenafi l produces 

a dose-dependent improvement of memory in mice tested 

with elevated plus maze (Singh and Parle 2003). Sildenafi l 

effects have also been tested on selective auditory attention 

and verbal recognition memory in humans (Schultheiss et al 

2001). Despite the fact that no differences in behavioural 

patterns were found, sildenafi l enhanced the ability to focus 

attention on streams of auditory stimuli, as revealed by an 

improvement of the typical ERP components.

As mentioned above, Aβ has been implicated as a key 

molecule in AD pathogenesis. Several studies have tried to 

clarify the second messenger pathway(s) by which Aβ affects 

synaptic plasticity and memory. The cAMP/PKA/CREB 

pathway has been found to be involved in Aβ-induced LTP 

impairment (Vitolo et al 2002; Gong et al 2004). Rolipram, 

a PDE4 inhibitor increasing cAMP levels, reversed the 
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inhibition of PKA activity and CREB phosphorylation 

most probably by favoring the dissociation of regulatory 

and catalytic subunits of PKA and the restoration of PKA 

activity (Vitolo et al 2002). Moreover, treatment with Rolip-

ram re-estabilished LTP and contextual learning in animal 

models of AD (APP/PS1 mice) and, most importantly, this 

benefi cial effect could be extended beyond the duration of 

the administration (Gong et al 2004). Aβ has also been found 

to downregulate the NO pathway leading to a reduction in 

CREB phosphorylation through reduced activation of PKG 

(Puzzo et al 2005). Recent studies have shown that nitrates 

might counteract microglia activation and Aβ deposits (Troy 

et al 2000; Jantzen et al 2002) and NO-mimetic molecules 

may reverse cognitive impairment in AD (Thatcher et al 

2002, 2005). Thus, enhancers of the cAMP/PKA/CREB or 

NO/cGMP/PKG/CREB pathways might represent novel 

classes of compounds that could effectively counteract 

disease progression by acting at the downstream level of 

Aβ production. PDE inhibitors have been proposed to be 

employed as memory enhancers (Blokland et al 2006; Rose 

et al 2005; Rutten et al 2007). With regard to the use of these 

inhibitors, it is noteworthy that the development of PDE4 

inhibitors as CNS drugs has been a very diffi cult endeav-

our because of undesirable side effects, or lack of effi cacy 

at the doses used to avoid side effects. For instance, the 

PDE4 inhibitor Rolipram, used for its anti-depressant and 

anti-infl ammatory effects, causes a number of side-effects 

(especially nausea and headache), which have limited its 

therapeutic use (Souness et al 2000). Thus, it is possible that 

inhibiting PDE5s might be an alternative and perhaps more 

suitable strategy than inhibiting PDE4s to develop a drug 

targeted to CNS and memory.

Based on these fi ndings, and considering that the current 

therapy for AD (acetylcholinesterase inhibitors, NMDA 

antagonists, drugs that reduce Aβ levels or its oligomeriza-

tion, formation of neurofi brils, oxidative stress, and infl am-

mation of the microglia; Schenk et al 1999; Nakagami et al 

2002; Walsh et al 2005) has a limited effi cacy, our group is 

currently studying the possibility of using PDE5 inhibitors 

in AD. Acting on a specifi c Aβ target such as the NO/cGMP/

PKG pathway through PDE5 inhibitors could represent a 

useful therapeutic approach to block the disease at an early 

stage, before structural damage occurs. Moreover, it appears 

that Aβ, other than accumulating in the brain, is also pres-

ent in the blood stream where it can cause phenomena of 

vasoconstriction that lead to arterial hypertension (Basun 

et al 2002; Andreasen et al 2003; Kalaria 2003; Suhara et al 

2003; Price et al 2004; Smith et al 2004), often associated 

with AD (Pasquier and Leys 1998; Gentile et al 2004; Price 

et al 2004). It would thus be interesting to use PDE5 inhibi-

tors to contrast both the neurological and vascular symptoms 

associated with this pathology.

Use of PDE5 inhibitors in other nervous 
system diseases
All PDEs are expressed at the level of the nervous system 

suggesting that they could be targeted by some drugs used 

for pathologies of the nervous system. Sildenafi l has been 

proposed for pain therapy both in humans and animals 

(Asomoza-Espinosa et al 2001; Jain et al 2001; Patil et al 

2004; Ambriz-Tututi et al 2005). Chronic neuropathic pain, 

often associated with nervous system diseases, is very dif-

fi cult to treat therapeutically (Pezet and McMahon 2006). 

Opioids have been found ineffective and the possible use of 

a low dose of ketamine produces a transient amelioration 

(Eide et al 1995; Mathisen et al 1995; Wiesenfeld-Hallin 

1998; Pedersen et al 2006), but can also give memory impair-

ment and psychotic symptoms (Krystal et al 1994; Malhotra 

et al 1996). Recent studies have shown that sildenafi l can be 

used for the treatment of pain in animal models (Asomoza-

Espinosa et al 2001; Jain et al 2001; Patil et al 2004; Ambriz-

Tututi et al 2005) because of the peripheral accumulation 

of cGMP that it is likely to have an anti-nociceptive effect 

(Jain et al 2003). A further interesting application would be 

the treatment of diabetic neuropathy in which alteration in 

nNOS seems to be a key factor (Patil et al 2004).

Sildenafi l has also been shown to have a potential applica-

tion in MS, a chronic infl ammatory CNS disease character-

ized by demyelinization of nerve cells that leads to severe 

psychomotor disability. There is no defi nitive therapy for MS 

but the different approaches (interferon, glatiramer acetate, 

novantrone, natalizumab, corticosteroids, and miorelax-

ants) aim to cure the symptoms and the progression of the 

pathology. Given its role in neuroprotection and neurogenesis 

(see above), sildenafi l might have a potential application in 

patients with MS. Moreover, it has been demonstrated that 

sildenafi l can be useful to successfully treat ED in MS (Fowler 

et al 2005) and other neurological disorders such as spina 

bifi da and Parkinson’s disease (Nehra and Moreland 2001).

Conclusions
This review summarizes the effect of PDE5 in physiologi-

cal processes and, in particular, on synaptic plasticity and 

memory. Given the widespread distribution of PDE5, the use 

of selective PDE5 inhibitors such as sildenafi l, vardenafi l, 

and tadalafi l has been widely investigated. The use of PDE5 
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inhibitors is now approved by the FDA for the therapy of ED 

and pulmonary hypertension, however, many other diseases 

might take advantage of these drugs. Among these, particular 

attention should be given to CNS diseases characterized by 

cognitive impairment such as AD. Moreover, given the role 

of sildenafi l in neurogenesis, CNS diseases such as mood 

disorders, MS and stroke might be approached with PDE5 

inhibitors. The role of PDE5 on nociception should be another 

fi eld of further investigation.
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