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Abstract: Lung cancer with brain metastases remains a clinical challenge and is often diagnosed at advanced stages when treatment 
options are limited. Nanotechnological tools have emerged as pivotal in enhancing both diagnostic and therapeutic approaches. Herein, 
we explore the theranostic potential of nanotechnology for the detection and treatment of lung cancer brain metastases, focusing on 
nanomaterials such as liposomes, polymeric nanoparticles, quantum dots, and magnetic nanoparticles, and their applications in 
imaging techniques like MRI, PET, fluorescence imaging, and CT. The role of nanotechnology in overcoming the blood-brain barrier 
and facilitating targeted drug delivery through passive and active targeting is also discussed. Additionally, it examines the application 
of nanocarriers in chemotherapy, radiotherapy, immunotherapy, and combination therapies. Special attention is given to immune- 
modulating nanoparticles, including checkpoint inhibitors and nano vaccines, as key innovations in immunotherapy. Theranostic 
nanoparticles are highlighted for their potential in real-time treatment monitoring. In summary, nanotechnological tools offer 
transformative potential in oncology, advancing diagnostics, enabling targeted therapies, and improving patient survival outcomes. 
Keywords: nanotechnology, brain metastases, lung cancer, theranostics, real-time monitoring, nanomaterials

Introduction
Non-small cell lung cancer (NSCLC) represents approximately 85% of all lung cancer cases, with brain metastasis 
occurring frequently and significantly impacting patient prognosis.1 Advancements in early detection and targeted 
therapies have modestly improved survival rates for non-small cell lung cancer, with the five-year survival rate increasing 
from 13% in the 1970s to 25% in recent years.2 However, these improvements are mainly seen in early-stage diagnoses, 
while survival remains poor for patients with advanced-stage disease and brain metastases. Additionally, recent studies 
reveal a concerning rise in lung cancer incidence among women under 65, surpassing rates in men, with factors like 
smoking patterns, delayed childbirth, obesity, inactivity, and alcohol consumption contributing to this trend. Research 
indicates that 40–50% of lung cancer patients develop brain metastases as the disease progresses, which severely affects 
neurological function and quality of life.3 Cancer cells from the primary tumor can invade the bloodstream or lymphatic 
system and spread to distant organs, including the brain.4 The brain’s microenvironment is conducive to lung cancer cell 
proliferation, particularly in the cerebral hemispheres, though metastases can also affect the cerebellum and brainstem, 
leading to symptoms such as seizures and cognitive decline.5 In the absence of treatment, survival for patients with brain 
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metastases is generally limited to three to six months. While targeted therapies Tyrosine kinase inhibitors (TKIs), have 
shown promise, the impermeability of the blood-brain barrier (BBB) often hampers the efficacy of systemic treatments.6

Nanotechnological platforms, particularly those integrating diagnostic and therapeutic functions (theranostics), have 
garnered increasing attention for their potential to address these challenges.7 With the ability to manipulate materials at 
the atomic level, nanotechnology offers transformative opportunities for diagnosing and treating brain metastases.8 

Standard imaging techniques are commonly used to detect brain metastases; however, they typically identify metastases 
only when they exceed 5 mm in size. This delayed detection often results in a poorer prognosis and limits therapeutic 
options.9

Recent advancements in nanotechnology offer the potential for earlier detection of brain metastases. Due to their 
small size and ability to influence biological processes, nanoparticles can penetrate the blood-brain barrier and detect 
metastatic cells more efficiently than traditional imaging methods. Additionally, nanoparticles engineered with cancer- 
specific ligands can bind to brain cells, and enhance imaging contrast that may be undetectable by conventional 
techniques.10

Liquid biopsies, which detect tumor-derived exosomes and circulating tumor cells (CTCs) in blood or cerebrospinal 
fluid, offer potential for early diagnosis of brain metastases.11 Recent advancements integrating nanoparticle technology 
with liquid biopsies have improved the detection of biomarkers and enhanced the accuracy of CTC identification, 
achieving over 90% sensitivity. These innovations facilitate continuous monitoring of tumor progression and therapeutic 
response, providing critical real-time data for optimizing treatment strategies in the management of metastatic cancer.12

This review examines the role of advanced nanotechnological tools in diagnosing and treating lung cancer brain 
metastases. It highlights recent advancements in nanotechnology-based diagnostics, theranostic drug delivery across the 
blood-brain barrier, and current challenges in clinical oncology. Additionally, it explores future directions for the 
development of precision nanotherapies to overcome therapeutic barriers in cancer treatment.

Lung Cancer Brain Metastases: Pathophysiology and Clinical Challenges
Brain metastasis has a major role in the high death rate of lung cancer, the world’s most common cause of cancer-related 
fatalities.13 Brain metastases affect about 10–20% of patients with non-small cell lung cancer at the time of diagnosis, 
and another 30–40% acquire them as the disease advances. The large clinical impact is caused by the high prevalence of 
brain metastases, which complicates both the prognosis and therapy.14,15

Mechanisms of Brain Metastasis in Lung Cancer
A series of steps in the metastatic process include the separation of cancer cells from the initial lung tumor, their 
migration into the surrounding vasculature, and their passage through the bloodstream, as illustrated in Figure 1. To 
create secondary lesions, tumor cells that make it across the BBB and adapt to the distinct microenvironment of the brain 
are required. Lung cancer cells use a variety of cellular and molecular pathways as part of a highly coordinated process to 
invade the brain.16,17

The Seed and Soil Hypothesis and the Brain Microenvironment
Stephen Paget’s “seed and soil” theory, proposed in 1889, remains a critical framework for understanding the process of 
cancer metastasis.18 This theory posits that specific organ microenvironments termed the “soil”, can either promote or 
impede the colonization of metastatic tumor cells, the “seeds.” In the case of brain metastasis, lung cancer cells (the 
“seeds”) preferentially colonize the brain’s microenvironment, which is rich in vascularity, neurotrophins, and exhibits 
a degree of immunological privilege factors that collectively facilitate the establishment and growth of metastatic 
tumors.19,20 A key determinant in the metastatic spread of lung cancer to the brain is the expression of chemokine 
receptors, particularly CXCR4 and CXCR7, on the surface of tumor cells.21,22 These receptors mediate the directed 
migration of cancer cells toward the brain in response to elevated concentrations of chemokine ligands, CXCL12, which 
are abundantly present in brain tissues. Furthermore, brain-derived neurotrophic factors (BDNF) play an integral role in 
shaping the brain’s microenvironment, fostering conditions that enable tumor cells to proliferate and sustain growth 
within this niche.23–25
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Crossing the Blood-Brain Barrier (BBB)
The BBB presents an important challenge for both the therapeutic drug and the metastasizing tumor cell. The BBB, which is 
made up of astrocytes, pericytes, and endothelial cells connected by tight junctions, strictly controls the flow of chemicals from 
the blood into the brain. However, there are a few ways for lung cancer cells to get across the BBB.26 For example, cancer cells 
frequently release matrix metalloproteinases (MMPs), namely MMP-2 and MMP-9, which break down the BBB’s compo-
nents and enable tumor cells to spread into the brain parenchyma.27 Lung cancer cells can also alter the blood-brain barrier by 
making endothelial cells more permeable. According to studies, vascular endothelial growth factor (VEGF) secreted by 
metastatic lung cancer cells disrupts the tight connections between BBB endothelial cells, allowing tumor cells to penetrate the 
barrier. Furthermore, by stimulating lung cancer cells to attach to brain endothelial cells, astrocyte-derived exosomes boost 
lung cancer cells’ metastatic potential.28,29

Epithelial-Mesenchymal Transition (EMT) and Cellular Plasticity
In cancer metastasis, one important mechanism is the EMT. Lung cancer cells undergo epithelial traits like adherence 
during EMT, but they also acquire mesenchymal characteristics that enhance invasion and Lung cancer cells have 
phenotypic plasticity, allowing them to proliferate outside of their primary tumor, persist in the circulation, and spread to 
other organs like the brain.30 In metastatic lung cancer cells, several signaling pathways are extremely active and 
mutually regulating, as TGF-β, Wnt/β-catenin, and Notch. Transcription factors linked with EMT, including Snail, Slug, 
and ZEB1, have been identified as critical modulators of the metastatic spread of lung cancer to the brain.31,32 

Furthermore, current research highlights the role extracellular vesicles like exosomes which play in the transmission 
of signals from tumors that promote epithelial-mesenchymal transition.33

Figure 1 Mechanisms of Brain Metastasis in Lung Cancer. Primary lung cancer cells move from the primary tumor site to overspread and circulate in blood vessels, called 
circulating tumor cells (CTC). In response to chemokines, CTCs can reach the brain and cross the blood-brain barrier by rolling, adherence and extravasation Angiogenesis 
leads to brain metastasis. 
Abbreviation: TJs, tight junctions.
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Immune Evasion in the Brain Microenvironment
The BBB restricts immune cells’ ability to enter the brain and encourages the cooperative participation of local immune 
cells, astrocytes and microglia, in tumor cells to build immunological tolerance. Lung cancer cells are known to 
upregulate immune checkpoint proteins, PD-L1, which attach to T cells’ PD-1 receptors and prevent them from acting 
as antitumor agents. Furthermore, TGF-β and IL-10, two immunosuppressive cytokines that contribute to an immuno-
suppressive environment and a propensity for brain tumor development, can be released by lung cancer cells. This 
immune evasion is one of the reasons immunotherapies has been less successful in treating brain metastases than 
extracranial metastases.34,35

Clinical Presentation and Diagnosis of Brain Metastasis
Clinically, brain metastases in lung cancer patients manifest as differentiating lesions in terms of size, quantity, and 
location. The most typical symptoms are localized neurological abnormalities motor weakness or sensory loss, head-
aches, seizures, and cognitive failure. Increased intracranial pressure or the metastatic invasion of functioning brain areas 
are the causes of these symptoms.36,37

The gold standard for diagnosing brain metastases is MRI with contrast enhancement, more especially with 
gadolinium, as even tiny metastatic lesions increase the sensitivity of the scan. MRI is particularly helpful in identifying 
lesions in the brainstem and posterior fossa, as it has higher sensitivity and resolution than computed tomography 
(CT).38,39 A compromised blood-brain barrier is typically present in metastatic brain cancers, and T1 weighted MRI with 
contrast is particularly useful in identifying these lesions. However, it might be challenging to distinguish brain 
metastases from other intracranial illnesses such as infection, radiation necrosis, or original brain tumor.40 Advanced 
imaging methods, such as diffusion weighted imaging (DWI) or perfusion weighted imaging (PWI), may provide 
additional diagnostic information in individuals with vaulted soft areas, who may be more likely to hemorrhage.41

A novel approach to diagnosis is the liquid biopsy, which finds circulating tumor DNA (ctDNA) or CTCs in CSF 
(cerebrospinal fluid) or blood. For the noninvasive identification of brain metastases and treatment response monitoring, 
liquid biopsy is an alternative.42 Research has shown that ctDNA can help with treatment decisions by providing 
information on the mutational profile of brain metastases, even if the field is still in its early stages. Moreover, liquid 
biopsy can identify specific driver mutations, those affecting EGFR or ALK, and can assist in determining the efficacy of 
targeted therapy.43

The prognosis is dismal for individuals whose lung cancer has spread to their brain, with a median survival of only 
3–12 months, depending on the extent of lesions, tumor histology, and accessibility to targeted therapies. Numerous 
factors, such as the patient’s performance status, neurologic symptoms, and tumor molecular features, affect the 
prognosis. Patients with actionable mutations in ALK or EGFR have better outcomes because targeted medications 
that can bridge the blood-brain barrier are so successful.44,45

Challenges in the Early Detection of Brain Metastases
Brain metastasis continues to be an important challenge in the early diagnosis of disease despite ongoing advancements 
in imaging and molecular diagnostics. Small, asymptomatic lesions in advanced illness could go undetected until they 
enlarge or cause neurological symptoms. For many patients, the lack of regular brain imaging in the absence of 
symptoms frequently causes delays in diagnosis. Furthermore, although clinical use for brain metastases is still in its 
infancy and further validation is required, liquid biopsy may someday offer non-invasive detection capabilities.46 In 
contrast to original lung tumors, which might manifest respiratory symptoms like coughing or dyspnea, brain metastases 
typically do not exhibit any neurological symptoms right away. Only when the metastasis is large enough to impact 
crucial brain areas or elevate intracranial pressure may symptoms as headaches, seizures, or motor impairments be 
observed. Brain metastases are frequently latent, and it is typical for diagnosis to be delayed and to come up after the 
disease has progressed.47–49

MRI is used for detecting brain metastases due to its high sensitivity, but it is not frequently used in asymptomatic 
lung cancer patients, which can result in undiagnosed early-stage metastases.50 Additionally, MRI may be limited by 
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accessibility, cost, and patient intolerance. Emerging diagnostic methods like liquid biopsy, which detect circulating 
tumor cells (CTCs) or DNA (ctDNA), offer potential for earlier detection, but their effectiveness is limited for brain 
metastases due to fewer tumor cells being released into circulation.51

Theranostics and Its Relevance in Oncology
Theranostics combines diagnostic and therapeutic approaches to personalize cancer treatment based on individual tumor 
characteristics. This shift from traditional one-size-fits-all methods aims to improve efficacy and minimize side effects. 
Theranostic technologies enable rapid monitoring of tumor responses and early detection of recurrence, which is crucial 
for treating metastatic cancers like lung cancer with brain metastasis. Nanotechnology plays a key role in theranostics, 
with engineered nanoparticles that can deliver drugs directly to tumors and serve as diagnostic tools. These advancements 
allow for earlier detection and more targeted treatments, improving patient outcomes and offering new possibilities in 
cancer care.52

Role of Nanotechnology in Cancer Diagnostics and Therapeutics
Nanotechnology is advancing oncology by providing innovative strategies for both cancer diagnosis and treatment, 
categorized into nanodiagnostics and nanotherapeutics.53 The unique properties of nanoparticles, their small size, surface 
characteristics, and functionalization capabilities, enable molecular-level interactions with biological systems, offering 
substantial advantages in precision medicine. Nanodiagnostics utilizes nanomaterials to detect and monitor cancer, 
particularly at early stages.54 A significant benefit of nanotechnology is its ability to enhance imaging techniques like 
MRI, PET, and CT, allowing for the detection of tumors at the microscale often when they are undetectable by 
conventional methods. For example, magnetic nanoparticles functionalized with tumor-specific ligands can enhance 
MRI contrast, facilitating the identification of small metastatic lesions.55 Nanoparticles are also improving liquid biopsy 
techniques by detecting circulating tumor cells (CTCs) or tumor-derived exosomes in bodily fluids, providing a less 
invasive alternative to traditional biopsies. Nanoparticle-based sensors enhance the sensitivity of liquid biopsies, enabling 
earlier detection of metastatic spread and more precise monitoring of therapeutic responses.56

Nanotechnology in Cancer Therapeutics
In the treatment of brain metastases resulting from lung cancer, considerable attention must be directed toward 
nanoparticles capable of crossing the BBB which often restricts the delivery of therapeutic agents, preventing effective 
treatment of brain tumors. However, nanoparticles have demonstrated the capacity to bypass this barrier, enabling precise 
delivery of drugs to metastatic brain lesions. Additionally, nanoparticles can be engineered to work synergistically with 
other therapeutic approaches, such as gene therapy and chemotherapy, thereby enhancing their overall effectiveness.57

Ongoing research is increasingly focused on the use of liposomes and dendrimers have shown promise in advancing 
therapeutic applications. These nanostructures are being evaluated for their ability to optimize drug delivery, increase the 
concentration of therapeutic agents at metastatic sites, and reduce systemic toxicity. Moreover, gold nanoparticles are 
emerging as a potential strategy to enhance the efficacy of radiation therapy by concentrating energy specifically within 
cancerous tissues, thus improving treatment outcomes.58

Current Treatment Strategies for Brain Metastasis in Lung Cancer
A multimodal treatment strategy combining surgery, radiation therapy, systemic therapy, and supportive care is used to 
treat brain metastases from lung cancer. The treatment option is determined by a variety of parameters, the tumor’s 
molecular makeup, the patient’s general health, and the size and quantity of metastases.1,59 These are the primary therapy 
techniques now in use in the field.

Surgical Resection
Surgical resection is considered in situations with a limited number of brain metastases (usually no more than three 
lesions) and a few metastases that are medically accessible without an excessive risk of neurological impairment. Surgery 
is used to treat symptomatic lesions that cause mass consequences, that result in elevated intracranial pressure or 
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neurological impairments. When paired with other treatments like radiation, total resection of some malignancies can 
result in enhanced survival and quick symptom alleviation. Advancements in surgical procedures like as neuronavigation, 
awake craniotomies, and intraoperative MRI have made it possible to precisely remove metastases while preserving 
essential brain functions. However, certain individuals are not suitable candidates for surgery; these patients include those 
who have deep-seated lesions, numerous metastases, or poor general health.60–62

Radiation Therapy
Radiation therapy is a widely used treatment for brain metastasis alone or in combination with surgery or systemic 
therapies.63 Two main types of radiation currently used are WBRT and SRS. Patients receiving whole-brain radiation 
therapy (WBRT) typically have several brain metastases or severe metastatic disease. Although WBRT can stop tumor 
development, it is frequently used in conjunction with radiation-induced brain damage (RID) and unfavorable cognitive 
deterioration.64 There have been attempts to limit the use of these medications due to their negative effects, particularly 
in patients who may benefit from more specialized therapies or who are expected to survive longer. SRS, or stereotactic 
radiosurgery is being used more and more to treat patients with limited brain metastases because to its accuracy and 
minimal adverse effect profile. CyberKnife and Gamma Knife use high radiation dosages to the tumor while causing the 
least amount of harm to the surrounding healthy tissue. SRS is particularly useful for well-defined, tiny lesions and is 
frequently applied to patients with fewer than four brain.65

Targeted Therapies and Immunotherapy
The development of immunotherapy and targeted medicines has particularly changed the paradigm for treating patients 
with actionable mutations of EGFR, ALK, or ROS1 when it comes to brain metastases. The treatments are designed to 
target certain molecular alterations present in cancer cells, which enable the cells to spread to other parts of the brain and 
breach the blood-brain barrier.66 Targeted therapies have been effective in treating brain metastases because they allow 
the medications osimertinib (for EGFR mutations) and alectinib (for ALK mutations) to permeate the BBB and decrease 
tumor development.67 Compared to traditional chemotherapy, these medicines offer substantially higher progression-free 
and overall survival rates. Immunotherapy (immune checkpoint inhibitors, nivolumab and pembrolizumab), which work 
by broadening the ability of the immune system to recognize and kill tumor cells by targeting the PD-1/PD-L1. These 
agents have had limited efficacy for brain metastasis because of the brain’s immune privileged status. However, recent 
research indicates that better results for individuals with brain metastases can result from combining immunotherapy with 
additional therapies like radiotherapy.68

Chemotherapy, Palliative Care and Supportive Therapy
Due to the difficulty of drugs crossing the blood-brain barrier, brain metastases generally respond less favorably to 
chemotherapy than extracranial metastases. In an effort to improve drug delivery to the brain, more advanced therapies 
and combination treatments are being developed. Temozolomide, for instance, has been investigated in combination with 
other treatments, radiation, to improve outcomes for patients with lung cancer brain metastases.69 Chemotherapy is 
typically reserved for patients who are not candidates for other treatment modalities, primarily due to its limited efficacy. 
Palliative care plays a crucial role in managing symptoms and improving the quality of life for patients with brain 
metastases, particularly when combined with curative treatments.70 Corticosteroids are commonly used to reduce 
cerebral edema and alleviate related symptoms headaches and neurocognitive impairments. Additionally, anticonvulsants 
are prescribed for patients experiencing seizures, and pain management remains an essential component of care.71

Limitations of Conventional Diagnostic and Therapeutic Approaches
As previously discussed, routine brain screening is not conducted throughout the course of the disease, and early brain 
metastases are often asymptomatic, leading to delayed diagnoses. While advanced imaging techniques like MRI are 
highly effective, their widespread use is limited, especially in asymptomatic individuals. Furthermore, liquid biopsy, 
although still in experimental stages and not yet sufficiently sensitive for detecting early brain metastases, holds potential 
as a noninvasive diagnostic tool. The BBB poses significant challenges for both diagnosis and treatment. Most systemic 
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therapies are unable to effectively cross the BBB, and brain metastases often exhibit resistance to conventional 
chemotherapy. While immunotherapies and targeted treatments have shown promise in more effectively penetrating 
cancer cells, their efficacy remains variable, and resistance mechanisms may develop over time.72

Whole-brain radiation therapy is one of the most commonly used treatments for brain metastases, although it is associated 
with considerable neurological and cognitive side effects. Radiation-induced brain injury can lead to long-term impairments in 
memory, quality of life, and executive function, particularly in patients undergoing WBRT. Efforts have been made to mitigate 
these effects, such as hippocampus-sparing WBRT, but the risks remain significant. Tumor heterogeneity further complicates 
both diagnosis and treatment.73 According to Hoshino et al, brain metastases may exhibit a genetic and molecular profile 
distinct from that of the primary lung tumor, necessitating a tailored therapeutic approach. Additionally, brain metastases can 
develop novel resistance mechanisms, rendering them less responsive to immunotherapies and targeted treatments.74

Nanotechnology in Oncology
Nano-oncology involves the use of nanotechnology to enhance cancer detection, treatment, and monitoring by manip-
ulating materials at the nanoscale (1–100 nanometers).75 Nanomaterials exhibit unique properties, such as increased 
surface area-to-volume ratio, enhanced reactivity, and altered optical, electrical, and magnetic behaviors, which can be 
harnessed for targeted drug delivery, controlled release, and improved imaging. These materials can be functionalized 
with ligands (antibodies, peptides, small molecules) to selectively bind to cancer cell receptors, ensuring precise drug 
delivery and minimizing damage to healthy tissues.53,76 Nanoparticles, as liposomes, polymeric micelles, and quantum 
dots, are used for encapsulating anticancer drugs, enhancing solubility, and enabling controlled release, while also 
serving as contrast agents in imaging modalities like MRI, CT, and PET. Moreover, nanoparticles can deliver RNA 
interference (RNAi) agents or small-molecule inhibitors to target molecular pathways crucial for tumor progression. 
While nano-oncology shows promise in improving treatment specificity and reducing toxicity, challenges remain in 
optimizing nanoparticle design for stability, biocompatibility, and long-term safety.75,77

Types of Nanomaterials Used in Cancer Theranostics
Liposomes are spherical vesicles made of lipid bilayers that can hold both hydrophilic and hydrophobic medications. In 
oncology, liposomal formulations are utilized to decrease the toxicity and boost the absorption of chemotherapy 
drugs.78,79 Liposomes can be selectively directed to tumor cells through the addition of targeting moieties, which 
allow for the release of their payload in response to specific environmental cues, such as changes in temperature or 
pH. One notable example of liposomal formulations is liposome-encapsulated doxorubicin (Doxil), which is used in the 
treatment of various cancers, including ovarian and breast cancer. This formulation of doxorubicin has been shown to 
reduce cardiotoxicity and improve tolerability without compromising its anticancer efficacy.80

Nanoparticles such as gold, silver, and quantum dots are increasingly utilized in cancer diagnosis and treatment due to 
their distinctive optical and chemical properties. Gold nanoparticles, in particular, have been widely studied for 
enhancing imaging techniques like CT and for improving drug delivery. These nanoparticles are easily synthesized 
and can be made tumor-specific through functionalization with targeting ligands. In addition to serving as drug delivery 
agents, gold nanoparticles exhibit surface plasmon resonance, making them suitable for photothermal therapy, 
a technique that uses light to generate heat and selectively destroy tumor cells. Silver nanoparticles, known for their 
antimicrobial properties, may also have potential in inhibiting cancer cell growth.81 However, their clinical application 
has been limited by concerns regarding cytotoxicity and long-term safety.82 Quantum dots are semiconductor nanocrys-
tals with unique optical features, size-dependent fluorescence. They offer features that make them ideal for cancer 
imaging applications that need real-time observation of tumors and metastases.83

Carbon nanoparticles based on carbon, such as carbon nanotubes and graphene oxide, are gaining popularity as 
nanomaterials for cancer treatment. CNT is a cylindrical carbon structure with exceptional mechanical strength and electrical 
conductivity, making it ideal for medication administration and photothermal treatment. This allows CNTs to be functiona-
lized with a wide range of medicines and targeting ligands, enabling site-specific drug delivery. They have a particular 
structure that allows them to efficiently transfer therapeutic materials across biological membranes.84 CNTs will preferen-
tially eliminate tumor cells in photothermal treatment by absorbing near infrared (NIR) light and converting it to heat. 
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Graphene oxide (GO), a derivative of graphene with a huge surface area, can be functionalized with pharmaceuticals and 
biological molecules to treat cancer. Indeed, GO has been found to have potential in imaging applications due to its strong 
optical absorption and production of reactive oxygen species (ROS) capable of killing cancer cells.85

Polymeric nanoparticles may be manufactured from artificial or natural polymers, and their pharmacological cargo can 
be released in response to physical triggers. Dendrimers are extremely branching, tree-like polymers that can encapsulate 
pharmaceuticals or conjugate drugs to their surfaces. Their well-defined design allows for exact control over drug release 
and targeting capabilities. In the presence of water, amphiphilic block copolymers self-assemble into polymeric micelles. 
With a hydrophobic core and a hydrophilic shell, they can encapsulate poorly soluble pharmaceuticals while remaining 
stable in biological fluids. Polymeric micelles are effective in delivering chemotherapeutics such paclitaxel.86,87

Iron oxide or ferrite magnetic nanoparticles (MNPs) are utilized in cancer detection and treatment because they may be 
controlled by an external magnetic field Figure 2. With advancements in bioimaging techniques, they can be used as MRI 
probes to track metastatic lymph nodes in cancer patients as they can be preferentially phagocytosed by normal lymphoid cells 
after injection. Metastatic lymph nodes that do not absorb nanoparticles have high signal intensity on T2*-weighted imaging.88 

These nanoparticles can also be coated with targeting compounds and directed to tumor locations via magnet to release their 
therapeutic payload. Magnetic nanoparticles are also utilized as contrast material in MRI to increase the visibility of tumors 
and metastases. Furthermore, magnetic hyperthermia, in which nanoparticles create heat by an alternating magnetic field, is 
being investigated as a noninvasive cancer therapy.89

Advantages of Nanotechnology in Cancer Treatment
Nanotechnology in cancer therapy enhances drug delivery by targeting tumor cells specifically, reducing systemic toxicity and 
side effects associated with conventional chemotherapy. They can be functionalized with tumor-targeting ligands (antibodies, 
peptides) for selective drug delivery to cancer cells. Drugs with limited water solubility, paclitaxel, can be encapsulated in 

Figure 2 Magnetic nanoparticles (MNPs) are used in cancer detection and treatment due to their ability to be controlled by an external magnetic field. MNPs can also be 
used as MRI probes to track metastatic lymph nodes in cancer patients due to bioimaging advances. MNPs may be preferentially phagocytosed by normal lymphoid cells after 
injection, darkening T2*-weighted pictures. Metastatic lymph nodes that do not absorb nanoparticles have high signal intensity on T2*-weighted imaging. Adapted from Yan Y, 
Liu Y, Li T, et al. Functional roles of magnetic nanoparticles for the identification of metastatic lymph nodes in cancer patients. J Nanobiotechnol. 2023;21(1):337. Under the 
terms and conditions of Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).88
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nanoparticles to improve solubility and bioavailability. Nanotechnology also improves imaging contrast in MRI, CT, and 
fluorescence imaging using agents like quantum dots and gold nanoparticles, enabling early tumor detection and real-time 
monitoring of therapy. Additionally, nanoparticles facilitate combination therapies by delivering multiple therapeutic agents 
simultaneously, overcoming drug resistance mechanisms like efflux pumps. This approach ensures effective drug concentra-
tions within the tumor microenvironment. Despite these advancements, challenges remain in addressing nanoparticle toxicity, 
immune clearance, and scalability for therapeutic applications.90–92

Nanotechnological Approaches for Early Detection of Brain Metastasis
Early detection of brain metastases is vital for improving lung cancer outcomes, but current methods lack sufficient 
sensitivity. Nanoscale technologies enhance diagnostic precision, enabling earlier detection and more effective 
monitoring.93 Table 1 provides an overview of both current and investigational nanotechnology applications in lung 
cancer and brain metastases.

Nanotechnological Tools for Therapeutic Targeting in Brain Metastasis
Brain metastasis may be treated using nanotechnology’s transformational solutions, which address the challenges of drug 
transport, increase therapeutic precision, and battle metastatic cells’ resistance mechanisms. The BBB is the primary 
impediment to treating brain metastases because it prevents most conventional medications from reaching the brain. 
Nanoparticles have been found to effectively unload the BBB and deliver medicines directly to metastatic brain tissue. 
Furthermore, these nanotechnological techniques enable the simultaneous administration of chemotherapeutic drugs, 
radiosensitizers, and immune modulators, increasing therapy effectiveness.102

Table 1 Overview of Current and Investigational Nanotechnology Applications in Lung Cancer and Brain Metastases

Application Nanoparticle 
Type

Clinical 
Status

Purpose Example References

Drug Delivery 
for NSCLC

Liposomal 
Nanoparticles

FDA-approved Targeted drug delivery to improve efficacy 
and reduce side effects.

Doxil® (liposomal 
doxorubicin)

[94]

Theranostics Multifunctional 
Nanoparticles

Clinical Trials Simultaneous diagnosis and therapy for brain 
metastases.

Ongoing clinical trials for 
combination therapies.

[95]

Gene Delivery Polymeric 
Nanoparticles

Investigational Targeted delivery of genetic material to 
tumor cells.

Research in gene therapy 
for NSCLC and brain 

metastases.

[96]

Targeted Drug 

Delivery

Nanocapsules 

(Polymeric, 

Lipid-based)

Clinical Trials Controlled release of chemotherapy drugs 

to the tumor site.

Nanocapsule delivery of 

paclitaxel for NSCLC 

treatment.

[97]

RNA Delivery Lipid 

Nanoparticles

Investigational Delivery of RNA molecules (siRNA, mRNA) 

to silence tumor genes or provide 
therapeutic proteins.

Lipid nanoparticles for 

siRNA delivery in cancer 
therapy.

[98]

Photothermal 
Therapy

Gold Nanorods 
or 

Nanoparticles

Investigational/ 
Pre-clinical

Conversion of light to heat to destroy tumor 
cells.

Research on gold nanorods 
for photothermal therapy in 

NSCLC.

[99]

MRI Contrast 

Enhancement

Iron Oxide 

Nanoparticles

FDA-approved 

/Investigational

Improve MRI contrast to identify metastases 

and track tumor growth.

FDA-approved Feridex® 

(iron oxide nanoparticles 

for MRI)

[100]

Targeted 

Nanobots for 
Surgery

Nanoscale 

Robots

Investigational Deliver drugs directly to cancer cells during 

surgery or precision therapy.

Research on nanobots for 

targeted drug release during 
surgery.

[101]
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Nanoparticles for Drug Delivery to the Brain
Brain metastases present a significant therapeutic challenge due to the BBB, which prevents over 98% of small-molecule 
drugs from entering the brain. Nanoparticles can be engineered to improve drug permeability across the BBB by 
modifying their physicochemical properties.103 These nanoparticles can encapsulate poorly bioavailable drugs, protecting 
them from degradation while facilitating their delivery to the brain. Surface modifications, such as functionalizing 
nanoparticles with ligands like transferrin or lactoferrin, enable receptor-mediated transcytosis, allowing nanoparticles to 
bind to BBB receptors and cross into the brain. Additionally, nanoparticles can exploit the BBB’s leaky vasculature in 
tumor regions to enhance drug delivery to brain metastases.104

Passive targeting and active targeting are the two primary ways for delivering nanoparticles to brain metastases, as 
illustrated in Figure 3. The Enhanced Permeability and Retention (EPR) effect allows nanoparticles to passively target 
the tumor microenvironment by taking advantage of the tumor’s unique vasculature, which enhances nanoparticle 
retention at metastatic sites.105 Active targeting further refines this approach by functionalizing nanoparticles with 
ligands or antibodies that bind to overexpressed receptors on cancer cells, such as integrins or folate receptors. This 
targeting increases the specificity of drug delivery to metastatic cells, reducing damage to healthy brain tissue. 
Additionally, combining receptor-mediated transcytosis with active targeting enhances drug penetration across the 
BBB and ensures precise medication release at the tumor site, minimizing systemic side effects.106

Nanocarriers for Chemotherapy and Radiotherapy in Brain Metastasis
Nanocarriers, such as polymeric nanoparticles and liposomes, enhance the delivery of chemotherapy drugs and 
radiosensitizers to brain metastases by protecting the drugs from premature breakdown, improving solubility, and 
enabling controlled release at the tumor site, thus increasing drug concentration while minimizing systemic toxicity. 
Polymeric nanoparticles, made from biodegradable polymers like PLGA, chitosan, and polyethylene glycol (PEG), can 
encapsulate both hydrophilic and hydrophobic drugs, offering regulated release and protection from enzymatic 
degradation. Surface modification with targeting ligands allows for selective accumulation at brain metastases, 
reducing off-target effects on healthy brain tissue. Liposomes, composed of phospholipid bilayers with an aqueous 

Figure 3 The diagram illustrates the two strategies for Nanotechnological therapeutic targeting in brain metastasis: passive and active targeting.
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core, are biocompatible carriers that accommodate both hydrophilic and hydrophobic drugs, enhancing the delivery of 
chemotherapeutic agents like paclitaxel and doxorubicin. Surface modification with PEG extends circulation time, 
enabling accumulation in brain metastases via the EPR effect. Liposomal formulations improve treatment outcomes by 
enhancing drug delivery and minimizing adverse effects, and are being explored for co-delivering drugs and radio-
sensitizers to increase tumor radiosensitivity.107,108

Stimuli-responsive nanocarriers, designed to release drugs in response to specific tumor microenvironment factors 
(pH, temperature, enzymatic activity), enable targeted, on-demand drug delivery. These carriers release their therapeutic 
payloads in response to the acidic conditions or elevated temperatures typically found in tumors, reducing damage to 
healthy tissue while improving the efficacy of chemotherapy and radiation.109

Nanotechnology in Immunotherapy for Brain Metastasis
Immunotherapy leverages the body’s immune system to target and eliminate tumor cells, including those in brain 
metastases. Nanotechnology enhances immunotherapy by improving the delivery and efficacy of immune checkpoint 
inhibitors, nanovaccines, and combination treatments targeting metastatic brain lesions. Immune checkpoint inhibi-
tors (anti-PD1/PDL1 or anti-CTLA4) help overcome immune suppression and enable immune system activation 
against tumors.110,111 However, their effectiveness is limited by the BBB. Nanoparticles encapsulating these 
inhibitors facilitate improved delivery to brain metastases, enhancing drug transport across the BBB and activating 
the immune response at the tumor site. Nanovaccines, which deliver tumor-associated antigens and adjuvants to 
antigen-presenting cells such as dendritic cells, are gaining traction in immunotherapy.112 By conditioning the 
immune system to recognize and target brain metastasis cells, these nanovaccines have shown potential in 
preclinical studies to induce significant, long-lasting immune responses and improve long-term survival in meta-
static brain cancer.113

Nanoparticles in Combination Therapies (Chemo, Radio, and Immuno)
Nanoparticles can provide numerous therapeutic techniques, including as chemotherapy, radiation, and immunotherapy, 
concurrently in a single treatment strategy for brain metastases. With combination therapy, we achieve a synergistic 
impact that improves the efficacy of each modality while lowering toxicity. For example, such nanoparticles can be 
loaded with chemotherapeutic medications and radiosensitizers to increase the susceptibility of brain cells with metas-
tases to radiation, as well as immunotherapy compounds to amplify an already strong immune response. This multi-
pronged method ensures that everything arriving at tumor cells comes from numerous sources, enhancing the treatment’s 
chances of success.114–116

Overcoming Multidrug Resistance Using Nanotechnology
Metastatic cancer, in general, and brain metastasis in particular, provide a significant difficulty in the treatment of 
metastatic cancer due to tumor cells evolving methods to evade the effects of chemotherapy. Drug delivery using atypical 
techniques that bypass resistance pathways is a unique solution offered by nanotechnology to overcome MDR. For 
example, we can design nanoparticles that co-deliver silencing of MDR-related genes, restoring a tumor’s chemosensi-
tivity. Furthermore, nanosized particles can encapsulate efflux pump blockers, stopping cancer cells from expelling 
therapeutic drugs, improving medication retention in tumor cells, and contributing to increased treatment effectiveness. 
These treatments have a high potential for overcoming MDR in brain metastases and provide new hope to patients with 
resistant malignancies.117,118

Theranostic Nanoparticles: Integrated Diagnosis and Therapy
Theranostic nanoparticles provide simultaneous imaging of tumor growth and response to treatment with diagnostic and 
therapeutic agents, resulting in more tailored and adaptive cancer therapy. These nanoparticles’ dual function makes them 
incredibly effective in resolving the complex problems associated with administering medications across the BBB and 
tracking the effectiveness of treating brain metastases.53,119
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Targeted Nanotheranostics in Brain Metastasis
Targeted nanotheranostics offer a promising strategy for the treatment of brain metastases by enabling precise drug delivery 
and real-time diagnostic monitoring. These systems leverage the unique targeting properties of nanoparticles to overcome the 
challenges posed by the BBB and selectively deliver therapeutic agents to metastatic lesions, minimizing off-target effects. 
Nanoparticles functionalized with epidermal growth factor receptor (EGFR) ligands can specifically target lung cancer brain 
metastases, while antibody-conjugated nanoparticles can direct drugs to immune checkpoint proteins like PD-L1, enhancing 
treatment precision. By targeting the molecular and genetic signatures of tumors, nanotheranostics allows for personalized 
therapy, such as EGFR inhibitor-loaded nanoparticles for patients with EGFR mutations or immune checkpoint inhibitor- 
conjugated nanotherapies for those with PD-L1 expression. Additionally, the incorporation of biomarkers enables real-time 
monitoring of treatment response, facilitating adaptive strategies that optimize therapeutic outcomes and reduce recurrence 
risk.120,121 In a recent study, a hybrid cell membrane-coated indocyanine green liposomes (HM-Lipo-ICG) were developed as 
biomimetic near-infrared (NIR) fluorescent probes for targeted BBB penetration and to precisely delineate infiltrative 
glioblastoma (GBM) borders. The HM-Lipo-ICG incorporates ICG within its core and employs a hybrid cell membrane 
outside, facilitating targeted delivery and improved BBB permeability. Quantitative evaluations upon incubation with bEnd.3 
cells and CLSM imaging showed that HM-Lipo-ICG attained 2.8 times higher BBB penetration efficiency compared to 
traditional ICG liposomes. In addition, the HM-Lipo-ICG facilitated high-contrast NIR-imaging in glioblastoma regions of an 
orthotopic glioma murine model, and enhanced tumor margins detection accuracy (Figure 4). This study signifies the use and 
efficacy of hybrid cell membrane-coated liposomal probes in accurately imaging and addressing infiltrative GBM edges.122

Challenges in the Clinical Translation of Theranostics
Off-target interactions represent a significant concern, as nanoparticles may unintentionally accumulate in non-target 
tissues, leading to adverse effects such as immune responses or toxicity. These issues underscore the necessity for precise 

Figure 4 Schematic representation of the preparation for HM-Lipo-ICG and its application in NIR fluorescence imaging of GBM-bearing mice, including tumor margin 
delineation and surgical resection guidance. The HM-Lipo-ICG facilitated high-contrast NIR-imaging in glioblastoma regions of an orthotopic glioma murine model, and 
enhanced tumor margins detection accuracy. Adapted from Liu P, Lan S, Gao D, et al. Targeted blood-brain barrier penetration and precise imaging of infiltrative glioblastoma 
margins using hybrid cell membrane-coated ICG liposomes. J Nanobiotechnol. 2024;22(1):603. Under the terms and conditions of Creative Commons Attribution- 
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/).122
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nanoparticle design, with enhanced targeting mechanisms to minimize unintended interactions.123 Regulatory challenges 
arise from the complex approval process for theranostic agents, which must meet the standards for both drugs and 
medical devices. The current lack of standardized regulatory guidelines further complicates the clinical approval process, 
limiting the widespread use of theranostic platforms.52,124

Nanoparticle clearance remains another critical challenge, as nanoparticles can accumulate in organs such as the liver 
and spleen, posing potential long-term toxicity risks. Ensuring efficient clearance while maintaining therapeutic efficacy 
requires careful optimization of nanoparticle characteristics, including size, surface charge, and biocompatibility.125–127

Tumor Heterogeneity Tumor cells within the same patient can exhibit significant variability in their molecular and 
genetic makeup, making it difficult to develop a one-size-fits-all theranostic approach. This heterogeneity can affect the 
efficacy of both diagnostic and therapeutic components of theranostic agents, complicating their use for personalized 
medicine.128

Manufacturing and Scalability Producing theranostic nanoparticles at a consistent, large-scale level while maintaining 
their quality, stability, and therapeutic efficacy is a significant challenge. The complexity of nanoparticle formulation, as 
well as the need for strict quality control, can hinder the scalability of these technologies for widespread clinical 
use.129,130 Biocompatibility and Toxicity Despite advances in nanoparticle design, issues related to biocompatibility 
and potential long-term toxicity remain a concern. Long-term safety data is often limited, which poses a challenge for 
regulatory approval and clinical adoption.131

Immunogenicity Nanoparticles used in theranostics can provoke immune responses, particularly when foreign 
materials are introduced into the body. This can lead to premature clearance of the nanoparticles, reducing their 
therapeutic potential. Additionally, immune reactions may result in inflammation or other adverse effects, further 
complicating the clinical application of theranostic agents.132

Targeting Efficiency and Delivery Achieving precise targeting and efficient delivery of theranostic agents to the tumor 
site remains a challenge. Tumor microenvironments are often characterized by poor vascularization and heterogeneous 
drug penetration, which can limit the effectiveness of theranostic nanoparticles. Overcoming these delivery barriers is 
essential to enhance therapeutic outcomes.133 Cost and Accessibility The development and manufacturing of theranostic 
agents can be resource-intensive, leading to high production costs. This may limit the accessibility of these technologies 
in low-resource settings or for patients who cannot afford the advanced treatments, thereby affecting their widespread 
adoption in clinical practice.134

Material and Methods
A thorough literature search was performed using prominent academic databases, including PubMed, Scopus, Web of 
Science, and Google Scholar. The search strategy involved the use of a combination of specific keywords, such as 
“nanotheranostics”, “brain metastases”, “lung cancer brain metastasis”, “nanoparticles for brain delivery”, and “early 
detection of brain metastases”. The search was restricted to articles published within the past decade to include the most 
current research. The final selection of articles focused on the application of nanotechnology in brain metastasis, 
particularly in relation to drug delivery systems, early detection methods, and the clinical implementation of nanother-
anostic platforms.

Conclusion
Nanotechnology has opened new avenues for the diagnosis and treatment of brain metastases, particularly in lung cancer, 
offering innovative solutions to persistent challenges such as the blood-brain barrier, multidrug resistance, and early 
detection. This review highlights the transformative potential of nanoparticles in both diagnostic and therapeutic 
applications, including site-specific drug delivery, imaging, and monitoring. Theranostic nanoparticles exemplify the 
synergistic integration of diagnostic and therapeutic functions, paving the way for more personalized and effective 
treatment strategies in oncology and beyond. Moreover, the application of nanotechnology is advancing the field of 
precision medicine by enabling the customization of drug type, dosage, and delivery systems tailored to the molecular 
and pathological characteristics of tumors. Recent developments in smart nanocarriers, immune checkpoint inhibitors, 
and nanovaccines have further expanded the possibilities for targeted therapies in brain metastases. Importantly, the 
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integration of artificial intelligence with nanotechnology holds significant promise in optimizing treatment outcomes. AI 
can assist in refining nanoparticle design, improving the precision of drug delivery, and enhancing real-time monitoring 
through advanced imaging techniques. Concrete examples include AI algorithms that can predict the behavior of 
nanoparticles in vivo, improving treatment efficacy and reducing off-target effects, as well as AI-driven systems that 
enable personalized treatment planning based on patient-specific data. However, several challenges remain, including 
scalability, safety, and regulatory hurdles, which must be addressed for the successful clinical translation of nanomedi-
cine. Future research efforts should focus on overcoming these barriers, with particular attention to improving early 
diagnostic capabilities, overcoming MDR, and preventing metastasis. As the convergence of AI and nanotechnology 
continues to evolve, these innovations have the potential to revolutionize clinical practice, offering a more integrated and 
precise approach to cancer treatment.
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