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Abstract: The global epidemic of obesity and diabetes imposes a significant strain on healthcare systems, substantially elevating the 
risk of vascular dysfunction and its associated complications. Astragaloside IV (AS-IV) and berberine (BBR) have demonstrated 
considerable promise in addressing vascular issues linked to these conditions. This review examines the mechanisms driving their 
vascular protective effects, drawing on evidence from preclinical studies to compare and contrast their modes of action. It explores 
both the unique and overlapping pathways through which they mitigate the complications of obesity and diabetes. A thorough analysis 
of their therapeutic potential highlights promising preclinical data and its clinical implications. However, challenges remain, such as 
enhancing the bioavailability of AS-IV and BBR and translating preclinical findings into robust clinical trials. This synthesis provides 
critical insights for advancing research and practical approaches in managing vascular dysfunction associated with obesity and 
diabetes.
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Introduction
The global prevalence of obesity and diabetes has reached epidemic levels, posing significant public health challenges 
and placing substantial strain on healthcare systems. According to The Lancet, nearly 880 million adults were classified 
as obese in 2022, marking a 4.5-fold increase since 1990.1 Meanwhile, the International Diabetes Federation reported that 
approximately 537 million adults were living with diabetes in 2021, with this number expected to rise sharply in the 
coming years.2 Both obesity and diabetes contribute to a range of severe health complications, including cardiovascular 
diseases, diabetic retinopathy, nephropathy, encephalopathy, and neuropathy, leading to significant increases in morbidity 
and mortality.

Vascular dysfunction, a key underlying factor in the pathogenesis of these complications, is common and often an 
early feature in both obesity and diabetes.3–5 Characterized by impaired endothelial function, abnormal vascular 
remodeling, and chronic inflammation, vascular dysfunction disrupts the homeostatic balance between vasodilation 
and vasoconstriction, coagulation, and fibrinolysis, as well as pro-inflammatory and anti-inflammatory responses.6,7 In 
obesity, excessive adipose tissue promotes vascular dysfunction through the release of pro-inflammatory cytokines such 
as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6).8 These cytokines drive oxidative stress and endothelial 
damage while reducing the bioavailability of nitric oxide (NO), essential for vascular relaxation and homeostasis.9,10 

Insulin resistance, a hallmark of obesity, exacerbates endothelial dysfunction by impairing insulin-mediated NO 
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production and promoting vasoconstriction.11 Clinical evidence from a cross-sectional study (N = 8,823) reveals 
significant associations between abdominal obesity (quantified by the A Body Shape Index) and endothelial dysfunction, 
evidenced by inverse correlations with flow-mediated vasodilation (men: r = −0.23, P = 0.003; women: r = −0.32, P < 
0.001).12 Similarly, diabetes accelerates vascular damage via hyperglycemia-induced mechanisms, such as advanced 
glycation end-product (AGE) formation, increased oxidative stress, and the activation of inflammatory pathways.13–15 

Hyperglycemia also triggers endothelial cell apoptosis and impairs vascular repair processes, leading to progressive 
damage in both macrovascular and microvascular systems.16,17 A population-level analysis (N = 1,384) highlights the 
vascular effects specific to diabetes, with diagnosed patients exhibiting a 42% prevalence of endothelial dysfunction and 
significantly lower reactive hyperemia index (RHI) values compared to 23% in normoglycemic controls.18 The interplay 
between obesity and diabetes exacerbates vascular dysfunction. For instance, obesity-induced insulin resistance amplifies 
the harmful effects of hyperglycemia on endothelial cells, while diabetes-related vascular damage worsens the pro- 
inflammatory state triggered by obesity. This vicious cycle underscores the critical importance of targeting vascular 
dysfunction in the management of obesity and diabetes.

Current pharmacological therapies, including GLP-1 agonists, SGLT2 inhibitors, and metformin, have demonstrated 
clinical benefits in managing obesity- and diabetes-associated vascular complications through mechanisms such as 
glycemic control, anti-inflammatory actions, and oxidative stress reduction. However, challenges such as hypoglycemia 
risk (particularly with intensive insulin therapy), gastrointestinal side effects and variable cost-effectiveness in long-term 
use remain unresolved.19–21 These limitations emphasize the urgent need for safer, cost-effective, and multi-target 
alternatives to address these complex vascular complications. Natural bioactive compounds, particularly astragaloside 
IV (AS-IV) and berberine (BBR), have emerged as promising candidates. Notably, emerging clinical evidence supports 
their translational potential: a randomized controlled trial showed that BBR supplementation (0.4 g, three times daily for 
one month) significantly improved endothelial function, as assessed by flow-mediated dilation (FMD).22 Furthermore, an 
ongoing clinical trial (Registration number: ITMCTR2025000262) is investigating the efficacy of an AS-IV-containing 
herbal formulation in reducing carotid intima-media thickness in individuals with early-stage carotid plaque. Preclinical 
studies have demonstrated that AS-IV enhances insulin sensitivity, regulates lipid metabolism, and reduces oxidative 
stress.23,24 In animal models of diabetic vasculopathy, BBR mitigated vascular inflammation and improved microvascular 
perfusion.25 Despite the growing body of evidence supporting the benefits of AS-IV and BBR, a significant gap remains 
in the literature regarding a comprehensive analysis of their specific mechanisms in the context of obesity- and diabetes- 
induced vascular dysfunction. This review aims to address this gap by consolidating the latest research on the therapeutic 
potential of AS-IV and BBR in managing vascular complications associated with obesity and diabetes. By synthesizing 
current insights and exploring emerging therapeutic pathways, this study provides a robust foundation for future 
investigations, underscoring the promise of natural compounds in alleviating vascular dysfunction and improving health 
outcomes for affected populations.

Latest Findings on AS-IV and BBR in the Treatment of Vascular 
Dysfunction Associated with Obesity and Diabetes
Astragaloside IV
AS-IV, a bioactive saponin primarily extracted from Astragalus membranaceus (“Huangqi” in Chinese), with the 
molecular formula C41H68O14,

26 exhibits considerable therapeutic potential in treating obesity- and diabetes-related 
vascular dysfunction. This is attributed to its anti-inflammatory, anti-apoptotic, antioxidant, and autophagy-enhancing 
properties, as well as its ability to promote vasodilation, enhance angiogenesis, inhibit cell proliferation, improve 
cytoskeletal remodeling, and regulate metabolic processes (Figure 1 and Table 1).

In streptozotocin (STZ)-induced diabetic rats, AS-IV improved endothelial function by upregulating endothelial nitric 
oxide synthase (eNOS) and NO levels, facilitating vasodilation, and reducing pro-inflammatory cytokines such as IL-6 
and TNF-α. TLR4, a key member of the toll-like receptor family, activates the classical TLR4/nuclear factor kappa-light- 
chain-enhancer of activated B cells (NF-κB) signaling pathway, leading to NF-κB p65 translocation into the nucleus and 
promoting the secretion of pro-inflammatory cytokines. This pathway also activates the NLR family pyrin domain 
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containing 3 (NLRP3) inflammasome.44 Similarly, the calcium-sensing receptor (CaSR), a G protein-coupled receptor, 
plays a significant role in regulating inflammation and activating the NLRP3 inflammasome.45 AS-IV alleviated 
endothelial dysfunction by downregulating TLR4 expression, inhibiting NF-κB p65 translocation, and reducing adhesion 
molecules (ICAM-1, VCAM-1) levels.27 Furthermore, AS-IV suppressed the NLRP3 inflammasome by downregulating 

Figure 1 Summary of the biological effects of AS-IV in various vascular cell models. Previous studies have investigated the mechanisms of AS-IV in addressing vascular 
dysfunction using models such as aortas, human umbilical vein endothelial cells (HUVECs), Endothelial progenitor cells (EPCs), and vascular smooth muscle cells (VSMCs). 
AS-IV has been shown to suppress apoptosis, reduce inflammation, enhance autophagy, exhibit antioxidant properties, promote vasodilation, inhibit proliferation, support 
angiogenesis, and improve cytoskeletal remodeling. Symbol key: Activation is indicated by arrow lines (→), inhibition by blocker lines (—|). 
Abbreviations: HUVECs, human umbilical vein endothelial cells; EPCs, Endothelial progenitor cells; VSMC, vascular smooth muscle cell; SIRT1, sirtuin 1; Bax, BCL2- 
associated X; Bcl-2, B-cell lymphoma-2; CaSR, calcium-sensing receptor; LOX-1, lectin-like oxidized LDL receptor; NLRP3, NLR family pyrin domain containing 3; TLR4, 
Toll-like receptor-4; NF-kB, Nuclear factor kappa-light-chain-enhancer of activated B cells; TRAF6,TNF receptor associated factor 6; IL-1β, interleukin 1β; TNF-α, tumor 
necrosis factor; PTEN, phosphatase and tensin homolog; PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase B; GSK 3β, glycogen synthase kinase-3 β; Nrf2, nuclear 
factor E2-related factor 2; Nox2, NADPH oxidase 2; ROS, reactive oxygen species; TGF-β1, transforming growth factor-β1; Smad2, mothers against decapentaplegic 
homolog 2; JNK, c-Jun N-terminal kinase; SOD, superoxide dismutase; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; PKC, protein kinase C.

Table 1 Overview of Astragaloside IV on Vascular Dysfunction Related to Obesity and Diabetes

References Model Inducer Experimental 
Model

Molecular mechanism

Leng, Bin et al (2018)27 Diabetes STZ/HG Thoracic aortas 

of rats

Inhibit TLR4/NF-κB signaling pathway

HG HUVECs

(Continued)
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Table 1 (Continued). 

References Model Inducer Experimental 
Model

Molecular mechanism

Nie, Qu et al (2019)28 Diabetes STZ Thoracic aortas 
of rats

Reduce oxidative stress, downregulate calpain-1 and 
improve eNOS/NO signaling.

HG HUVECs

Yuan, Wei et al (2008)29 Diabetes HG VSMCs Inhibit proliferation

Leng, Bin et al (2019) 30 Diabetes STZ rats Inhibit TLR4/NF-κB signaling pathway and CaSR

HG HUVECs

Qian, Weibin et al (2019)31 Diabetes ox-LDL EPCs Inhibit lox-1/nlrp3 pathway

Zou, Xiaoling et al (2020)32 Diabetes HG HUVECs Promote the expression of miR-214

Xiong, Wu et al (2022)33 Diabetes HG HUVECs Enhance autophagy and depress apoptosis; miR-21/ 

PTEN axis

Chen, Jiye et al (2024)34 Diabetes HG HUVECs Increase miR-146a-5p; inhibit TRAF6/NF-κB pathway

Xiong, Wu et al (2024)35 Diabetes HG HUVECs miR-210/Nox2/ROS pathway

Li, Han-Bing et al (2006)36 Diabetes HG HUVECs Inhibit PKC activation; stabilize the endothelial cell 

cytoskeleton

Wu, Hui et al (2016)37 Obesity HFD C57BL/6 mice Improve lipid metabolism; enhance leptin sensitivity and 

modulate thermogenic network
/ The leptin 

receptor 

deficient db/db 
mice

/ Neuronal cell line 
SH-SY5Y cells

Jiang, Boren et al (2008)38 Obesity TNF-α 3T3-L1 
adipocytes

Decrease FFA levels; increase insulin sensitivity

You, Liangzhen et al (2019)39 diabetes HG HUVECs Reduce cell apoptosis and inflammation; inhibit the JNK 
signaling pathway and mitochondria-mediated apoptosis 

pathway

Ma, Yuhong et al (2015)40 Diabetes H2O2 HUVECs Decrease Nox4 expression through the TGF-β1/Smad2 

signaling pathway

Guo, Xuxi et al (2023)41 Obesity PA + glucose + BSA Adipocytes Reduce IR and inflammation; through the miR- 21/ 

PTEN/PI3K/Akt signaling pathway

Zhang, Yue et al (2022)42 Diabetes PA + glucose + BSA Adipocytes Attenuate IR and inflammation via targeting CTRP3/ 

PI3K/Akt signaling pathway

Lin, Yuqiong et al (2022)43 Diabetes STZ Pancreatic β-cell 

line INS-1

Alleviate oxidative stress, apoptosis and cell dysfunction; 

through the SIRT1/p53 and Akt/GSK3β/Nrf2 signaling 

pathways.

Abbreviations: STZ, streptozotocin; HG, high-glucose; HUVECs, human umbilical vein endothelial cells; TLR4, Toll-like receptor-4; NF-kB, Nuclear factor kappa-light-chain 
-enhancer of activated B cells; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; VSMC, vascular smooth muscle cell; CaSR, calcium-sensing receptor; ox-LDL, 
oxidized low-density lipoprotein; LOX-1, lectin-like oxidized LDL receptor; NLRP3, NLR family pyrin domain containing 3; PTEN, phosphatase and tensin homolog; TRAF6, 
TNF receptor associated factor 6; Nox2, NADPH oxidase 2; ROS, reactive oxygen species; PKC, protein kinase C; HFD, high-fat diet; TNF-α, tumor necrosis factor; FFA, 
free fatty acid; JNK; c-Jun N-terminal kinase; TGF-β1; transforming growth factor-β1; Smad2, mothers against decapentaplegic homolog 2; PI3K, phosphatidylinositol 
3-kinase; AKT, protein kinase B; PA, palmitic acid; IR, insulin resistance; BSA, bovine serum albumin; CTRP3, C1q tumor necrosis factor-related protein 3; GSK 3β, glycogen 
synthase kinase-3 β; Nrf2, nuclear factor E2-related factor 2.
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cytokines (IL-1β, IL-18) through inhibition of both the TLR4/NF-κB pathway and CaSR.30 In high-glucose (HG)-treated 
endothelial cells, AS-IV reduced pro-inflammatory cytokine secretion and enhanced mesenchymal stem cell (MSC)- 
derived exosomal miR-146a-5p expression, improving cell viability and reducing inflammation by targeting TNF 
receptor-associated factor 6 (TRAF6) and NF-κB phosphorylation.34

Beyond its anti-inflammatory effects, AS-IV exhibited significant anti-apoptotic benefits in HG-treated human 
umbilical vein endothelial cells (HUVECs) by reducing the Bax/Bcl-2 ratio and suppressing mitochondrial apoptotic 
markers, including Cyt-c, cleaved-caspase-9, and cleaved-caspase-3.39 AS-IV also protected pancreatic β-cells from STZ- 
induced apoptosis by modulating the SIRT1/p53 pathway, essential for regulating apoptosis under stress. SIRT1, a NAD 
+-dependent deacetylase, deacetylates p53, preventing p53-mediated apoptosis and promoting cell survival.46 AS-IV 
activated SIRT1, which suppressed p53-mediated apoptosis by increasing the expression of the anti-apoptotic protein 
Bcl-2 and decreasing the levels of pro-apoptotic proteins such as Bax and caspase-3.43 AS-IV further promoted 
autophagy, a critical process for cellular survival under stress, by upregulating autophagic markers LC3II/I and ATG5. 
LC3II/I facilitates autophagosome formation, while ATG5 plays a pivotal role in autophagosome maturation, together 
supporting the clearance of damaged cellular components.33 Additionally, AS-IV exerted potent antioxidant effects by 
modulating the protein kinase B (Akt)/GSK3β/Nuclear factor erythroid 2–related factor 2(Nrf2) signaling axis. The Akt/ 
GSK3β pathway is involved in cell survival and metabolic regulation, while Nrf2, a key transcription factor, regulates the 
expression of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px).43

AS-IV also promoted angiogenesis and reinforced endothelial barrier function through multiple mechanisms. 
Endothelial progenitor cells (EPCs), essential for vascular repair and regeneration, play a critical role in 
angiogenesis.47 In HG-treated EPCs, exosomes derived from AS-IV-treated cells enhanced tube formation and upregu
lated miR-214, a microRNA known to activate angiogenic signaling by modulating the phosphatidylinositol 3-kinase 
(PI3K)/Akt pathway and increasing the expression of angiopoietin-1, a protein vital for endothelial cell maturation and 
vascular integrity.32 AS-IV regulated the miR-210/Nox2/reactive oxygen species (ROS) axis in EPCs, where miR-210, 
involved in hypoxic responses, reduced oxidative stress by modulating Nox2 and ROS production. This action further 
promoted angiogenesis and vascular regeneration.35 Additionally, AS-IV stabilized the endothelial barrier by modulating 
the dynamics of filamentous actin (F-actin), which is essential for maintaining cell structure and integrity. It inhibited 
protein kinase C (PKC) translocation, a process that can disrupt endothelial function and barrier permeability, thereby 
enhancing vascular stability.36 In STZ-induced diabetic models and HG-treated endothelial cells, AS-IV restored 
endothelial function by increasing eNOS levels and reducing calpain-1, an enzyme associated with endothelial 
dysfunction.28

In metabolic regulation, AS-IV improved glucose and lipid metabolism in high-fat diet (HFD)-fed models by 
reducing triglyceride and cholesterol levels and enhancing thermogenesis. This was achieved through upregulation of 
genes such as peroxisome proliferator-activated receptor alpha (PPARα) and uncoupling protein 1 (UCP1), which are 
involved in fat oxidation and energy expenditure.37 AS-IV alleviated leptin resistance and regulated adipocyte lipolysis, 
stabilizing lipid storage and mitigating TNF-α-induced disruptions.38 Phosphatase and tensin homolog (PTEN) plays 
a pivotal role in regulating cellular metabolism and autophagy by modulating the PI3K/Akt signaling pathway.48 In 
insulin-resistant adipocytes, AS-IV enhanced glucose consumption, increased glucose transporter type 4 (GLUT-4) 
expression, and improved insulin sensitivity through PTEN inhibition and PI3K/Akt activation.41

Berberine
BBR, a quaternary ammonium alkaloid primarily extracted from Coptis chinensis Franch. (“Huanglian” in Chinese), 
with the molecular formula [C20H18NO4]4,49 exhibits a broad spectrum of beneficial biological activities in treating 
vascular dysfunction associated with obesity and diabetes. These include inhibiting AGE formation, promoting vasodila
tion, anti-apoptosis, anti-inflammation, antioxidant effects, enhancing autophagy, improving glucose and lipid metabo
lism, and enhancing insulin sensitivity (Figure 2 and Table 2).

BBR improved vascular function in HFD- and STZ-induced diabetic rats by enhancing NO bioavailability, crucial for 
maintaining endothelial function and vascular tone. It increased serum NO levels and promoted endothelium-dependent 
relaxation, primarily through upregulation of eNOS expression.51 BBR also reduced oxidative stress by downregulating 
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Nox4, a subunit of NADPH oxidase, which contributes to the production of ROS and endothelial dysfunction in 
diabetes.54 Furthermore, BBR significantly inhibited AGE formation, improving HG-induced endothelial cell injury in 
microvascular models.50 In palmitate or HG-treated HUVECs, BBR similarly enhanced eNOS activation and NO 
production through the AMP-activated protein kinase (AMPK) pathway.52,54 AMPK, a critical regulator of cellular 
energy balance, when activated, increases eNOS activity, thereby contributing to NO production and improving 
endothelial function.61 In diabetic rats, BBR also enhanced acetylcholine-induced vasodilation in mesenteric arteries 

Figure 2 Summary of the biological effects of BBR in various vascular cell models. Previous studies have investigated the mechanisms of BBR in alleviating vascular 
dysfunction using models such as adipocytes, MS1 cells, HUVECs, aortas, and mesenteric arteries. BBR has been shown to suppress apoptosis, exhibit antioxidant and anti- 
inflammatory effects, promote vasodilation, improve insulin resistance, and enhance autophagy. Symbol key: Activation is indicated by arrow lines (→), inhibition by blocker 
lines (—|). 
Abbreviations: AGEs, advanced glycation end products; AMPK, AMP-activated protein kinase; IKK, IκB kinase; MCP-1, monocyte chemotactic protein-1; JNK, c-Jun 
N-terminal kinase.

Table 2 Overview of berberine on Vascular Dysfunction Related to Obesity and Diabetes

References Model Inducer Experimental 
Model

Molecular Mechanism

Hao, Min et al (2011)50 Diabetes HG+ AGEs MS1 cells Increase NO release, NOS and thrombomodulin 
production; inhibit the formation of AGEs

Wang, Chunmei et al (2009)51 Diabetes HFD+STZ Rats Improve glucose and lipid metabolism; enhance 

NO bioavailability

(Continued)
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and improved insulin-induced vasodilation via the PI3K/Akt signaling pathway, a key mechanism for endothelial 
function and insulin sensitivity.53

Beyond its vascular benefits, BBR exerts significant anti-inflammatory effects and improves insulin resistance, both 
of which are key factors in obesity and diabetic vascular dysfunction. In HG-treated HUVECs, BBR activated AMPK, 
promoting NO production and inhibiting monocyte adhesion by suppressing NF-κB activation and reducing the expres
sion of adhesion molecules such as VCAM-1 and ICAM-1, thereby mitigating inflammation.52 In HFD-induced mice, 
BBR improved insulin sensitivity and reduced macrophage infiltration, particularly M1 macrophages, into adipose tissue. 
M1 macrophages, being pro-inflammatory, play a pivotal role in the development of insulin resistance.62 BBR also 
reduced levels of inflammatory cytokines, including MCP-1, IL-6, and TNF-α. This anti-inflammatory effect is asso
ciated with the inhibition of key inflammatory kinases, such as c-Jun N-terminal kinase (JNK) and IκB kinase β (IKKβ), 
which are involved in NF-κB activation and inflammatory responses.63 Furthermore, BBR reduced p65 expression, 
further alleviating inflammation and macrophage chemotaxis.55

Table 2 (Continued). 

References Model Inducer Experimental 
Model

Molecular Mechanism

Wang, Yiqun et al (2009)52 Diabetes HG HUVECs AMPK/eNOS activation

Gently rubbing 

the luminal 
surface

Thoracic aortas 

of rats

Geng, Feng-Hao et al (2016)53 Diabetes HFD+STZ Mesenteric 
artery of rats

Up-regulating insulin receptor-mediated 
signalling

HG+HFD HUVECs

Zhang, Ming et al (2013)54 Diabetes Palmitate HUVECs Upregulate eNOS expression and downregulate 

expression of Nox4; activation of AMPK

Ye, Liang et al (2016)55 Obesity HFD Mice Improve IR by inhibiting M1 macrophage 

activation
TNF-α 3T3-L1 

preadipocytes

Zhou, Jiyin, and Shiwen Zhou (2010)56 Diabetes STZ+high- 

carbohydrate 
+HFD

rats Regulate the PPARs/P-TEFb signal transduction 

pathway

Shan, Yun et al (2020)57 Obesity / 3T3-L1 
preadipocytes

Upregulate SIRT1 expression; activate the AMPK 
pathway

HFD C57BL/6J mice 
and Sirt1+/−mice

Li, Dan et al (2022)58 Obesity HFD Mice Activate SIRT3 expression;

/ Adipocytes

Yi, Ping et al (2008)59 IR PA 3T3-L1 

adipocytes

Inhibit phosphorylation of IKKβ Ser

Du, Junda et al (2024)60 Obesity HFD Mice Inhibit miR-27a levels; improve IR

PA Adipocytes

Abbreviations: AGEs, advanced glycation end products; AMPK, AMP-activated protein kinase; PPARs, peroxisome proliferator-activated receptors; P-TEFb, positive 
transcription elongation factor b; SIRT1, sirtuin 1; IKK, IκB kinase.
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In both HFD-fed C57BL/6J and Sirt1+/− mice, BBR upregulated SIRT1 expression, activating AMPK and reducing 
both local and systemic inflammation, thereby improving insulin resistance.57 Additionally, BBR modulated macrophage 
polarization in adipose tissue, shifting them towards an anti-inflammatory phenotype, and activated SIRT3, 
a mitochondrial deacetylase that mitigates adipose tissue remodeling and miR-155-5p secretion, providing further 
protection against insulin resistance.58 In palmitic acid-treated 3T3-L1 adipocytes, BBR increased the expression of 
insulin receptor substrate-1 (IRS-1) and PI3K p85 while inhibiting IRS-1 and IKKβ phosphorylation, thereby preventing 
NF-κB activation.59 Co-treatment with BBR and insulin in HG/HF-treated HUVECs enhanced phosphorylation of the 
insulin receptor (InsR), Akt, and eNOS, suggesting that BBR enhances insulin receptor-mediated signaling.53 In HFD- 
induced mice, BBR also reduced miR-27a levels in both serum and adipocyte supernatants, significantly alleviating 
insulin resistance linked to elevated miR-27a.60 These findings further support BBR’s anti-inflammatory effects and its 
capacity to improve insulin signaling.

BBR also promotes improvements in glucose and lipid metabolism. In HFD and STZ-induced diabetic rats, BBR 
reduced fasting blood glucose (FBG), triglycerides, and 2-hour glucose levels in the oral glucose tolerance test (OGTT), 
indicating metabolic improvements.53 Furthermore, BBR promoted adipocyte differentiation and decreased lipid accu
mulation in 3T3-L1 adipocytes by modulating key regulators such as peroxisome proliferator-activated receptors 
(PPARs) and positive transcription elongation factor b (P-TEFb).56 PPARs are nuclear hormone receptors that regulate 
lipid metabolism, adipogenesis, and insulin sensitivity,64 while P-TEFb regulates gene transcription related to adipocyte 
function and lipid metabolism.65 BBR also reduced body weight and fat percentage, improving serum parameters, 
including FBG, total cholesterol, triglycerides, and LDL-C in palmitic acid-treated adipocytes.60 Additionally, BBR 
enhanced autophagy and promoted cell viability in HG/HF-treated HUVECs, as evidenced by an increased LC3B-II 
/LC3B-I ratio, a key marker of autophagy, and a reduction in p62 expression, a substrate of autophagic degradation and 
indicator of impaired autophagic flux.53

Complications of Obesity and Diabetes
Cardiovascular Disease Related to Obesity and Diabetes
Cardiovascular disease (CVD) is an increasingly prevalent public health issue, particularly in the context of rising global 
rates of obesity and diabetes.66 These metabolic disorders are strongly associated with key CVD risk factors, including 
hyperglycemia, insulin resistance, dyslipidemia, hypertension, and systemic inflammation.67 In diabetic individuals, 
chronic hyperglycemia and metabolic dysregulation contribute to vascular damage through mechanisms such as oxidative 
stress, AGE formation, endothelial dysfunction, and persistent low-grade inflammation.68 These pathological processes 
collectively lead to a range of cardiovascular complications, including atherosclerosis, hypertension, myocardial infarc
tion, stroke, and heart failure. Moreover, obesity exacerbates these risks by promoting adipose tissue expansion and 
remodeling, which increases the secretion of pro-inflammatory cytokines and places additional strain on the cardiovas
cular system.69,70

Astragaloside IV
AS-IV offers multiple therapeutic benefits in CVDs associated with obesity and diabetes through the modulation of 
several signaling pathways that regulate lipid metabolism, oxidative stress, cardiac energy metabolism, inflammation, 
autophagy, and endothelial function. It regulates lipid metabolism by lowering total cholesterol, triglycerides, and LDL-C 
levels while increasing HDL-C,71,72 thus promoting vascular health. AS-IV also alleviates oxidative stress by inhibiting 
Nox4 and modulating the TGF-β1/Smad2 signaling pathway.40 The TGF-β1/Smad2 pathway plays a critical role in 
fibrosis and endothelial dysfunction,73 and its regulation by AS-IV helps protect against vascular damage. In diabetic 
cardiomyopathy, AS-IV enhances cardiac energy metabolism by upregulating peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha (PGC-1α) and nuclear respiratory factor 1 (NRF1),74 both of which are key regulators of 
mitochondrial biogenesis and oxidative metabolism.75 Additionally, AS-IV prevents ferroptosis by downregulating CD36 
expression,76 a fatty acid transporter involved in lipid peroxidation.77 AS-IV further modulates mitogen-activated protein 
kinase (MAPK) signaling by inhibiting JNK and p38 pathways while promoting extracellular signal-regulated kinase 
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(ERK) activation.78,79 JNK and p38 are associated with stress and inflammation,80 while ERK activation promotes cell 
survival and proliferation,81 thus improving cardiac function and protecting against apoptosis.

AS-IV also enhances endothelial function by promoting NO signaling and cyclic guanosine monophosphate (cGMP) 
production.26,82 Additionally, it improves hypothalamic leptin sensitivity by increasing leptin receptor mRNA and pro- 
opiomelanocortin (POMC) expression, while downregulating inhibitory factors such as suppressor of cytokine signaling 
3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B).83 POMC plays a role in energy homeostasis, and the 
downregulation of SOCS3 and PTP1B (both negative regulators of leptin signaling) aids in metabolic balance.84 

Moreover, AS-IV exerts anti-inflammatory effects through upregulation of the α7 nicotinic acetylcholine receptor 
(α7nAChR) and inhibition of the IKKβ/NF-κB pathway, mechanisms that help prevent obesity-associated 
hypertension.83 The α7nAChR is a key component of the cholinergic anti-inflammatory pathway,85 while the IKKβ/ 
NF-κB pathway is central to inflammation, making its inhibition essential for reducing inflammatory responses. 
Additionally, AS-IV enhances autophagy in vascular smooth muscle cells,86 reduces inflammation via the PI3K/Akt/ 
mTOR pathway, and modulates gut microbiota to promote beneficial bacterial populations87 (Table 3).

Table 3 Overview of Astragaloside IV and berberine on Cardiovascular Disease of Related to Obesity and Diabetes

References Model Inducer Experimental 
Model

Molecular Mechanism

Astragaloside IV

Wang, Zhongyuan et al (2020)71 DCM HF+STZ Rats Improve lipid metabolism

Song, Zhenhua et al (2019)86 AS ox-LDL+β- 
Glycerophosphate

VSMC H19 overexpression and DUSP5 inhibition

HF Thoracic aorta 
of mice

Sun, Dongwen et al (2024)87 AS The Western diet Rats Anti-inflammatory and modulate intestinal flora; PI3K/Akt/mTOR 
pathway

Zhang, Zhen et al (2019)74 DCM STZ Rats Regulate the release of PGC-1α and NRF1

HG H9c2 
cardiomyocytes

Li, Xin et al (2023)76 DCM HF+STZ rats Decrease cardiomyocyte injury and myocardial dysfunction

PA H9c2 
cardiomyocytes

Sun, Chuang et al (2021)78 MI HG+HF H9c2 
cardiomyocytes

Prevent apoptosis and restored cardiac function; MAPK signaling 
pathway

Zhang, Yifan et al (2022)79 AS HF LDLR-/-mice Via MAPK/NF-κB signaling pathway

Lin, Xin et al (2020)26 Metabolic 
syndrome

High-fructose+hf Rats Alleviate oxidative stress and activate the endothelial NOS/NO/ 
cGMP pathway

Zhang, Ning et al (2011)82 Metabolic 
syndrome

Fructose Rats Regulate lipid metabolism, endothelium-dependent 
vasorelaxation and the NO-cGMP-related pathway

Jiang, Ping et al (2018)83 Obesity- 
associated 
Hypertension

HFD Obese rats Inhibit inflammatory reaction and improve leptin resistance; 
increase α7nachr expression

Zhu, Yaobin et al (2019) 88 DCM HG H9C2 
cardiomyocytes

Inhibit oxidative stress and autophagy via the miR-34a/Bcl2/ 
(LC3II/LC3I) and pAKT/Bcl2/(LC3II/LC3I) pathways

Zhu, Zhongsheng et al (2019)89 AS ox-LDL HUVECs Reduce apoptosis, oxidative stress, and inflammatory response

(Continued)
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Berberine
BBR exerts therapeutic effects through a network of pathways that regulate lipid metabolism, vascular inflammation, gut 
health, cardiac function, and oxidative stress, underscoring its potential in managing complications associated with 
obesity and diabetes. It improves lipid and glucose metabolism, reduces vascular inflammation, and attenuates ather
ogenesis in diabetic apoE-/- mice by enhancing interactions between Krüppel-like factor 16 (KLF16) and PPARα.90 

KLF16, a transcription factor involved in lipid metabolism and endothelial function,98 and PPARα, which regulates fatty 
acid oxidation and inflammation,99 play pivotal roles in BBR’s vascular protective effects through their interaction. BBR 
also promotes gut health by enriching beneficial microbiota, such as Akkermansia spp., helping to mitigate metabolic 
endotoxemia and inflammation.91,92 In diabetic rat models, BBR reduced blood glucose and blood pressure, improved 
vascular function, and activated large conductance calcium-activated potassium (BKCa) channels.93 BKCa channels, 
critical for regulating vascular tone and endothelial function,100 contribute to enhanced vascular health when activated 
by BBR.

Additionally, BBR improved cardiac function and reduced fibrosis in db/db mice by modulating the mTOR/ 
mitochondrial reactive oxygen species (mtROS) axis and inhibiting pyroptosis.94 The mTOR/mtROS pathway is 
involved in cellular energy metabolism and oxidative stress regulation, with dysregulation contributing to cardiac 
dysfunction and fibrosis.101 Pyroptosis, a form of programmed cell death associated with inflammation,102 was mitigated 
by BBR, providing further protection to cardiac tissue. In diabetic cardiomyopathy, BBR reduced cardiac fibrosis and 
dysfunction via insulin-like growth factor 1 receptor (IGF-1R) signaling in cardiac fibroblasts.95 IGF-1R signaling is 
essential for cell growth, survival, and tissue repair, making it a crucial target in preventing cardiac fibrosis.103 BBR also 
alleviated cardiomyocyte hypertrophy by activating PPARα and modulating NO signaling.96 Furthermore, BBR protected 
against HG-induced platelet hyper-reactivity and apoptosis by modulating oxidative stress pathways.97 These effects 
contribute to reducing thrombosis and vascular injury, common complications in diabetes (Table 3).

Table 3 (Continued). 

References Model Inducer Experimental 
Model

Molecular Mechanism

Berberine

Man, Bin et al (2022)90 AS HF+STZ Mice Enhance the interplay between KLF16 and PPARα

HG HUVECs

Wu, Min et al (2020)91 AS HF mice Modulate gut microbiota

Zhu, Lin et al (2018)92 AS HF Apoe-/- mice Modulate gut microbiota

Ma, Yu-Guang et al (2017)93 Diabetes- 
associated 
hypertension

HF+STZ Rats BKCa channel

HG VSMCs

Zhong, Changsheng et al (2024)94 DCM / Male db/db mice Regulate the mTOR/mtROS axis to inhibit pyroptosis

HG H9C2 
cardiomyocytes

Li, Guohua et al (2018)95 DCM HF+STZ Rats Downregulate IGF-1 receptor expression and MMP2/9 levels

Wang, Mingfeng et al (2013)96 DCM HG+insulin Cardiomyocytes PPAR α /NO signaling pathway

Paul, Manoj et al (2019)97 AS HG Human platelet Inhibit AR and Nox

Abbreviations: DCM, diabetic cardiomyopathy; AS, atherosclerosis; H19, long non-coding (lncRNA) H19; DUSP5, dual-specificity phosphatase 5; mTOR, mammalian target 
of rapamycin; PGC-1α, peroxisome proliferator-activated receptor γ coactivator 1-α; NRF1, nuclear respiratory factor 1; MI, myocardial infarction; MAPK, mitogen-activated 
protein kinase; α7nAChRα7, nicotinic acetylcholine receptor; KLF16, Krüppel-like factor 16; PPARα, peroxisome proliferator-activated receptor alpha; BKCa, large- 
conductance Ca2+-activated K+ channel; mtROS, mitochondrial reactive oxygen species; MMP2/9, matrix metalloproteinase-2/9; AR, aldose reductase.
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Diabetic Retinopathy
Diabetic retinopathy (DR) is a prevalent and severe microvascular complication of diabetes mellitus (DM), representing 
the leading cause of vision impairment and blindness among working-age adults globally.104 Its pathogenesis is closely 
associated with chronic hyperglycemia, which induces progressive damage to the retinal microvasculature, including 
endothelial dysfunction, capillary basement membrane thickening, pericyte loss, and increased vascular permeability.105 

These cellular and molecular alterations lead to ischemia, hypoxia, and inflammation in the retina, triggering a cascade of 
events that culminate in the hallmark features of DR: microaneurysms, retinal hemorrhages, hard exudates, and, 
ultimately, proliferative retinopathy.106 Additionally, oxidative stress,107,108 chronic low-grade inflammation,109,110 and 
an upregulated renin-angiotensin system (RAS)111 exacerbate these vascular changes, promoting pathological neovascu
larization and fibrovascular proliferation, which significantly heighten the risk of vision loss.

Astragaloside IV
AS-IV exerts protective effects against DR through a combination of antioxidant, anti-inflammatory, and anti-apoptotic 
mechanisms, targeting multiple signaling pathways and molecular mediators. In vitro studies on retinal capillary 
endothelial cells (RCECs) demonstrated that AS-IV enhanced cell viability, reduced glucose transporter-1 (GLUT-1) 
expression, and decreased oxidative stress markers such as hydrogen peroxide (H2O2) and malondialdehyde (MDA). It 
also boosted antioxidant enzyme activity, increased glutathione levels, and lowered Nox4 expression,112 thus reducing 
oxidative damage in retinal cells. In retinal ganglion cells (RGCs), AS-IV improved cell viability, reduced oxidative 
stress, and promoted retinal layer thickness. Network pharmacology identified additional potential targets for AS-IV, 
including hypoxia-inducible factor 1-alpha (HIF-1α) and Akt1.113 HIF-1α is critical for cellular adaptation to hypoxia,114 

while Akt1 plays a pivotal role in cell survival, growth, and metabolism.115

In diabetic rats, AS-IV prevented ferroptosis in retinal pigment epithelial (RPE) cells by promoting the expression of 
SIRT1 and Nrf2, along with increasing miR-138-5p levels.116 SIRT1 is involved in mitochondrial function and cellular 
stress responses, while Nrf2 regulates antioxidant defenses, both crucial for cell survival under oxidative stress condi
tions. miR-138-5p is linked to ferroptosis regulation,117 further enhancing AS-IV’s protective effect on RPE cells. 
Moreover, AS-IV functioned as an aldose reductase inhibitor, reducing ERK1/2 phosphorylation and NF-κB activation, 
both critical in inflammatory and apoptotic pathways in retinal cells.118 It also protected RPE cells from apoptosis by 
modulating pro-apoptotic proteins (eg, Bax and active caspases) and anti-apoptotic proteins (eg, Bcl-2 and FasL). AS-IV 
upregulated miR-128 expression, which regulates apoptosis and cell survival in retinal cells119 (Table 4).

Berberine
BBR also demonstrates significant therapeutic potential for DR by reducing hyperglycemic damage, inhibiting angiogen
esis and inflammation, and modulating immune responses while promoting cellular survival and autophagy in retinal 
cells. It effectively lowered FBG and triglyceride levels, thereby mitigating hyperglycemic damage to retinal tissue.120 

BBR inhibited the expression of HIF-1α and vascular endothelial growth factor (VEGF), key factors involved in 

Table 4 Overview of Astragaloside IV and berberine on Diabetic Retinopathy

References Model Inducer Experimental 
Model

Molecular Mechanism

Astragaloside IV

Qiao, Yuan et al (2017)112 DR HG RCECs Antioxidative function

Wang, Tao et al (2020)119 DR STZ RCECs Upregulate miR-128 expression

Li, Jun-Qi et al (2024)113 DR STZ Rats Regulate the AGE-RAGE signaling pathway and the Th17 cell 
differentiation signaling pathway

HG RGCs

Ding, Yuzhi et al (2014)118 DR / db/db mice Prevent the activation of ERK1/2 phosphorylation and NF-κB

(Continued)
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angiogenesis and vascular permeability, via the AKT/mTOR signaling pathway.121,122 Additionally, BBR modulated 
immune responses by increasing regulatory T cells (Tregs) and decreasing pro-inflammatory Th17 cells, fostering 
a balanced immune environment.123 This immune modulation helped reduce the inflammatory responses that contribute 
to retinal damage in DR. BBR also protected retinal Müller cells from apoptosis, a process often aggravated by 
hyperglycemia, and promoted autophagy, further preserving retinal health under diabetic conditions.124 (Table 4)

Diabetic Nephropathy
Diabetic nephropathy (DN) is a severe microvascular complication of DM, characterized by progressive kidney damage 
that often progresses to end-stage renal disease (ESRD).125 DN is a leading cause of chronic kidney disease globally, 
with patients facing significant morbidity and mortality due to the gradual decline in renal function,126 as well as an 
increased risk of CVD and other comorbidities.127 Pathologically, DN is marked by glomerular hypertrophy, basement 
membrane thickening, mesangial matrix expansion, and tubulointerstitial fibrosis, all of which contribute to proteinuria 
and a reduction in glomerular filtration rate (GFR).128,129 The pathogenesis of DN is multifactorial, involving hypergly
cemia-induced oxidative stress, inflammation, accumulation of AGEs, and dysregulation of various signaling 
pathways.130,131 These processes result in cellular injury within the renal microvasculature and impair the function of 
podocytes, mesangial cells, and endothelial cells.

Astragaloside IV
AS-IV has demonstrated significant renoprotective effects in DN by targeting multiple pathways involved in oxidative 
stress, inflammation, apoptosis, and fibrosis.132–137 In various DN models, AS-IV reduced albuminuria, serum creatinine 
levels, and mesangial expansion by inhibiting key signaling pathways such as MEK1/2-ERK1/2-RSK2, TUG1/TRAF5, 
and Akt/mTOR.138–140 The MEK1/2-ERK1/2-RSK2 pathway is critical for cell survival, inflammation, and fibrosis, 
while the TUG1/TRAF5 axis regulates inflammation and immune responses in kidney cells. The Akt/mTOR pathway is 
involved in cell growth and metabolism, and AS-IV’s inhibition of these pathways helped mitigate renal damage in DN.

In podocytes exposed to high glucose, AS-IV enhanced the expression of klotho, a protein that suppresses oxidative 
stress and pyroptosis by inhibiting the NF-κB and NLRP3 inflammasome pathways.141 In palmitic acid-bound BSA- 
treated NRK-52E cells, AS-IV inhibited mitochondrial dysfunction and inflammation, further supporting its protective 

Table 4 (Continued). 

References Model Inducer Experimental 
Model

Molecular Mechanism

Berberine

Yin, Zhujun et al (2021)120 DR / db/db transgenic mice Modulate the glucolipid metabolism and inhibit the HIF-1α /VEGF/ 

NF-κB pathway

Ai, Xiaopeng et al (2022)121 DR / db/db mice Alleviate angiogenesis and apoptosis by suppressing the HIF-1α/ 

VEGF/DLL-4/Notch-1 pathway

Wang, Ning et al (2021)122 DR STZ Mice Akt/mTOR/HIF-1α/VEGF pathway

insulin RPECs

Yang, Yi et al (2024)123 DR STZ+HF Mice Regulate T cell subpopulation differentiation, reduce the Th17/ 
Treg ratio

HG CD4+T cells and 

DC2.4 cell lines

Chen, Han et al (2018)124 DR HG Primary retinal Müller 
cells

Enhance autophagy and activate the AMPK/mTOR signaling 
pathway

Abbreviations: DR, diabetic retinopathy; RCECs, retinal capillary endothelial cells; RPECs, retinal pigment epithelial cells; RGCs, retinal ganglion cells; RAGE, receptors of 
AGEs; ERK1/2, extracellular signal-regulated kinase 1/2; HIF-1α, hypoxia-inducible factor-1α; VEGF, vascular endothelial growth factor; DLL-4, delta-like ligand 4.
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effects on renal cells under diabetic conditions.142 Additionally, AS-IV promoted autophagy and reduced apoptosis by 
activating AMP-activated protein kinase alpha (AMPKα) and sarco/endoplasmic reticulum calcium ATPase 2b 
(SERCA2b).143 AMPKα is a critical regulator of cellular energy balance, while SERCA2b plays a role in maintaining 
intracellular calcium homeostasis,144 both contributing to cellular protection in the kidney.

AS-IV also enhanced gut-renal interactions by restoring intestinal barrier function and promoting beneficial gut 
microbiota while reducing renal and intestinal ferroptosis in db/db mice.145 Ferroptosis, an iron-dependent form of cell 
death, plays a role in both renal and intestinal damage in DN.146 By modulating histone modifications and reducing 
markers of endoplasmic reticulum (ER) stress, including eukaryotic initiation factor-2α (eIF2α), Protein Kinase RNA- 
like Endoplasmic Reticulum Kinase (PERK), JNK, Glucose Regulated Protein 78 (GRP78), and cleaved Activating 
Transcription Factor 6 (ATF6),147,148 AS-IV upregulated anti-apoptotic factors and downregulated pro-inflammatory 
cytokines such as TNF-α and MCP-1.149,150 In endothelial cells, AS-IV preserved barrier integrity by activating the AKT- 
GSK3 pathway,151 crucial for regulating cell survival, migration, and vascular integrity. Additionally, AS-IV enhanced 
NO synthesis via modulation of eNOS,152 vital for maintaining endothelial function and vasodilation (Table 5).

Table 5 Overview of Astragaloside IV and berberine on Diabetic Nephropathy

References Model Inducer Experimental 
Model

Molecular Mechanism

Astragaloside IV

He, Ke-Qiang et al (2018)133 DN STZ Rats Anti-oxidative stress, anti-inflammation, downregulate 

ERK1/2 activation, and upregulate TRPC6 expression

Su, Yong et al (2019)134 DN HF+STZ Rats Downregulate CD36 expression, mediate FFA uptake and 

lipid accumulation
PA HMCs

Zhang, Mingyu et al (2023)153 DN STZ Rats Regulate SIRT6/HIF-1α pathway

Zhang, Yudi et al (2020)136 DN HF+STZ Rats Inhibit inflammation-related gene expression

Chen, Qingqing et al (2018)137 DN PA HK-2 cell Inhibit ROS generation and apoptotic protein expression

Wang, Xiaolei et al (2019)132 DN HG Mouse 

podocytes

Modulate the SIRT1-NF-κB pathway and autophagy 

activation

/ Diabetic KK-Ay 

mice

Song, Gaofeng et al (2018)139 DN STZ Mice Inhibit the MEK1/2-ERK1/2-RSK2 signaling pathway

Lei, Xiao et al (2018)140 DN STZ Rats lncRNA-TUG1/TRAF5 pathway

HG MPC5

Sun, Huili et al (2016)138 DN / db/db mice Inhibit Akt/mTOR, NFκB and Erk1/2 signaling pathways. 

He, Jiaxin et al (2023)141 DN HF+STZ Rats Inhibit NLRP3-mediated pyroptosis via the NF-κB signaling 

pathway
HG Mouse 

podocytes

Wang, Jing et al (2024)142 DN HF+STZ Rats Inhibit FATP2-mediated fatty acid transport

FFA-deleted BSA 
or PA-bound 

BSA

NRK-52E cells

(Continued)
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Berberine
BBR exhibits therapeutic efficacy in DN by reducing inflammation and oxidative stress and alleviating histopathological 
changes. It lowered levels of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 
(VCAM-1), markers of endothelial activation and inflammation.154 Furthermore, BBR inhibited the RhoA/ROCK 

Table 5 (Continued). 

References Model Inducer Experimental 
Model

Molecular Mechanism

Guo, Hengjiang et al (2017)143 DN STZ Mice By SERCA2-dependent ER stress attenuation and AMPKα- 
promoted autophagy induction

HG Podocytes

Lyu, Xin et al (2024)145 DN / db/db mice Intestinal microbiome alterations and ferroptosis 

modulation

Guo, Hengjiang et al (2016)147 DN / db/db mice Restore SERCA activity and SERCA2 expression;

Palmitate Mouse 
podocytes 

Wang, Zeng Si et al (2015)148 DN STZ Rats Decrease ER stress

TM Human 

podocytes

Fan, Yuyan et al (2022)149 DN HG NRK-52E cells Downregulate MAP4K3 expression by regulating H3K4me1 
binding and further reducing apoptosis

HF Polygenic 

diabetic KK-Ay 
mice

Gui, Dingkun et al (2013)150 DN STZ Rats Inhibit NF-κB mediated inflammatory genes expression

Berberine

Tang, Li-Qin et al (2016)154 DN HF+HG+STZ Rats Regulate of β-arrestin expression, ICAM-1 and VCAM-1 

levels

Xie, Xi et al (2013)155 DN STZ Rats RhoA/ROCK inhibition

HG GMCs

Liu, Weihua et al (2009)156 DN HG GMCs Inhibit fibronectin and collagen synthesis partly via p38 

MAPK signal pathway

Wang, Ying-Ying et al (2018)157 DN HG GMCs 

+podocyte

Inhibit the transfer of TGFβ1 from the glomerular mesangial 

cells to the podocytes

Ma, Zejun et al (2022)158 DN HF+STZ Rats Suppress the NLRP3 inflammasome.

HG HK-2 cell

Wang, Feng Ling et al (2013)159 DN HF+STZ Rats Modulate the proteins expression of GRKs in G protein- 
AC-cAMP signaling pathway

Liu, Weihua et al (2008)160 DN STZ Rats Inhibit AR in mesangium, reduce oxidative stress, and 
ameliorate extracellular matrix synthesis and cell 

proliferation
HG Rat mesangial 

cells

Abbreviations: TRPC6, transient receptor potential cation channel 6; HMCs, human glomerular mesangial cells; HK-2, proximal renal tubular epithelial cells; MEK1/2, 
mitogen-activated protein kinase 1/2; RSK2, ribosomal S6 kinase 2; MPC5, Conditionally immortalized mouse podocytes; TUG1, taurine upregulated gene 1; FATP2, Fatty 
acid transport protein 2; SERCA, sarcoplasmic reticulum Ca2+-ATPase; TM, tunicamycin; H3K4me1, H3 lysine 4 monomethylation; Rock, Rho kinase; GMCs, glomerular 
mesangial cells; GRKs, G protein-coupled receptor kinases.
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signaling pathway and NF-κB activity, both critical for regulating fibronectin accumulation and renal inflammation.155 

The RhoA/ROCK pathway governs cell contraction, motility, and fibrosis,161 while NF-κB serves as a central mediator of 
inflammatory responses. Modulating these pathways, BBR reduced fibrosis and inflammation in DN. Additionally, BBR 
mitigated tubulointerstitial fibrosis and epithelial-to-mesenchymal transition (EMT) in kidney cells. EMT involves renal 
epithelial cells losing their characteristics and acquiring a mesenchymal phenotype, contributing to fibrosis and tissue 
remodeling in DN.162 BBR downregulated NLRP3 inflammasome activation, a key factor in inflammation, and inhibited 
TGF-β1 transfer from mesangial cells, further protecting against fibrosis and EMT.156–158

Moreover, BBR reduced collagen synthesis by inhibiting the p38 mitogen-activated protein kinase (p38MAPK) 
pathway and modulated G protein-coupled receptor kinases (GRKs) to increase cyclic adenosine monophosphate 
(cAMP) levels, further contributing to its renoprotective effects.159 Additionally, BBR decreased aldose reductase 
activity, lowering oxidative stress and extracellular matrix synthesis.160 Aldose reductase, an enzyme involved in the 
polyol pathway, is activated under hyperglycemic conditions and contributes to oxidative damage.163 Inhibiting this 
enzyme helped reduce oxidative stress, a major contributor to kidney injury in DN (Table 5).

Discussion
The increasing global prevalence of obesity and diabetes, alongside their associated vascular complications, highlights 
the urgent need for effective therapeutic strategies to manage vascular dysfunction in these conditions. As endothelial 
dysfunction plays a central role in the pathogenesis of diabetic vascular complications, targeting the underlying 
mechanisms of vascular injury is essential to prevent the further progression of diseases such as CVD, DR, and DN. 
In this context, AS-IV and BBR, two bioactive compounds with distinct mechanisms of action, present promising 
therapeutic potential for mitigating vascular dysfunction associated with obesity and diabetes.

Mechanistic Insights and Therapeutic Potentials
The therapeutic potential of AS-IV and BBR in treating vascular dysfunction and associated complications in obesity and 
diabetes is evident through their complementary mechanisms. Both compounds target inflammation, oxidative stress, 
endothelial dysfunction, and insulin resistance, providing promising treatment options for CVDs, DR, and nephropathy 
(Supplementary Table 1).

Vascular Dysfunction
AS-IV and BBR enhance endothelial function by promoting NO production and reducing oxidative stress. They achieve 
this by upregulating eNOS and inhibiting NADPH oxidase. Both compounds also improve insulin sensitivity; AS-IV 
activates the PI3K/Akt pathway, while BBR activates AMPK, leading to enhanced glucose uptake. AS-IV reduces pro- 
inflammatory cytokines and adhesion molecules via TLR4/NF-κB inhibition, while BBR modulates macrophage polar
ization through SIRT1 and AMPK activation. Both compounds promote autophagy, with AS-IV utilizing the PI3K/Akt/ 
mTOR pathway and BBR relying on AMPK signaling. While AS-IV focuses on angiogenesis and anti-apoptotic effects, 
BBR targets inhibiting AGEs formation and macrophage polarization, highlighting their complementary roles in vascular 
repair and metabolic regulation.

Cardiovascular Protection
AS-IV and BBR both improve lipid metabolism and reduce vascular inflammation. AS-IV increases HDL-C and reduces 
LDL-C, whereas BBR modulates KLF16 and PPARα interactions to enhance lipid metabolism. AS-IV acts through the 
PI3K/Akt/mTOR and α7nAChR pathways, while BBR reduces metabolic endotoxemia by modulating gut microbiota. In 
terms of cardiac protection, AS-IV promotes energy metabolism and reduces oxidative stress through Nox4 and TGF-β1/ 
Smad2 pathways, whereas BBR protects against cardiac fibrosis via the mTOR/mtROS axis. AS-IV also prevents 
ferroptosis, while BBR modulates PPARα and NO signaling to reduce cardiomyocyte hypertrophy.

Retinal and Renal Protection
In DR, AS-IV protects retinal cells through enhanced antioxidant enzyme activity and inhibition of apoptosis, particularly 
through modulation of pro-apoptotic proteins. BBR also improves retinal health by reducing oxidative damage, 

Drug Design, Development and Therapy 2025:19                                                                             https://doi.org/10.2147/DDDT.S520323                                                                                                                                                                                                                                                                                                                                                                                                   4925

Li et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/article/supplementary_file/520323/520323%252520Revised%252520Supplementary%252520Tables%2525201-2.docx


promoting autophagy, and modulating the immune response by increasing regulatory T cells. Both compounds inhibit 
angiogenesis, with BBR acting through the Akt/mTOR pathway. AS-IV targets ferroptosis resistance, while BBR inhibits 
aldose reductase and reduces inflammation. In DN, both compounds reduce inflammation and oxidative stress. AS-IV 
enhances klotho expression and modulates the Akt/mTOR pathway to alleviate fibrosis, while BBR inhibits TGF-β1 and 
NLRP3 inflammasome activation to prevent fibrosis.

Challenges and Future Directions
Despite promising preclinical findings, several obstacles must be overcome before AS-IV and BBR can be widely 
incorporated into clinical practice, particularly their limited bioavailability. The absolute bioavailability of AS-IV is 
only 3.66% in rats and 7.4% in beagle dogs,164 while BBR’s bioavailability in rats is even lower, at 0.68%.165 

Another significant challenge lies in the standardization of dosing regimens. Both clinical and preclinical studies 
have utilized varying doses and formulations, leaving the optimal therapeutic dose undetermined. For instance, 
a study on AS-IV’s protective effects against endothelial dysfunction assessed doses of 40 mg/kg/day and 80 mg/kg/ 
day.166 Conversely, research on podocyte apoptosis in DN models administered a substantially lower dose of 5 mg/ 
kg/day,140 demonstrating considerable variability in dosing strategies. In BBR research, experiments with HFD and 
STZ-induced diabetic rats used doses of 50, 100, and 150 mg/kg/day.167 Studies examining BBR’s lipid-lowering 
efficacy, particularly in combination with resveratrol, utilized as low as 30 mg/kg/day.168 This wide dosage range 
emphasizes the need for further investigations to determine the most effective and safe doses for both AS-IV 
and BBR.

To address bioavailability limitations, innovative drug delivery systems such as nanoparticle-based formulations and 
absorption enhancers are under exploration. A water-soluble AS-IV derivative, astragalosidic acid (LS-102), demon
strated nearly 500-fold greater transepithelial permeability compared to AS-IV.169 Hyaluronate-based liposomes encap
sulating BBR have also enhanced its lipophilicity and bioavailability.170 Additionally, chitosan-alginate nanoparticles 
loaded with BBR increased oral bioavailability by 4.1-fold in rats relative to a standard BBR suspension.171 Absorption 
enhancers like sodium caprate and sodium deoxycholate significantly boosted BBR absorption, elevating plasma 
concentrations by 41.1-fold and 35.3-fold, respectively.172 While these approaches show potential, further research is 
necessary to refine these strategies for clinical application.

While both AS-IV and BBR exhibit complementary mechanisms, their potential synergism remains underexplored. 
Three critical questions warrant immediate attention: (1) Do AS-IV and BBR interact pharmacokinetically or pharma
codynamically when co-administered? (2) Can optimize combined dosing ratios enhance efficacy without increasing 
toxicity in multifactorial vascular dysfunction models? (3) Can advance delivery systems mitigate the bioavailability 
limitations of dual therapy? In parallel with these mechanistic inquiries, the establishment of standardized dosing 
regimens is essential, which requires rigorous pharmacodynamic studies, particularly considering interactions with 
conventional antidiabetic medications. Furthermore, large-scale randomized trials are necessary to assess the long-term 
safety profiles of this combination in comorbid populations. Addressing these gaps will bridge the gap between 
mechanistic insights and clinically applicable combination strategies.

Conclusion
AS-IV and BBR represent two promising natural compounds with substantial potential for managing vascular dysfunc
tion in obesity and diabetes. While preclinical data are promising, clinical evidence remains limited. The combination of 
these compounds may offer a comprehensive approach to addressing both the metabolic and vascular aspects of these 
diseases. However, challenges such as bioavailability, optimal dosing, combinatorial efficacy, and long-term safety must 
be resolved. Overcoming these hurdles could position AS-IV and BBR as integral components in clinical strategies aimed 
at combating the growing global burden of obesity, diabetes, and their vascular complications.
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A list of abbreviations used in this study is provided in Supplementary Table 2.
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