REVIEW

A Review of the Mechanisms of Astragaloside IV and Berberine in Vascular Dysfunction Associated with Obesity and Diabetes

Yunfeng Li^{®*}, Yulong Ma^{*}, Lei Yao, Jianhua Li, Xunjie Zhou, Mingzhu Wang, Mingtai Gui, Da Li, Xiaozhe Chen[®], Yidan Dong, Bo Lu, Deyu Fu

Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China

*These authors contributed equally to this work

Correspondence: Bo Lu; Deyu Fu, Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China, Email lubo200609@126.com; fdy650@126.com

Abstract: The global epidemic of obesity and diabetes imposes a significant strain on healthcare systems, substantially elevating the risk of vascular dysfunction and its associated complications. Astragaloside IV (AS-IV) and berberine (BBR) have demonstrated considerable promise in addressing vascular issues linked to these conditions. This review examines the mechanisms driving their vascular protective effects, drawing on evidence from preclinical studies to compare and contrast their modes of action. It explores both the unique and overlapping pathways through which they mitigate the complications. However, challenges remain, such as enhancing the bioavailability of AS-IV and BBR and translating preclinical findings into robust clinical trials. This synthesis provides critical insights for advancing research and practical approaches in managing vascular dysfunction associated with obesity and diabetes.

Keywords: astragaloside IV, berberine, vascular dysfunction, diabetes, obesity, complications

Introduction

The global prevalence of obesity and diabetes has reached epidemic levels, posing significant public health challenges and placing substantial strain on healthcare systems. According to The Lancet, nearly 880 million adults were classified as obese in 2022, marking a 4.5-fold increase since 1990.¹ Meanwhile, the International Diabetes Federation reported that approximately 537 million adults were living with diabetes in 2021, with this number expected to rise sharply in the coming years.² Both obesity and diabetes contribute to a range of severe health complications, including cardiovascular diseases, diabetic retinopathy, nephropathy, encephalopathy, and neuropathy, leading to significant increases in morbidity and mortality.

Vascular dysfunction, a key underlying factor in the pathogenesis of these complications, is common and often an early feature in both obesity and diabetes.^{3–5} Characterized by impaired endothelial function, abnormal vascular remodeling, and chronic inflammation, vascular dysfunction disrupts the homeostatic balance between vasodilation and vasoconstriction, coagulation, and fibrinolysis, as well as pro-inflammatory and anti-inflammatory responses.^{6,7} In obesity, excessive adipose tissue promotes vascular dysfunction through the release of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF- α) and interleukin-6 (IL-6).⁸ These cytokines drive oxidative stress and endothelial damage while reducing the bioavailability of nitric oxide (NO), essential for vascular relaxation and homeostasis.^{9,10} Insulin resistance, a hallmark of obesity, excerbates endothelial dysfunction by impairing insulin-mediated NO

© 2025 Li et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php work and incorporate the Creative Commons Attribution – Non Commercial (unported, v4.0) License (http://treativecommons.org/licenses/by-mc/4.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (http://www.dovepress.com/terms.php). production and promoting vasoconstriction.¹¹ Clinical evidence from a cross-sectional study (N = 8,823) reveals significant associations between abdominal obesity (quantified by the A Body Shape Index) and endothelial dysfunction, evidenced by inverse correlations with flow-mediated vasodilation (men: r = -0.23, P = 0.003; women: r = -0.32, P < 0.001).¹² Similarly, diabetes accelerates vascular damage via hyperglycemia-induced mechanisms, such as advanced glycation end-product (AGE) formation, increased oxidative stress, and the activation of inflammatory pathways.^{13–15} Hyperglycemia also triggers endothelial cell apoptosis and impairs vascular repair processes, leading to progressive damage in both macrovascular and microvascular systems.^{16,17} A population-level analysis (N = 1,384) highlights the vascular effects specific to diabetes, with diagnosed patients exhibiting a 42% prevalence of endothelial dysfunction and significantly lower reactive hyperemia index (RHI) values compared to 23% in normoglycemic controls.¹⁸ The interplay between obesity and diabetes exacerbates vascular dysfunction. For instance, obesity-induced insulin resistance amplifies the harmful effects of hyperglycemia on endothelial cells, while diabetes-related vascular damage worsens the pro-inflammatory state triggered by obesity. This vicious cycle underscores the critical importance of targeting vascular dysfunction in the management of obesity and diabetes.

Current pharmacological therapies, including GLP-1 agonists, SGLT2 inhibitors, and metformin, have demonstrated clinical benefits in managing obesity- and diabetes-associated vascular complications through mechanisms such as glycemic control, anti-inflammatory actions, and oxidative stress reduction. However, challenges such as hypoglycemia risk (particularly with intensive insulin therapy), gastrointestinal side effects and variable cost-effectiveness in long-term use remain unresolved.¹⁹⁻²¹ These limitations emphasize the urgent need for safer, cost-effective, and multi-target alternatives to address these complex vascular complications. Natural bioactive compounds, particularly astragaloside IV (AS-IV) and berberine (BBR), have emerged as promising candidates. Notably, emerging clinical evidence supports their translational potential: a randomized controlled trial showed that BBR supplementation (0.4 g, three times daily for one month) significantly improved endothelial function, as assessed by flow-mediated dilation (FMD).²² Furthermore, an ongoing clinical trial (Registration number: ITMCTR2025000262) is investigating the efficacy of an AS-IV-containing herbal formulation in reducing carotid intima-media thickness in individuals with early-stage carotid plaque. Preclinical studies have demonstrated that AS-IV enhances insulin sensitivity, regulates lipid metabolism, and reduces oxidative stress.^{23,24} In animal models of diabetic vasculopathy, BBR mitigated vascular inflammation and improved microvascular perfusion.²⁵ Despite the growing body of evidence supporting the benefits of AS-IV and BBR, a significant gap remains in the literature regarding a comprehensive analysis of their specific mechanisms in the context of obesity- and diabetesinduced vascular dysfunction. This review aims to address this gap by consolidating the latest research on the therapeutic potential of AS-IV and BBR in managing vascular complications associated with obesity and diabetes. By synthesizing current insights and exploring emerging therapeutic pathways, this study provides a robust foundation for future investigations, underscoring the promise of natural compounds in alleviating vascular dysfunction and improving health outcomes for affected populations.

Latest Findings on AS-IV and BBR in the Treatment of Vascular Dysfunction Associated with Obesity and Diabetes Astragaloside IV

AS-IV, a bioactive saponin primarily extracted from *Astragalus membranaceus* ("Huangqi" in Chinese), with the molecular formula $C_{41}H_{68}O_{14}$,²⁶ exhibits considerable therapeutic potential in treating obesity- and diabetes-related vascular dysfunction. This is attributed to its anti-inflammatory, anti-apoptotic, antioxidant, and autophagy-enhancing properties, as well as its ability to promote vasodilation, enhance angiogenesis, inhibit cell proliferation, improve cytoskeletal remodeling, and regulate metabolic processes (Figure 1 and Table 1).

In streptozotocin (STZ)-induced diabetic rats, AS-IV improved endothelial function by upregulating endothelial nitric oxide synthase (eNOS) and NO levels, facilitating vasodilation, and reducing pro-inflammatory cytokines such as IL-6 and TNF- α . TLR4, a key member of the toll-like receptor family, activates the classical TLR4/nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κ B) signaling pathway, leading to NF- κ B p65 translocation into the nucleus and promoting the secretion of pro-inflammatory cytokines. This pathway also activates the NLR family pyrin domain

Figure 1 Summary of the biological effects of AS-IV in various vascular cell models. Previous studies have investigated the mechanisms of AS-IV in addressing vascular dysfunction using models such as aortas, human umbilical vein endothelial cells (HUVECs), Endothelial progenitor cells (EPCs), and vascular smooth muscle cells (VSMCs). AS-IV has been shown to suppress apoptosis, reduce inflammation, enhance autophagy, exhibit antioxidant properties, promote vasodilation, inhibit proliferation, support angiogenesis, and improve cytoskeletal remodeling. Symbol key: Activation is indicated by arrow lines (\rightarrow) , inhibition by blocker lines (--).

Abbreviations: HUVECs, human umbilical vein endothelial cells; EPCs, Endothelial progenitor cells; VSMC, vascular smooth muscle cell; SIRT1, sirtuin 1; Bax, BCL2associated X; Bcl-2, B-cell lymphoma-2; CaSR, calcium-sensing receptor; LOX-1, lectin-like oxidized LDL receptor; NLRP3, NLR family pyrin domain containing 3; TLR4, Toll-like receptor-4; NF-kB, Nuclear factor kappa-light-chain-enhancer of activated B cells; TRAF6,TNF receptor associated factor 6; IL-1 β , interleukin 1 β ; TNF- α , tumor necrosis factor; PTEN, phosphatase and tensin homolog; PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase B; GSK 3 β , glycogen synthase kinase-3 β ; Nrf2, nuclear factor E2-related factor 2; Nox2, NADPH oxidase 2; ROS, reactive oxygen species; TGF- β 1, transforming growth factor- β 1; Smad2, mothers against decapentaplegic homolog 2; JNK, c-Jun N-terminal kinase; SOD, superoxide dismutase; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; PKC, protein kinase C.

containing 3 (NLRP3) inflammasome.⁴⁴ Similarly, the calcium-sensing receptor (CaSR), a G protein-coupled receptor, plays a significant role in regulating inflammation and activating the NLRP3 inflammasome.⁴⁵ AS-IV alleviated endothelial dysfunction by downregulating TLR4 expression, inhibiting NF-κB p65 translocation, and reducing adhesion molecules (ICAM-1, VCAM-1) levels.²⁷ Furthermore, AS-IV suppressed the NLRP3 inflammasome by downregulating

References	Model	Inducer	Experimental Model	Molecular mechanism
Leng, Bin et al (2018) ²⁷	Diabetes	STZ/HG	Thoracic aortas of rats	Inhibit TLR4/NF-κB signaling pathway
		HG	HUVECs	

 Table I Overview of Astragaloside IV on Vascular Dysfunction Related to Obesity and Diabetes

Table I (Continued).

References	Model	Inducer	Experimental Model	Molecular mechanism
Nie, Qu et al (2019) ²⁸	Diabetes	STZ	Thoracic aortas of rats	Reduce oxidative stress, downregulate calpain-1 and improve eNOS/NO signaling.
		HG	HUVECs	
Yuan, Wei et al (2008) ²⁹	Diabetes	HG	VSMCs	Inhibit proliferation
Leng, Bin et al (2019) ³⁰	Diabetes	STZ	rats	Inhibit TLR4/NF-ĸB signaling pathway and CaSR
		HG	HUVECs	
Qian, Weibin et al (2019) ³¹	Diabetes	ox-LDL	EPCs	Inhibit lox-1/nlrp3 pathway
Zou, Xiaoling et al (2020) ³²	Diabetes	HG	HUVECs	Promote the expression of miR-214
Xiong, Wu et al (2022) ³³	Diabetes	HG	HUVECs	Enhance autophagy and depress apoptosis; miR-21/ PTEN axis
Chen, Jiye et al (2024) ³⁴	Diabetes	HG	HUVECs	Increase miR-146a-5p; inhibit TRAF6/NF-κB pathway
Xiong, Wu et al (2024) ³⁵	Diabetes	HG	HUVECs	miR-210/Nox2/ROS pathway
Li, Han-Bing et al (2006) ³⁶	Diabetes	HG	HUVECs	Inhibit PKC activation; stabilize the endothelial cell cytoskeleton
Wu, Hui et al (2016) ³⁷	Obesity	HFD	C57BL/6 mice	Improve lipid metabolism; enhance leptin sensitivity and
		1	The leptin receptor deficient db/db mice	modulate thermogenic network
		1	Neuronal cell line SH-SY5Y cells	
Jiang, Boren et al (2008) ³⁸	Obesity	TNF-α	3T3-LI adipocytes	Decrease FFA levels; increase insulin sensitivity
You, Liangzhen et al (2019) ³⁹	diabetes	HG	HUVECs	Reduce cell apoptosis and inflammation; inhibit the JNK signaling pathway and mitochondria-mediated apoptosis pathway
Ma, Yuhong et al (2015) ⁴⁰	Diabetes	H2O2	HUVECs	Decrease Nox4 expression through the TGF- β I/Smad2 signaling pathway
Guo, Xuxi et al (2023) ⁴¹	Obesity	PA + glucose + BSA	Adipocytes	Reduce IR and inflammation; through the miR- 21/ PTEN/PI3K/Akt signaling pathway
Zhang, Yue et al (2022) ⁴²	Diabetes	PA + glucose + BSA	Adipocytes	Attenuate IR and inflammation via targeting CTRP3/ PI3K/Akt signaling pathway
Lin, Yuqiong et al (2022) ⁴³	Diabetes	STZ	Pancreatic β-cell line INS-I	Alleviate oxidative stress, apoptosis and cell dysfunction; through the SIRT1/p53 and Akt/GSK3β/Nrf2 signaling pathways.

Abbreviations: STZ, streptozotocin; HG, high-glucose; HUVECs, human umbilical vein endothelial cells; TLR4, Toll-like receptor-4; NF-kB, Nuclear factor kappa-light-chain -enhancer of activated B cells; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; VSMC, vascular smooth muscle cell; CaSR, calcium-sensing receptor; ox-LDL, oxidized low-density lipoprotein; LOX-1, lectin-like oxidized LDL receptor; NLRP3, NLR family pyrin domain containing 3; PTEN, phosphatase and tensin homolog; TRAF6, TNF receptor associated factor 6; Nox2, NADPH oxidase 2; ROS, reactive oxygen species; PKC, protein kinase C; HFD, high-fat diet; TNF-α, tumor necrosis factor; FFA, free fatty acid; JNK; c-Jun N-terminal kinase; TGF-β1; transforming growth factor-β1; Smad2, mothers against decapentaplegic homolog 2; PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase B; PA, palmitic acid; IR, insulin resistance; BSA, bovine serum albumin; CTRP3, C1q tumor necrosis factor-related protein 3; GSK 3β, glycogen synthase kinase-3 β; Nrf2, nuclear factor E2-related factor 2. cytokines (IL-1 β , IL-18) through inhibition of both the TLR4/NF- κ B pathway and CaSR.³⁰ In high-glucose (HG)-treated endothelial cells, AS-IV reduced pro-inflammatory cytokine secretion and enhanced mesenchymal stem cell (MSC)-derived exosomal miR-146a-5p expression, improving cell viability and reducing inflammation by targeting TNF receptor-associated factor 6 (TRAF6) and NF- κ B phosphorylation.³⁴

Beyond its anti-inflammatory effects, AS-IV exhibited significant anti-apoptotic benefits in HG-treated human umbilical vein endothelial cells (HUVECs) by reducing the Bax/Bcl-2 ratio and suppressing mitochondrial apoptotic markers, including Cyt-c, cleaved-caspase-9, and cleaved-caspase-3.³⁹ AS-IV also protected pancreatic β-cells from STZ-induced apoptosis by modulating the SIRT1/p53 pathway, essential for regulating apoptosis under stress. SIRT1, a NAD +-dependent deacetylase, deacetylates p53, preventing p53-mediated apoptosis and promoting cell survival.⁴⁶ AS-IV activated SIRT1, which suppressed p53-mediated apoptosis by increasing the expression of the anti-apoptotic protein Bcl-2 and decreasing the levels of pro-apoptotic proteins such as Bax and caspase-3.⁴³ AS-IV further promoted autophagy, a critical process for cellular survival under stress, by upregulating autophagic markers LC3II/I and ATG5. LC3II/I facilitates autophagosome formation, while ATG5 plays a pivotal role in autophagosome maturation, together supporting the clearance of damaged cellular components.³³ Additionally, AS-IV exerted potent antioxidant effects by modulating the protein kinase B (Akt)/GSK3β/Nuclear factor erythroid 2–related factor 2(Nrf2) signaling axis. The Akt/GSK3β pathway is involved in cell survival and metabolic regulation, while Nrf2, a key transcription factor, regulates the expression of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px).⁴³

AS-IV also promoted angiogenesis and reinforced endothelial barrier function through multiple mechanisms. Endothelial progenitor cells (EPCs), essential for vascular repair and regeneration, play a critical role in angiogenesis.⁴⁷ In HG-treated EPCs, exosomes derived from AS-IV-treated cells enhanced tube formation and upregulated miR-214, a microRNA known to activate angiogenic signaling by modulating the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and increasing the expression of angiopoietin-1, a protein vital for endothelial cell maturation and vascular integrity.³² AS-IV regulated the miR-210/Nox2/reactive oxygen species (ROS) axis in EPCs, where miR-210, involved in hypoxic responses, reduced oxidative stress by modulating Nox2 and ROS production. This action further promoted angiogenesis and vascular regeneration.³⁵ Additionally, AS-IV stabilized the endothelial barrier by modulating the dynamics of filamentous actin (F-actin), which is essential for maintaining cell structure and integrity. It inhibited protein kinase C (PKC) translocation, a process that can disrupt endothelial function and barrier permeability, thereby enhancing vascular stability.³⁶ In STZ-induced diabetic models and HG-treated endothelial cells, AS-IV restored endothelial function by increasing eNOS levels and reducing calpain-1, an enzyme associated with endothelial dysfunction.²⁸

In metabolic regulation, AS-IV improved glucose and lipid metabolism in high-fat diet (HFD)-fed models by reducing triglyceride and cholesterol levels and enhancing thermogenesis. This was achieved through upregulation of genes such as peroxisome proliferator-activated receptor alpha (PPAR α) and uncoupling protein 1 (UCP1), which are involved in fat oxidation and energy expenditure.³⁷ AS-IV alleviated leptin resistance and regulated adipocyte lipolysis, stabilizing lipid storage and mitigating TNF- α -induced disruptions.³⁸ Phosphatase and tensin homolog (PTEN) plays a pivotal role in regulating cellular metabolism and autophagy by modulating the PI3K/Akt signaling pathway.⁴⁸ In insulin-resistant adipocytes, AS-IV enhanced glucose consumption, increased glucose transporter type 4 (GLUT-4) expression, and improved insulin sensitivity through PTEN inhibition and PI3K/Akt activation.⁴¹

Berberine

BBR, a quaternary ammonium alkaloid primarily extracted from *Coptis chinensis Franch*. ("Huanglian" in Chinese), with the molecular formula $[C_{20}H_{18}NO_4]^{4,49}$ exhibits a broad spectrum of beneficial biological activities in treating vascular dysfunction associated with obesity and diabetes. These include inhibiting AGE formation, promoting vasodilation, anti-apoptosis, anti-inflammation, antioxidant effects, enhancing autophagy, improving glucose and lipid metabolism, and enhancing insulin sensitivity (Figure 2 and Table 2).

BBR improved vascular function in HFD- and STZ-induced diabetic rats by enhancing NO bioavailability, crucial for maintaining endothelial function and vascular tone. It increased serum NO levels and promoted endothelium-dependent relaxation, primarily through upregulation of eNOS expression.⁵¹ BBR also reduced oxidative stress by downregulating

Figure 2 Summary of the biological effects of BBR in various vascular cell models. Previous studies have investigated the mechanisms of BBR in alleviating vascular dysfunction using models such as adipocytes, MSI cells, HUVECs, aortas, and mesenteric arteries. BBR has been shown to suppress apoptosis, exhibit antioxidant and anti-inflammatory effects, promote vasodilation, improve insulin resistance, and enhance autophagy. Symbol key: Activation is indicated by arrow lines (\rightarrow) , inhibition by blocker lines (-).

Abbreviations: AGEs, advanced glycation end products; AMPK, AMP-activated protein kinase; IKK, IxB kinase; MCP-1, monocyte chemotactic protein-1; JNK, c-Jun N-terminal kinase.

Nox4, a subunit of NADPH oxidase, which contributes to the production of ROS and endothelial dysfunction in diabetes.⁵⁴ Furthermore, BBR significantly inhibited AGE formation, improving HG-induced endothelial cell injury in microvascular models.⁵⁰ In palmitate or HG-treated HUVECs, BBR similarly enhanced eNOS activation and NO production through the AMP-activated protein kinase (AMPK) pathway.^{52,54} AMPK, a critical regulator of cellular energy balance, when activated, increases eNOS activity, thereby contributing to NO production and improving endothelial function.⁶¹ In diabetic rats, BBR also enhanced acetylcholine-induced vasodilation in mesenteric arteries

References	Model	Inducer	Experimental Model	Molecular Mechanism
Hao, Min et al (2011) ⁵⁰	Diabetes	HG+ AGEs	MSI cells	Increase NO release, NOS and thrombomodulin production; inhibit the formation of AGEs
Wang, Chunmei et al (2009) ⁵¹	Diabetes	HFD+STZ	Rats	Improve glucose and lipid metabolism; enhance NO bioavailability

Table 2 Overview of berberine on Vascular Dysfunction Related to Obesity and Diabetes

References	Model	Inducer	Experimental Model	Molecular Mechanism
Wang, Yiqun et al (2009) ⁵²	Diabetes	HG	HUVECs	AMPK/eNOS activation
		Gently rubbing the luminal surface	Thoracic aortas of rats	
Geng, Feng-Hao et al (2016) ⁵³	Diabetes	HFD+STZ	Mesenteric artery of rats	Up-regulating insulin receptor-mediated signalling
		HG+HFD	HUVECs	
Zhang, Ming et al (2013) ⁵⁴	Diabetes	Palmitate	HUVECs	Upregulate eNOS expression and downregulate expression of Nox4; activation of AMPK
Ye, Liang et al (2016) ⁵⁵	Obesity	HFD	Mice	Improve IR by inhibiting MI macrophage
		TNF-α	3T3-L1 preadipocytes	activation
Zhou, Jiyin, and Shiwen Zhou (2010) ⁵⁶	Diabetes	STZ+high- carbohydrate +HFD	rats	Regulate the PPARs/P-TEFb signal transduction pathway
Shan, Yun et al (2020) ⁵⁷	Obesity	1	3T3-LI preadipocytes	Upregulate SIRT I expression; activate the AMPK pathway
		HFD	C57BL/6J mice and Sirt1+/-mice	
Li, Dan et al (2022) ⁵⁸	Obesity	HFD	Mice	Activate SIRT3 expression;
		1	Adipocytes	
Yi, Ping et al (2008) ⁵⁹	IR	PA	3T3-L1 adipocytes	Inhibit phosphorylation of IKK β Ser
Du, Junda et al (2024) ⁶⁰	Obesity	HFD	Mice	Inhibit miR-27a levels; improve IR
		PA	Adipocytes	

Abbreviations: AGEs, advanced glycation end products; AMPK, AMP-activated protein kinase; PPARs, peroxisome proliferator-activated receptors; P-TEFb, positive transcription elongation factor b; SIRT1, sirtuin 1; IKK, IkB kinase.

and improved insulin-induced vasodilation via the PI3K/Akt signaling pathway, a key mechanism for endothelial function and insulin sensitivity.⁵³

Beyond its vascular benefits, BBR exerts significant anti-inflammatory effects and improves insulin resistance, both of which are key factors in obesity and diabetic vascular dysfunction. In HG-treated HUVECs, BBR activated AMPK, promoting NO production and inhibiting monocyte adhesion by suppressing NF- κ B activation and reducing the expression of adhesion molecules such as VCAM-1 and ICAM-1, thereby mitigating inflammation.⁵² In HFD-induced mice, BBR improved insulin sensitivity and reduced macrophage infiltration, particularly M1 macrophages, into adipose tissue. M1 macrophages, being pro-inflammatory, play a pivotal role in the development of insulin resistance.⁶² BBR also reduced levels of inflammatory cytokines, including MCP-1, IL-6, and TNF- α . This anti-inflammatory effect is associated with the inhibition of key inflammatory kinases, such as c-Jun N-terminal kinase (JNK) and IkB kinase β (IKK β), which are involved in NF- κ B activation and inflammatory responses.⁶³ Furthermore, BBR reduced p65 expression, further alleviating inflammation and macrophage chemotaxis.⁵⁵

In both HFD-fed C57BL/6J and Sirt1+/- mice, BBR upregulated SIRT1 expression, activating AMPK and reducing both local and systemic inflammation, thereby improving insulin resistance.⁵⁷ Additionally, BBR modulated macrophage polarization in adipose tissue, shifting them towards an anti-inflammatory phenotype, and activated SIRT3, a mitochondrial deacetylase that mitigates adipose tissue remodeling and miR-155-5p secretion, providing further protection against insulin resistance.⁵⁸ In palmitic acid-treated 3T3-L1 adipocytes, BBR increased the expression of insulin receptor substrate-1 (IRS-1) and PI3K p85 while inhibiting IRS-1 and IKKβ phosphorylation, thereby preventing NF-κB activation.⁵⁹ Co-treatment with BBR and insulin in HG/HF-treated HUVECs enhanced phosphorylation of the insulin receptor (InsR), Akt, and eNOS, suggesting that BBR enhances insulin receptor-mediated signaling.⁵³ In HFD-induced mice, BBR also reduced miR-27a levels in both serum and adipocyte supernatants, significantly alleviating insulin resistance linked to elevated miR-27a.⁶⁰ These findings further support BBR's anti-inflammatory effects and its capacity to improve insulin signaling.

BBR also promotes improvements in glucose and lipid metabolism. In HFD and STZ-induced diabetic rats, BBR reduced fasting blood glucose (FBG), triglycerides, and 2-hour glucose levels in the oral glucose tolerance test (OGTT), indicating metabolic improvements.⁵³ Furthermore, BBR promoted adipocyte differentiation and decreased lipid accumulation in 3T3-L1 adipocytes by modulating key regulators such as peroxisome proliferator-activated receptors (PPARs) and positive transcription elongation factor b (P-TEFb).⁵⁶ PPARs are nuclear hormone receptors that regulate lipid metabolism, adipogenesis, and insulin sensitivity,⁶⁴ while P-TEFb regulates gene transcription related to adipocyte function and lipid metabolism.⁶⁵ BBR also reduced body weight and fat percentage, improving serum parameters, including FBG, total cholesterol, triglycerides, and LDL-C in palmitic acid-treated adipocytes.⁶⁰ Additionally, BBR enhanced autophagy and promoted cell viability in HG/HF-treated HUVECs, as evidenced by an increased LC3B-II /LC3B-I ratio, a key marker of autophagy, and a reduction in p62 expression, a substrate of autophagic degradation and indicator of impaired autophagic flux.⁵³

Complications of Obesity and Diabetes

Cardiovascular Disease Related to Obesity and Diabetes

Cardiovascular disease (CVD) is an increasingly prevalent public health issue, particularly in the context of rising global rates of obesity and diabetes.⁶⁶ These metabolic disorders are strongly associated with key CVD risk factors, including hyperglycemia, insulin resistance, dyslipidemia, hypertension, and systemic inflammation.⁶⁷ In diabetic individuals, chronic hyperglycemia and metabolic dysregulation contribute to vascular damage through mechanisms such as oxidative stress, AGE formation, endothelial dysfunction, and persistent low-grade inflammation.⁶⁸ These pathological processes collectively lead to a range of cardiovascular complications, including atherosclerosis, hypertension, myocardial infarction, stroke, and heart failure. Moreover, obesity exacerbates these risks by promoting adipose tissue expansion and remodeling, which increases the secretion of pro-inflammatory cytokines and places additional strain on the cardiovascular system.^{69,70}

Astragaloside IV

AS-IV offers multiple therapeutic benefits in CVDs associated with obesity and diabetes through the modulation of several signaling pathways that regulate lipid metabolism, oxidative stress, cardiac energy metabolism, inflammation, autophagy, and endothelial function. It regulates lipid metabolism by lowering total cholesterol, triglycerides, and LDL-C levels while increasing HDL-C,^{71,72} thus promoting vascular health. AS-IV also alleviates oxidative stress by inhibiting Nox4 and modulating the TGF- β 1/Smad2 signaling pathway.⁴⁰ The TGF- β 1/Smad2 pathway plays a critical role in fibrosis and endothelial dysfunction,⁷³ and its regulation by AS-IV helps protect against vascular damage. In diabetic cardiomyopathy, AS-IV enhances cardiac energy metabolism by upregulating peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 α) and nuclear respiratory factor 1 (NRF1),⁷⁴ both of which are key regulators of mitochondrial biogenesis and oxidative metabolism.⁷⁵ Additionally, AS-IV prevents ferroptosis by downregulating CD36 expression,⁷⁶ a fatty acid transporter involved in lipid peroxidation.⁷⁷ AS-IV further modulates mitogen-activated protein kinase (MAPK) signaling by inhibiting JNK and p38 pathways while promoting extracellular signal-regulated kinase

(ERK) activation.^{78,79} JNK and p38 are associated with stress and inflammation,⁸⁰ while ERK activation promotes cell survival and proliferation,⁸¹ thus improving cardiac function and protecting against apoptosis.

AS-IV also enhances endothelial function by promoting NO signaling and cyclic guanosine monophosphate (cGMP) production.^{26,82} Additionally, it improves hypothalamic leptin sensitivity by increasing leptin receptor mRNA and proopiomelanocortin (POMC) expression, while downregulating inhibitory factors such as suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B).⁸³ POMC plays a role in energy homeostasis, and the downregulation of SOCS3 and PTP1B (both negative regulators of leptin signaling) aids in metabolic balance.⁸⁴ Moreover, AS-IV exerts anti-inflammatory effects through upregulation of the α 7 nicotinic acetylcholine receptor (α 7nAChR) and inhibition of the IKK β /NF- κ B pathway, mechanisms that help prevent obesity-associated hypertension.⁸³ The α 7nAChR is a key component of the cholinergic anti-inflammatory pathway,⁸⁵ while the IKK β / NF- κ B pathway is central to inflammation, making its inhibition essential for reducing inflammatory responses. Additionally, AS-IV enhances autophagy in vascular smooth muscle cells,⁸⁶ reduces inflammation via the PI3K/Akt/ mTOR pathway, and modulates gut microbiota to promote beneficial bacterial populations⁸⁷ (Table 3).

References	Model	Inducer	Experimental Model	Molecular Mechanism
Astragaloside IV			-	
Wang, Zhongyuan et al (2020) ⁷¹	DCM	HF+STZ	Rats	Improve lipid metabolism
Song, Zhenhua et al (2019) ⁸⁶	AS	ox-LDL+β- Glycerophosphate	VSMC	H19 overexpression and DUSP5 inhibition
		HF	Thoracic aorta of mice	
Sun, Dongwen et al (2024) ⁸⁷	AS	The Western diet	Rats	Anti-inflammatory and modulate intestinal flora; PI3K/Akt/mTOR pathway
Zhang, Zhen et al (2019) ⁷⁴	DCM	STZ	Rats	Regulate the release of PGC-1 α and NRFI
		HG	H9c2 cardiomyocytes	
Li, Xin et al (2023) ⁷⁶	DCM	HF+STZ	rats	Decrease cardiomyocyte injury and myocardial dysfunction
		PA	H9c2 cardiomyocytes	
Sun, Chuang et al (2021) ⁷⁸	МІ	HG+HF	H9c2 cardiomyocytes	Prevent apoptosis and restored cardiac function; MAPK signaling pathway
Zhang, Yifan et al (2022) ⁷⁹	AS	HF	LDLR-/-mice	Via MAPK/NF-κB signaling pathway
Lin, Xin et al (2020) ²⁶	Metabolic syndrome	High-fructose+hf	Rats	Alleviate oxidative stress and activate the endothelial NOS/NO/ cGMP pathway
Zhang, Ning et al (2011) ⁸²	Metabolic syndrome	Fructose	Rats	Regulate lipid metabolism, endothelium-dependent vasorelaxation and the NO-cGMP-related pathway
Jiang, Ping et al (2018) ⁸³	Obesity- associated Hypertension	HFD	Obese rats	Inhibit inflammatory reaction and improve leptin resistance; increase α 7nachr expression
Zhu, Yaobin et al (2019) ⁸⁸	DCM	HG	H9C2 cardiomyocytes	Inhibit oxidative stress and autophagy via the miR-34a/Bcl2/ (LC3II/LC3I) and pAKT/Bcl2/(LC3II/LC3I) pathways
Zhu, Zhongsheng et al (2019) ⁸⁹	AS	ox-LDL	HUVECs	Reduce apoptosis, oxidative stress, and inflammatory response

Table 3 Overview of Astragaloside IV and berberine on Cardiovascular Disease of Related to Obesity and Diabetes

Table 3 (Continued).

References	Model	Inducer	Experimental Model	Molecular Mechanism			
Berberine							
Man, Bin et al (2022) ⁹⁰	AS	HF+STZ	Mice	Enhance the interplay between KLF16 and $\mbox{PPAR}\alpha$			
		HG	HUVECs				
Wu, Min et al (2020) ⁹¹	AS	HF	mice	Modulate gut microbiota			
Zhu, Lin et al (2018) ⁹²	AS	HF	Apoe-/- mice	Modulate gut microbiota			
Ma, Yu-Guang et al (2017) ⁹³	Diabetes-	HF+STZ	Rats	BK _{Ca} channel			
	hypertension	HG	VSMCs				
Zhong, Changsheng et al (2024) ⁹⁴	DCM	1	Male db/db mice	Regulate the mTOR/mtROS axis to inhibit pyroptosis			
		НG	H9C2 cardiomyocytes				
Li, Guohua et al (2018) ⁹⁵	DCM	HF+STZ	Rats	Downregulate IGF-1 receptor expression and MMP2/9 levels			
Wang, Mingfeng et al (2013) ⁹⁶	DCM	HG+insulin	Cardiomyocytes	PPAR α /NO signaling pathway			
Paul, Manoj et al (2019) ⁹⁷	AS	HG	Human platelet	Inhibit AR and Nox			

Abbreviations: DCM, diabetic cardiomyopathy; AS, atherosclerosis; H19, long non-coding (lncRNA) H19; DUSP5, dual-specificity phosphatase 5; mTOR, mammalian target of rapamycin; PGC-1 α , peroxisome proliferator-activated receptor γ coactivator 1- α ; NRF1, nuclear respiratory factor 1; MI, myocardial infarction; MAPK, mitogen-activated protein kinase; α 7nAChR α 7, nicotinic acetylcholine receptor; KLF16, Krüppel-like factor 16; PPAR α , peroxisome proliferator-activated receptor alpha; BKCa, large-conductance Ca2+-activated K+ channel; mtROS, mitochondrial reactive oxygen species; MMP2/9, matrix metalloproteinase-2/9; AR, aldose reductase.

Berberine

BBR exerts therapeutic effects through a network of pathways that regulate lipid metabolism, vascular inflammation, gut health, cardiac function, and oxidative stress, underscoring its potential in managing complications associated with obesity and diabetes. It improves lipid and glucose metabolism, reduces vascular inflammation, and attenuates atherogenesis in diabetic apoE-/- mice by enhancing interactions between Krüppel-like factor 16 (KLF16) and PPARa.⁹⁰ KLF16, a transcription factor involved in lipid metabolism and endothelial function,⁹⁸ and PPARa, which regulates fatty acid oxidation and inflammation.⁹⁹ play pivotal roles in BBR's vascular protective effects through their interaction. BBR also promotes gut health by enriching beneficial microbiota, such as Akkermansia spp., helping to mitigate metabolic endotoxemia and inflammation.^{91,92} In diabetic rat models, BBR reduced blood glucose and blood pressure, improved vascular function, and activated large conductance calcium-activated potassium (BK_{Ca}) channels.⁹³ BK_{Ca} channels, critical for regulating vascular tone and endothelial function,¹⁰⁰ contribute to enhanced vascular health when activated by BBR.

Additionally, BBR improved cardiac function and reduced fibrosis in db/db mice by modulating the mTOR/ mitochondrial reactive oxygen species (mtROS) axis and inhibiting pyroptosis.⁹⁴ The mTOR/mtROS pathway is involved in cellular energy metabolism and oxidative stress regulation, with dysregulation contributing to cardiac dysfunction and fibrosis.¹⁰¹ Pyroptosis, a form of programmed cell death associated with inflammation,¹⁰² was mitigated by BBR, providing further protection to cardiac tissue. In diabetic cardiomyopathy, BBR reduced cardiac fibrosis and dysfunction via insulin-like growth factor 1 receptor (IGF-1R) signaling in cardiac fibroblasts.⁹⁵ IGF-1R signaling is essential for cell growth, survival, and tissue repair, making it a crucial target in preventing cardiac fibrosis.¹⁰³ BBR also alleviated cardiomyocyte hypertrophy by activating PPAR α and modulating NO signaling.⁹⁶ Furthermore, BBR protected against HG-induced platelet hyper-reactivity and apoptosis by modulating oxidative stress pathways.⁹⁷ These effects contribute to reducing thrombosis and vascular injury, common complications in diabetes (Table 3).

Diabetic Retinopathy

Diabetic retinopathy (DR) is a prevalent and severe microvascular complication of diabetes mellitus (DM), representing the leading cause of vision impairment and blindness among working-age adults globally.¹⁰⁴ Its pathogenesis is closely associated with chronic hyperglycemia, which induces progressive damage to the retinal microvasculature, including endothelial dysfunction, capillary basement membrane thickening, pericyte loss, and increased vascular permeability.¹⁰⁵ These cellular and molecular alterations lead to ischemia, hypoxia, and inflammation in the retina, triggering a cascade of events that culminate in the hallmark features of DR: microaneurysms, retinal hemorrhages, hard exudates, and, ultimately, proliferative retinopathy.¹⁰⁶ Additionally, oxidative stress,^{107,108} chronic low-grade inflammation,^{109,110} and an upregulated renin-angiotensin system (RAS)¹¹¹ exacerbate these vascular changes, promoting pathological neovascularization and fibrovascular proliferation, which significantly heighten the risk of vision loss.

Astragaloside IV

AS-IV exerts protective effects against DR through a combination of antioxidant, anti-inflammatory, and anti-apoptotic mechanisms, targeting multiple signaling pathways and molecular mediators. In vitro studies on retinal capillary endothelial cells (RCECs) demonstrated that AS-IV enhanced cell viability, reduced glucose transporter-1 (GLUT-1) expression, and decreased oxidative stress markers such as hydrogen peroxide (H₂O₂) and malondialdehyde (MDA). It also boosted antioxidant enzyme activity, increased glutathione levels, and lowered Nox4 expression, ¹¹² thus reducing oxidative damage in retinal cells. In retinal ganglion cells (RGCs), AS-IV improved cell viability, reduced oxidative stress, and promoted retinal layer thickness. Network pharmacology identified additional potential targets for AS-IV, including hypoxia-inducible factor 1-alpha (HIF-1 α) and Akt1.¹¹³ HIF-1 α is critical for cellular adaptation to hypoxia,¹¹⁴ while Akt1 plays a pivotal role in cell survival, growth, and metabolism.¹¹⁵

In diabetic rats, AS-IV prevented ferroptosis in retinal pigment epithelial (RPE) cells by promoting the expression of SIRT1 and Nrf2, along with increasing miR-138-5p levels.¹¹⁶ SIRT1 is involved in mitochondrial function and cellular stress responses, while Nrf2 regulates antioxidant defenses, both crucial for cell survival under oxidative stress conditions. miR-138-5p is linked to ferroptosis regulation,¹¹⁷ further enhancing AS-IV's protective effect on RPE cells. Moreover, AS-IV functioned as an aldose reductase inhibitor, reducing ERK1/2 phosphorylation and NF-κB activation, both critical in inflammatory and apoptotic pathways in retinal cells.¹¹⁸ It also protected RPE cells from apoptosis by modulating pro-apoptotic proteins (eg, Bax and active caspases) and anti-apoptotic proteins (eg, Bcl-2 and FasL). AS-IV upregulated miR-128 expression, which regulates apoptosis and cell survival in retinal cells¹¹⁹ (Table 4).

Berberine

BBR also demonstrates significant therapeutic potential for DR by reducing hyperglycemic damage, inhibiting angiogenesis and inflammation, and modulating immune responses while promoting cellular survival and autophagy in retinal cells. It effectively lowered FBG and triglyceride levels, thereby mitigating hyperglycemic damage to retinal tissue.¹²⁰ BBR inhibited the expression of HIF-1 α and vascular endothelial growth factor (VEGF), key factors involved in

References	Model	Inducer	Experimental Model	Molecular Mechanism
Astragaloside IV				
Qiao, Yuan et al (2017) ¹¹²	DR	HG	RCECs	Antioxidative function
Wang, Tao et al (2020) ¹¹⁹	DR	STZ	RCECs	Upregulate miR-128 expression
Li, Jun-Qi et al (2024) ¹¹³	DR	STZ	Rats	Regulate the AGE-RAGE signaling pathway and the Th17 cell
		HG	RGCs	differentiation signaling pathway
Ding, Yuzhi et al (2014) ¹¹⁸	DR	1	db/db mice	Prevent the activation of ERK1/2 phosphorylation and NF- κB

 Table 4 Overview of Astragaloside IV and berberine on Diabetic Retinopathy

Table 4 (Continued).

References	Model	Inducer	Experimental Model	Molecular Mechanism
Berberine	·			
Yin, Zhujun et al (2021) ¹²⁰	DR	1	<i>db/db</i> transgenic mice	Modulate the glucolipid metabolism and inhibit the HIF-1 α /VEGF/ NF- κB pathway
Ai, Xiaopeng et al (2022) ¹²¹	DR	1	db/db mice	Alleviate angiogenesis and apoptosis by suppressing the HIF-1 α /VEGF/DLL-4/Notch-1 pathway
Wang, Ning et al (2021) ¹²²	DR	STZ	Mice	Akt/mTOR/HIF-1α/VEGF pathway
		insulin	RPECs	
Yang, Yi et al (2024) ¹²³	DR	STZ+HF	Mice	Regulate T cell subpopulation differentiation, reduce the Th17/
		HG	CD4+T cells and DC2.4 cell lines	Treg ratio
Chen, Han et al (2018) ¹²⁴	DR	HG	Primary retinal Müller cells	Enhance autophagy and activate the AMPK/mTOR signaling pathway

Abbreviations: DR, diabetic retinopathy; RCECs, retinal capillary endothelial cells; RPECs, retinal pigment epithelial cells; RGCs, retinal ganglion cells; RAGE, receptors of AGEs; ERK1/2, extracellular signal-regulated kinase 1/2; HIF-1 α , hypoxia-inducible factor-1 α ; VEGF, vascular endothelial growth factor; DLL-4, delta-like ligand 4.

angiogenesis and vascular permeability, via the AKT/mTOR signaling pathway.^{121,122} Additionally, BBR modulated immune responses by increasing regulatory T cells (Tregs) and decreasing pro-inflammatory Th17 cells, fostering a balanced immune environment.¹²³ This immune modulation helped reduce the inflammatory responses that contribute to retinal damage in DR. BBR also protected retinal Müller cells from apoptosis, a process often aggravated by hyperglycemia, and promoted autophagy, further preserving retinal health under diabetic conditions.¹²⁴ (Table 4)

Diabetic Nephropathy

Diabetic nephropathy (DN) is a severe microvascular complication of DM, characterized by progressive kidney damage that often progresses to end-stage renal disease (ESRD).¹²⁵ DN is a leading cause of chronic kidney disease globally, with patients facing significant morbidity and mortality due to the gradual decline in renal function,¹²⁶ as well as an increased risk of CVD and other comorbidities.¹²⁷ Pathologically, DN is marked by glomerular hypertrophy, basement membrane thickening, mesangial matrix expansion, and tubulointerstitial fibrosis, all of which contribute to proteinuria and a reduction in glomerular filtration rate (GFR).^{128,129} The pathogenesis of DN is multifactorial, involving hypergly-cemia-induced oxidative stress, inflammation, accumulation of AGEs, and dysregulation of various signaling pathways.^{130,131} These processes result in cellular injury within the renal microvasculature and impair the function of podocytes, mesangial cells, and endothelial cells.

Astragaloside IV

AS-IV has demonstrated significant renoprotective effects in DN by targeting multiple pathways involved in oxidative stress, inflammation, apoptosis, and fibrosis.^{132–137} In various DN models, AS-IV reduced albuminuria, serum creatinine levels, and mesangial expansion by inhibiting key signaling pathways such as MEK1/2-ERK1/2-RSK2, TUG1/TRAF5, and Akt/mTOR.^{138–140} The MEK1/2-ERK1/2-RSK2 pathway is critical for cell survival, inflammation, and fibrosis, while the TUG1/TRAF5 axis regulates inflammation and immune responses in kidney cells. The Akt/mTOR pathway is involved in cell growth and metabolism, and AS-IV's inhibition of these pathways helped mitigate renal damage in DN.

In podocytes exposed to high glucose, AS-IV enhanced the expression of klotho, a protein that suppresses oxidative stress and pyroptosis by inhibiting the NF-κB and NLRP3 inflammasome pathways.¹⁴¹ In palmitic acid-bound BSA-treated NRK-52E cells, AS-IV inhibited mitochondrial dysfunction and inflammation, further supporting its protective

effects on renal cells under diabetic conditions.¹⁴² Additionally, AS-IV promoted autophagy and reduced apoptosis by activating AMP-activated protein kinase alpha (AMPK α) and sarco/endoplasmic reticulum calcium ATPase 2b (SERCA2b).¹⁴³ AMPK α is a critical regulator of cellular energy balance, while SERCA2b plays a role in maintaining intracellular calcium homeostasis,¹⁴⁴ both contributing to cellular protection in the kidney.

AS-IV also enhanced gut-renal interactions by restoring intestinal barrier function and promoting beneficial gut microbiota while reducing renal and intestinal ferroptosis in db/db mice.¹⁴⁵ Ferroptosis, an iron-dependent form of cell death, plays a role in both renal and intestinal damage in DN.¹⁴⁶ By modulating histone modifications and reducing markers of endoplasmic reticulum (ER) stress, including eukaryotic initiation factor-2 α (eIF2 α), Protein Kinase RNA-like Endoplasmic Reticulum Kinase (PERK), JNK, Glucose Regulated Protein 78 (GRP78), and cleaved Activating Transcription Factor 6 (ATF6),^{147,148} AS-IV upregulated anti-apoptotic factors and downregulated pro-inflammatory cytokines such as TNF- α and MCP-1.^{149,150} In endothelial cells, AS-IV preserved barrier integrity by activating the AKT-GSK3 pathway,¹⁵¹ crucial for regulating cell survival, migration, and vascular integrity. Additionally, AS-IV enhanced NO synthesis via modulation of eNOS,¹⁵² vital for maintaining endothelial function and vasodilation (Table 5).

Table 5 Overview of Astragaloside IV and berberine on Diabetic Nephropathy

References	Model	Inducer	Experimental Model	Molecular Mechanism
Astragaloside IV				1
He, Ke-Qiang et al (2018) ¹³³	DN	STZ	Rats	Anti-oxidative stress, anti-inflammation, downregulate ERK1/2 activation, and upregulate TRPC6 expression
Su, Yong et al (2019) ¹³⁴	DN	HF+STZ	Rats	Downregulate CD36 expression, mediate FFA uptake and
		PA	HMCs	lipid accumulation
Zhang, Mingyu et al (2023) ¹⁵³	DN	STZ	Rats	Regulate SIRT6/HIF-1a pathway
Zhang, Yudi et al (2020) ¹³⁶	DN	HF+STZ	Rats	Inhibit inflammation-related gene expression
Chen, Qingqing et al (2018) ¹³⁷	DN	PA	HK-2 cell	Inhibit ROS generation and apoptotic protein expression
Wang, Xiaolei et al (2019) ¹³²	DN	HG	Mouse podocytes	Modulate the SIRTI-NF-κB pathway and autophagy activation
		1	Diabetic KK-Ay mice	
Song, Gaofeng et al (2018) ¹³⁹	DN	STZ	Mice	Inhibit the MEK1/2-ERK1/2-RSK2 signaling pathway
Lei, Xiao et al (2018) ¹⁴⁰	DN	STZ	Rats	IncRNA-TUGI/TRAF5 pathway
		HG	MPC5	
Sun, Huili et al (2016) ¹³⁸	DN	1	db/db mice	Inhibit Akt/mTOR, NFKB and Erk1/2 signaling pathways.
He, Jiaxin et al (2023) ¹⁴¹	DN	HF+STZ	Rats	Inhibit NLRP3-mediated pyroptosis via the NF- κ B signaling
		HG	Mouse podocytes	pathway
Wang, Jing et al (2024) ¹⁴²	DN	HF+STZ	Rats	Inhibit FATP2-mediated fatty acid transport
		FFA-deleted BSA or PA-bound BSA	NRK-52E cells	

Table 5 (Continued).

References	Model	Inducer	Experimental Model	Molecular Mechanism
Guo, Hengjiang et al (2017) ¹⁴³	DN	STZ	Mice	By SERCA2-dependent ER stress attenuation and $\mbox{AMPK}\alpha\mbox{-}$
		HG	Podocytes	promoted autophagy induction
Lyu, Xin et al (2024) ¹⁴⁵	DN	/	db/db mice	Intestinal microbiome alterations and ferroptosis modulation
Guo, Hengjiang et al (2016) ¹⁴⁷	DN	1	db/db mice	Restore SERCA activity and SERCA2 expression;
		Palmitate	Mouse podocytes	
Wang, Zeng Si et al (2015) ¹⁴⁸	DN	STZ	Rats	Decrease ER stress
		тм	Human podocytes	
Fan, Yuyan et al (2022) ¹⁴⁹	DN	HG	NRK-52E cells	Downregulate MAP4K3 expression by regulating H3K4me1
		HF	Polygenic diabetic KK-Ay mice	binding and further reducing apoptosis
Gui, Dingkun et al (2013) ¹⁵⁰	DN	STZ	Rats	Inhibit NF- κ B mediated inflammatory genes expression
Berberine				
Tang, Li-Qin et al (2016) ¹⁵⁴	DN	HF+HG+STZ	Rats	Regulate of $\beta\mbox{-}arrestin$ expression, ICAM-1 and VCAM-1 levels
Xie, Xi et al (2013) ¹⁵⁵	DN	STZ	Rats	RhoA/ROCK inhibition
		HG	GMCs	
Liu, Weihua et al (2009) ¹⁵⁶	DN	HG	GMCs	Inhibit fibronectin and collagen synthesis partly via p38 MAPK signal pathway
Wang, Ying-Ying et al (2018) ¹⁵⁷	DN	HG	GMCs +podocyte	Inhibit the transfer of $TGF\betaI$ from the glomerular mesangial cells to the podocytes
Ma, Zejun et al (2022) ¹⁵⁸	DN	HF+STZ	Rats	Suppress the NLRP3 inflammasome.
		HG	HK-2 cell	
Wang, Feng Ling et al (2013) ¹⁵⁹	DN	HF+STZ	Rats	Modulate the proteins expression of GRKs in G protein- AC-cAMP signaling pathway
Liu, Weihua et al (2008) ¹⁶⁰	DN	STZ	Rats	Inhibit AR in mesangium, reduce oxidative stress, and
		HG	Rat mesangial cells	ameliorate extracellular matrix synthesis and cell proliferation

Abbreviations: TRPC6, transient receptor potential cation channel 6; HMCs, human glomerular mesangial cells; HK-2, proximal renal tubular epithelial cells; MEK1/2, mitogen-activated protein kinase 1/2; RSK2, ribosomal S6 kinase 2; MPC5, Conditionally immortalized mouse podocytes; TUG1, taurine upregulated gene 1; FATP2, Fatty acid transport protein 2; SERCA, sarcoplasmic reticulum Ca2+-ATPase; TM, tunicamycin; H3K4me1, H3 lysine 4 monomethylation; Rock, Rho kinase; GMCs, glomerular mesangial cells; GRKs, G protein-coupled receptor kinases.

Berberine

BBR exhibits therapeutic efficacy in DN by reducing inflammation and oxidative stress and alleviating histopathological changes. It lowered levels of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), markers of endothelial activation and inflammation.¹⁵⁴ Furthermore, BBR inhibited the RhoA/ROCK

signaling pathway and NF- κ B activity, both critical for regulating fibronectin accumulation and renal inflammation.¹⁵⁵ The RhoA/ROCK pathway governs cell contraction, motility, and fibrosis,¹⁶¹ while NF- κ B serves as a central mediator of inflammatory responses. Modulating these pathways, BBR reduced fibrosis and inflammation in DN. Additionally, BBR mitigated tubulointerstitial fibrosis and epithelial-to-mesenchymal transition (EMT) in kidney cells. EMT involves renal epithelial cells losing their characteristics and acquiring a mesenchymal phenotype, contributing to fibrosis and tissue remodeling in DN.¹⁶² BBR downregulated NLRP3 inflammasome activation, a key factor in inflammation, and inhibited TGF- β 1 transfer from mesangial cells, further protecting against fibrosis and EMT.^{156–158}

Moreover, BBR reduced collagen synthesis by inhibiting the p38 mitogen-activated protein kinase (p38MAPK) pathway and modulated G protein-coupled receptor kinases (GRKs) to increase cyclic adenosine monophosphate (cAMP) levels, further contributing to its renoprotective effects.¹⁵⁹ Additionally, BBR decreased aldose reductase activity, lowering oxidative stress and extracellular matrix synthesis.¹⁶⁰ Aldose reductase, an enzyme involved in the polyol pathway, is activated under hyperglycemic conditions and contributes to oxidative damage.¹⁶³ Inhibiting this enzyme helped reduce oxidative stress, a major contributor to kidney injury in DN (Table 5).

Discussion

The increasing global prevalence of obesity and diabetes, alongside their associated vascular complications, highlights the urgent need for effective therapeutic strategies to manage vascular dysfunction in these conditions. As endothelial dysfunction plays a central role in the pathogenesis of diabetic vascular complications, targeting the underlying mechanisms of vascular injury is essential to prevent the further progression of diseases such as CVD, DR, and DN. In this context, AS-IV and BBR, two bioactive compounds with distinct mechanisms of action, present promising therapeutic potential for mitigating vascular dysfunction associated with obesity and diabetes.

Mechanistic Insights and Therapeutic Potentials

The therapeutic potential of AS-IV and BBR in treating vascular dysfunction and associated complications in obesity and diabetes is evident through their complementary mechanisms. Both compounds target inflammation, oxidative stress, endothelial dysfunction, and insulin resistance, providing promising treatment options for CVDs, DR, and nephropathy (Supplementary Table 1).

Vascular Dysfunction

AS-IV and BBR enhance endothelial function by promoting NO production and reducing oxidative stress. They achieve this by upregulating eNOS and inhibiting NADPH oxidase. Both compounds also improve insulin sensitivity; AS-IV activates the PI3K/Akt pathway, while BBR activates AMPK, leading to enhanced glucose uptake. AS-IV reduces proinflammatory cytokines and adhesion molecules via TLR4/NF-kB inhibition, while BBR modulates macrophage polarization through SIRT1 and AMPK activation. Both compounds promote autophagy, with AS-IV utilizing the PI3K/Akt/ mTOR pathway and BBR relying on AMPK signaling. While AS-IV focuses on angiogenesis and anti-apoptotic effects, BBR targets inhibiting AGEs formation and macrophage polarization, highlighting their complementary roles in vascular repair and metabolic regulation.

Cardiovascular Protection

AS-IV and BBR both improve lipid metabolism and reduce vascular inflammation. AS-IV increases HDL-C and reduces LDL-C, whereas BBR modulates KLF16 and PPAR α interactions to enhance lipid metabolism. AS-IV acts through the PI3K/Akt/mTOR and α 7nAChR pathways, while BBR reduces metabolic endotoxemia by modulating gut microbiota. In terms of cardiac protection, AS-IV promotes energy metabolism and reduces oxidative stress through Nox4 and TGF- β 1/Smad2 pathways, whereas BBR protects against cardiac fibrosis via the mTOR/mtROS axis. AS-IV also prevents ferroptosis, while BBR modulates PPAR α and NO signaling to reduce cardiomyocyte hypertrophy.

Retinal and Renal Protection

In DR, AS-IV protects retinal cells through enhanced antioxidant enzyme activity and inhibition of apoptosis, particularly through modulation of pro-apoptotic proteins. BBR also improves retinal health by reducing oxidative damage,

promoting autophagy, and modulating the immune response by increasing regulatory T cells. Both compounds inhibit angiogenesis, with BBR acting through the Akt/mTOR pathway. AS-IV targets ferroptosis resistance, while BBR inhibits aldose reductase and reduces inflammation. In DN, both compounds reduce inflammation and oxidative stress. AS-IV enhances klotho expression and modulates the Akt/mTOR pathway to alleviate fibrosis, while BBR inhibits TGF-β1 and NLRP3 inflammasome activation to prevent fibrosis.

Challenges and Future Directions

Despite promising preclinical findings, several obstacles must be overcome before AS-IV and BBR can be widely incorporated into clinical practice, particularly their limited bioavailability. The absolute bioavailability of AS-IV is only 3.66% in rats and 7.4% in beagle dogs,¹⁶⁴ while BBR's bioavailability in rats is even lower, at 0.68%.¹⁶⁵ Another significant challenge lies in the standardization of dosing regimens. Both clinical and preclinical studies have utilized varying doses and formulations, leaving the optimal therapeutic dose undetermined. For instance, a study on AS-IV's protective effects against endothelial dysfunction assessed doses of 40 mg/kg/day and 80 mg/kg/ day.¹⁶⁶ Conversely, research on podocyte apoptosis in DN models administered a substantially lower dose of 5 mg/ kg/day,¹⁴⁰ demonstrating considerable variability in dosing strategies. In BBR research, experiments with HFD and STZ-induced diabetic rats used doses of 50, 100, and 150 mg/kg/day.¹⁶⁷ Studies examining BBR's lipid-lowering efficacy, particularly in combination with resveratrol, utilized as low as 30 mg/kg/day.¹⁶⁸ This wide dosage range emphasizes the need for further investigations to determine the most effective and safe doses for both AS-IV and BBR.

To address bioavailability limitations, innovative drug delivery systems such as nanoparticle-based formulations and absorption enhancers are under exploration. A water-soluble AS-IV derivative, astragalosidic acid (LS-102), demonstrated nearly 500-fold greater transepithelial permeability compared to AS-IV.¹⁶⁹ Hyaluronate-based liposomes encapsulating BBR have also enhanced its lipophilicity and bioavailability.¹⁷⁰ Additionally, chitosan-alginate nanoparticles loaded with BBR increased oral bioavailability by 4.1-fold in rats relative to a standard BBR suspension.¹⁷¹ Absorption enhancers like sodium caprate and sodium deoxycholate significantly boosted BBR absorption, elevating plasma concentrations by 41.1-fold and 35.3-fold, respectively.¹⁷² While these approaches show potential, further research is necessary to refine these strategies for clinical application.

While both AS-IV and BBR exhibit complementary mechanisms, their potential synergism remains underexplored. Three critical questions warrant immediate attention: (1) Do AS-IV and BBR interact pharmacokinetically or pharmacodynamically when co-administered? (2) Can optimize combined dosing ratios enhance efficacy without increasing toxicity in multifactorial vascular dysfunction models? (3) Can advance delivery systems mitigate the bioavailability limitations of dual therapy? In parallel with these mechanistic inquiries, the establishment of standardized dosing regimens is essential, which requires rigorous pharmacodynamic studies, particularly considering interactions with conventional antidiabetic medications. Furthermore, large-scale randomized trials are necessary to assess the long-term safety profiles of this combination in comorbid populations. Addressing these gaps will bridge the gap between mechanistic insights and clinically applicable combination strategies.

Conclusion

AS-IV and BBR represent two promising natural compounds with substantial potential for managing vascular dysfunction in obesity and diabetes. While preclinical data are promising, clinical evidence remains limited. The combination of these compounds may offer a comprehensive approach to addressing both the metabolic and vascular aspects of these diseases. However, challenges such as bioavailability, optimal dosing, combinatorial efficacy, and long-term safety must be resolved. Overcoming these hurdles could position AS-IV and BBR as integral components in clinical strategies aimed at combating the growing global burden of obesity, diabetes, and their vascular complications.

Abbreviations

A list of abbreviations used in this study is provided in Supplementary Table 2.

Acknowledgments

We thank Bullet Edits Limited for the linguistic editing and proofreading of the manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (grant numbers 82174130 and 82274262), the Shanghai Collaborative Innovation Center of Industrial Transformation of Hospital TCM Preparation, the Program of Shanghai Municipal Health Commission (grant number 202240053), the Shanghai Magnolia Talent Plan Pujiang Project (grant number 24PJD113), and High-level Chinese Medicine Key Discipline Construction Project (Integrative Chinese and Western Medicine Clinic) of National Administration of TCM (zyyzdxk-2023065).

Disclosure

The authors report no conflicts of interest in this work.

References

- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. *Lancet.* 2024;403(10431):1027–1050. doi:10.1016/S0140-6736(23)02750-2.
- 2. Home, Resources, diabetes L with, et al. IDF diabetes atlas 2021 | IDF diabetes atlas. Available from: https://diabetesatlas.org/atlas/tenth-edition /. Accessed October 5, 2024.
- Azul L, Leandro A, Boroumand P, et al. Increased inflammation, oxidative stress and a reduction in antioxidant defense enzymes in perivascular adipose tissue contribute to vascular dysfunction in type 2 diabetes. *Free Radic Biol Med.* 2020;146:264–274. doi:10.1016/j. freeradbiomed.2019.11.002
- 4. Koenen M, Hill MA, Cohen P, et al. Obesity, adipose tissue and vascular dysfunction. Circ Res. 2021;128(7):951-968. doi:10.1161/ CIRCRESAHA.121.318093
- 5. Ik K, B H, Yk Y, et al. Endothelial dysfunction in obesity-induced inflammation: molecular mechanisms and clinical implications. *Biomolecules*. 2020;10(2). doi:10.3390/biom10020291
- Pablo-Moreno JA D, Serrano LJ, Revuelta L, et al. The vascular endothelium and coagulation: homeostasis, disease, and treatment, with a focus on the von Willebrand factor and factors VIII and V. Int J Mol Sci. 2022;23(15):8283. doi:10.3390/ijms23158283
- 7. Higashi Y. Roles of oxidative stress and inflammation in vascular endothelial dysfunction-related disease. *Antioxid*. 2022;11(10):1958. doi:10.3390/antiox11101958
- Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. *Biomed Pharmacother*. 2021;137:111315. doi:10.1016/j. biopha.2021.111315
- 9. Cyr AR, Huckaby LV, Shiva SS, et al. Nitric oxide and endothelial dysfunction. Crit Care Clin. 2020;36(2):307-321. doi:10.1016/j. ccc.2019.12.009
- 10. Andrabi SM, Sharma NS, Karan A, et al. Nitric oxide: physiological functions, delivery, and biomedical applications. Adv Sci. 2023;10(30): e2303259. doi:10.1002/advs.202303259
- 11. Arneth B. Mechanisms of insulin resistance in patients with obesity. Endocrines. 2024;5(2):153-165. doi:10.3390/endocrines5020011
- 12. Kajikawa M, Maruhashi T, Kishimoto S, et al. A body shape index is associated with endothelial dysfunction in both men and women. *Sci Rep.* 2021;11(1):17873. doi:10.1038/s41598-021-97325-0
- Khalid M, Petroianu G, Adem A. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. *Biomolecules*. 2022;12 (4):542. doi:10.3390/biom12040542
- Lee J, Yun JS, Ko SH. Advanced glycation end products and their effect on vascular complications in type 2 diabetes mellitus. Nutrients. 2022;14(15):3086. doi:10.3390/nu14153086
- 15. Li Y, Liu Y, Liu S, et al. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. *Signal Transduction Targeted Ther*. 2023;8(1):152. doi:10.1038/s41392-023-01400-z
- Mansour A, Mousa M, Abdelmannan D, et al. Microvascular and macrovascular complications of type 2 diabetes mellitus: exome wide association analyses. Front Endocrinol. 2023;14:1143067. doi:10.3389/fendo.2023.1143067
- 17. Stehouwer CDA. Microvascular dysfunction and hyperglycemia: a vicious cycle with widespread consequences. *Diabetes*. 2018;67 (9):1729–1741. doi:10.2337/dbi17-0044
- Holm H, Kennbäck C, Laucyte-Cibulskiene A, et al. The impact of prediabetes and diabetes on endothelial function in a large population-based cohort. *Blood Pressure*. 2024;33(1):2298309. doi:10.1080/08037051.2023.2298309
- Luo L, Dong B, Zhang J, et al. Dapagliflozin restores diabetes-associated decline in vasculogenic capacity of endothelial progenitor cells via activating AMPK-mediated inhibition of inflammation and oxidative stress. *Biochem Biophys Res Commun.* 2023;671:205–214. doi:10.1016/j. bbrc.2023.05.094
- 20. Liu J, Aylor KW, Chai W, et al. Metformin prevents endothelial oxidative stress and microvascular insulin resistance during obesity development in male rats. *Am J Physiol Endocrinol Metab.* 2022;322(3):E293–E306. doi:10.1152/ajpendo.00240.2021
- 21. Papakonstantinou I, Tsioufis K, Katsi V. Spotlight on the mechanism of action of semaglutide. Curr Issues Mol Biol. 2024;46(12):14514–14541. doi:10.3390/cimb46120872
- 22. Cheng F, Wang Y, Li J, et al. Berberine improves endothelial function by reducing endothelial microparticles-mediated oxidative stress in humans. *Int J Cardiol.* 2013;167(3):936–942. doi:10.1016/j.ijcard.2012.03.090

- 23. Zhang Y, Chen Z, Chen L, et al. Astragali radix (Huangqi): a time-honored nourishing herbal medicine. *Chin Med.* 2024;19(1):119. doi:10.1186/s13020-024-00977-z
- Zhou X, Wang LL, Tang WJ, et al. Astragaloside IV inhibits protein tyrosine phosphatase 1B and improves insulin resistance in insulin-resistant HepG2 cells and triglyceride accumulation in oleic acid (OA)-treated HepG2 cells. J Ethnopharmacol. 2021;268:113556. doi:10.1016/j. jep.2020.113556
- Feng X, Sureda A, Jafari S, et al. Berberine in cardiovascular and metabolic diseases: from mechanisms to therapeutics. *Theranostics*. 2019;9 (7):1923–1951. doi:10.7150/thno.30787
- Lin X, Wang Q, Sun S, et al. Astragaloside IV promotes the eNOS/NO/cGMP pathway and improves left ventricular diastolic function in rats with metabolic syndrome. J Int Med Res. 2020;48(1):300060519826848. doi:10.1177/0300060519826848
- Leng B, Tang F, Lu M, et al. Astragaloside IV improves vascular endothelial dysfunction by inhibiting the TLR4/NF-κB signaling pathway. Life Sci. 2018;209:111–121. doi:10.1016/j.lfs.2018.07.053
- Nie Q, Zhu L, Zhang L, et al. Astragaloside IV protects against hyperglycemia-induced vascular endothelial dysfunction by inhibiting oxidative stress and Calpain-1 activation. *Life Sci.* 2019;232:116662. doi:10.1016/j.lfs.2019.116662
- 29. Yuan W, Zhang Y, Ge Y, et al. Astragaloside IV inhibits proliferation and promotes apoptosis in rat vascular smooth muscle cells under high glucose concentration in vitro. *Planta Med.* 2008;74(10):1259–1264. doi:10.1055/s-2008-1081290
- Leng B, Zhang Y, Liu X, et al. Astragaloside IV suppresses high glucose-induced NLRP3 inflammasome activation by inhibiting TLR4/NF-κB and CaSR. *Mediators Inflamm*. 2019;2019:1082497. doi:10.1155/2019/1082497
- 31. Qian W, Cai X, Qian Q, et al. Astragaloside IV protects endothelial progenitor cells from the damage of ox-LDL via the LOX-1/NLRP3 inflammasome pathway. *Drug Des Devel Ther*. 2019;13:2579–2589. doi:10.2147/DDDT.S207774
- Zou X, Xiao H, Bai X, et al. Astragaloside IV drug-loaded exosomes (AS-IV EXOs) derived from endothelial progenitor cells improve the viability and tube formation in high-glucose impaired human endothelial cells by promoting miR-214 expression. *Endokrynol Pol.* 2022;73 (2):336–345. doi:10.5603/EP.a2022.0011
- 33. Xiong W, Huang XL, Li CY, et al. Astragaloside IV mediated endothelial progenitor cell exosomes promote autophagy and inhibit apoptosis in hyperglycemic damaged endothelial cells via miR-21/PTEN axis. *Folia Histochem Cytobiol*. 2022;60(4):323–334. doi:10.5603/FHC. a2022.0030
- 34. Chen J, Chen J, Li Q, et al. Astragaloside promotes the secretion of MSC-derived exosomal miR-146a-5p by regulating TRAF6/NF-κB pathway to attenuate inflammation in high glucose-impaired endothelial cells. *Vitro Cell Dev Biol Anim*. 2024. doi:10.1007/s11626-024-00984-2
- 35. Xiong W, Zhang X, Zou XL, et al. Exosomes derived from astragaloside IV-pretreated endothelial progenitor cells (AS-IV-Exos) alleviated endothelial oxidative stress and dysfunction via the miR-210/ Nox2/ROS pathway. Curr Mol Med. 2024;24(2):252–263. doi:10.2174/ 0115665240262982240109104620
- 36. Li HB, Ge YK, Zhang L, et al. Astragaloside IV improved barrier dysfunction induced by acute high glucose in human umbilical vein endothelial cells. *Life Sci.* 2006;79(12):1186–1193. doi:10.1016/j.lfs.2006.03.041
- Wu H, Gao Y, Shi HL, et al. Astragaloside IV improves lipid metabolism in obese mice by alleviation of leptin resistance and regulation of thermogenic network. Sci Rep. 2016;6(1):30190. doi:10.1038/srep30190
- Jiang B, Yang Y, Jin H, et al. Astragaloside IV attenuates lipolysis and improves insulin resistance induced by TNFalpha in 3T3-L1 adipocytes. *Phytother Res.* 2008;22(11):1434–1439. doi:10.1002/ptr.2434
- 39. You L, Fang Z, Shen G, et al. Astragaloside IV prevents high glucose-induced cell apoptosis and inflammatory reactions through inhibition of the JNK pathway in human umbilical vein endothelial cells. *Mol Med Rep.* 2019;19(3):1603–1612. doi:10.3892/mmr.2019.9812
- 40. Ma Y, Li W, Yin Y, et al. AST IV inhibits H₂O₂-induced human umbilical vein endothelial cell apoptosis by suppressing Nox4 expression through the TGF-β1/Smad2 pathway. *Int J Mol Med.* 2015;35(6):1667–1674. doi:10.3892/ijmm.2015.2188
- 41. Guo X, Yin T, Chen D, et al. Astragaloside IV regulates insulin resistance and inflammatory response of adipocytes via modulating MIR-21/ PTEN/PI3K/AKT signaling. *Endocr Metab Immune Disord Drug Targets*. 2023;23(12):1538–1547. doi:10.2174/1871530323666230627121700
- 42. Zhang Y, Xu G, Huang B, et al. Astragaloside IV regulates insulin resistance and inflammatory response of adipocytes via modulating CTRP3 and PI3K/AKT signaling. *Diabetes Ther*. 2022;13(11–12):1823–1834. doi:10.1007/s13300-022-01312-1
- 43. Lin Y, Xu Y, Zheng X, et al. Astragaloside IV ameliorates streptozotocin induced pancreatic β-cell apoptosis and dysfunction through sIRT1/P53 and Akt/GSK3β/Nrf2 signaling pathways. *Diabetes Metab Syndr Obes*. 2022;15:131–140. doi:10.2147/DMSO.S347650
- 44. Wei J, Zhang Y, Li H, et al. Toll-like receptor 4: a potential therapeutic target for multiple human diseases. *Biomed Pharmacother*. 2023;166:115338. doi:10.1016/j.biopha.2023.115338
- 45. Werner LE, Wagner U. Calcium-sensing receptor-mediated NLRP3 inflammasome activation in rheumatoid arthritis and autoinflammation. *Front Physiol.* 2022;13:1078569. doi:10.3389/fphys.2022.1078569
- Ong ALC, Ramasamy TS. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev. 2018;43:64–80. doi:10.1016/j.arr.2018.02.004
- 47. Y F, L X, D H, et al. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem. 2022;124(1). doi:10.1016/j. acthis.2021.151833
- Lei Y, Yang M, Li H, et al. miR-130b regulates PTEN to activate the PI3K/Akt signaling pathway and attenuate oxidative stress-induced injury in diabetic encephalopathy. Int J Mol Med. 2021;48(1):141. doi:10.3892/ijmm.2021.4974
- 49. Kamaruddin NA, Hakim Abdullah MN, Tan JJ, et al. Vascular protective effect and its possible mechanism of action on selected active phytocompounds: a review. Gasparotto Junior A, ed. *Evid-Based Comple Altern Med.* 2022;2022:1–17. doi:10.1155/2022/3311228
- 50. Hao M, yuan LS, Kai SC, et al. Amelioration effects of berberine on diabetic microendothelial injury model by the combination of high glucose and advanced glycation end products in vitro. *Eur J Pharmacol.* 2011;654(3):320–325. doi:10.1016/j.ejphar.2010.12.030
- 51. Wang C, Li J, Lv X, et al. Ameliorative effect of berberine on endothelial dysfunction in diabetic rats induced by high-fat diet and streptozotocin. *Eur J Pharmacol*. 2009;620(1-3):131–137. doi:10.1016/j.ejphar.2009.07.027
- 52. Wang Y, Huang Y, Lam KSL, et al. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. *Cardiovasc Res.* 2009;82(3):484–492. doi:10.1093/cvr/cvp078
- 53. Geng FH, Li GH, Zhang X, et al. Berberine improves mesenteric artery insulin sensitivity through up-regulating insulin receptor-mediated signalling in diabetic rats. *Br J Pharmacol.* 2016;173(10):1569–1579. doi:10.1111/bph.13466

- 54. Zhang M, Wang CM, Li J, et al. Berberine protects against palmitate-induced endothelial dysfunction: involvements of upregulation of AMPK and eNOS and downregulation of NOX4. *Mediators Inflamm.* 2013;2013:260464. doi:10.1155/2013/260464
- 55. Ye L, Liang S, Guo C, et al. Inhibition of M1 macrophage activation in adipose tissue by berberine improves insulin resistance. *Life Sci.* 2016;166:82–91. doi:10.1016/j.lfs.2016.09.025
- Zhou J, Zhou S. Berberine regulates peroxisome proliferator-activated receptors and positive transcription elongation factor b expression in diabetic adipocytes. *Eur J Pharmacol.* 2010;649(1–3):390–397. doi:10.1016/j.ejphar.2010.09.030
- Shan Y, Zhang S, Gao B, et al. Adipose tissue SIRT1 regulates insulin sensitizing and anti-inflammatory effects of berberine. *Front Pharmacol.* 2020;11:591227. doi:10.3389/fphar.2020.591227
- Li D, Yang C, Zhu JZ, et al. Berberine remodels adipose tissue to attenuate metabolic disorders by activating sirtuin 3. Acta Pharmacol Sin. 2022;43(5):1285–1298. doi:10.1038/s41401-021-00736-y
- Yi P, Lu FE, Xu LJ, et al. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKbeta. World J Gastroenterol. 2008;14(6):876–883. doi:10.3748/wjg.14.876
- 60. Du J, Zhu Y, Yang X, et al. Berberine attenuates obesity-induced insulin resistance by inhibiting miR-27a secretion. *Diabet Med.* 2024;41(7): e15319. doi:10.1111/dme.15319
- Jansen T, Kvandová M, Daiber A, et al. The AMP-activated protein kinase plays a role in antioxidant defense and regulation of vascular inflammation. *Antioxidants*. 2020;9(6):525. doi:10.3390/antiox9060525
- Guria S, Hoory A, Das S, et al. Adipose tissue macrophages and their role in obesity-associated insulin resistance: an overview of the complex dynamics at play. *Biosci Rep.* 2023;43(3):BSR20220200. doi:10.1042/BSR20220200
- Yu H, Lin L, Zhang Z, et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. *Signal Transduct Target Ther*. 2020;5(1):209. doi:10.1038/s41392-020-00312-6
- Hong F, Pan S, Guo Y, et al. PPARs as nuclear receptors for nutrient and energy metabolism. *Molecules*. 2019;24(14):2545. doi:10.3390/ molecules24142545
- Wang X, Liu SY, Hu GS, et al. DDB1 prepares brown adipocytes for cold-induced thermogenesis. *Life Metab.* 2022;1(1):39–53. doi:10.1093/ lifemeta/loac003
- Vaduganathan M, Mensah GA, Turco JV, et al. The global burden of cardiovascular diseases and risk: a compass for future health. J Am Coll Cardiol. 2022;80(25):2361–2371. doi:10.1016/j.jacc.2022.11.005
- Chakraborty S, Verma A, Garg R, et al. Cardiometabolic risk factors associated with type 2 diabetes mellitus: a mechanistic insight. *Clin Med Insights, Endocrinol Diabetes.* 2023;16:11795514231220780. doi:10.1177/11795514231220780
- Xue C, Chen K, Gao Z, et al. Common mechanisms underlying diabetic vascular complications: focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction. *Cell Commun Signaling*. 2023;21(1):298. doi:10.1186/s12964-022-01016-w
- La Sala L, Pontiroli AE. Prevention of diabetes and cardiovascular disease in obesity. Int J Mol Sci. 2020;21(21):8178. doi:10.3390/ ijms21218178
- Chait A, den Hartigh LJ. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med. 2020;7:22. doi:10.3389/fcvm.2020.00022
- Wang Z, Zhu Y, Zhang Y, et al. Protective effects of AS-IV on diabetic cardiomyopathy by improving myocardial lipid metabolism in rat models of T2DM. *Biomed Pharmacother*. 2020;127:110081. doi:10.1016/j.biopha.2020.110081
- Qin H, Liu P, Lin S. Effects of astragaloside IV on the SDF-1/CXCR4 expression in atherosclerosis of apoE(-/-) mice induced by hyperlipaemia. Evid Based Complement Alternat Med. 2015;2015:385154. doi:10.1155/2015/385154
- 73. Li C, Meng X, Wang L, et al. Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: focus on the TGF-β/smad signaling pathway. *Front Pharmacol.* 2023;14:1092148. doi:10.3389/fphar.2023.1092148
- Zhang Z, Wang J, Zhu Y, et al. Astragaloside IV alleviates myocardial damage induced by type 2 diabetes via improving energy metabolism. Mol Med Rep. 2019;20(5):4612–4622. doi:10.3892/mmr.2019.10716
- Abu Shelbayeh O, Arroum T, Morris S, et al. PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response. *Antioxidants*. 2023;12(5):1075. doi:10.3390/antiox12051075
- Li X, Li Z, Dong X, et al. Astragaloside IV attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis. *Phytother Res.* 2023;37(7):3042–3056. doi:10.1002/ptr.7798
- Chen Y, Zhang J, Cui W, et al. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. J Exp Med. 2022;219(6):e20211314. doi:10.1084/jem.20211314
- Sun C, Zeng G, Wang T, et al. Astragaloside IV ameliorates myocardial infarction induced apoptosis and restores cardiac function. Front Cell Dev Biol. 2021;9:671255. doi:10.3389/fcell.2021.671255
- Zhang Y, Du M, Wang J, et al. Astragaloside IV relieves atherosclerosis and hepatic steatosis via MAPK/NF-κB signaling pathway in LDLR-/mice. Front Pharmacol. 2022;13:828161. doi:10.3389/fphar.2022.828161
- 80. Nogueiras R, Sabio G. Brain JNK and metabolic disease. Diabetologia. 2021;64(2):265-274. doi:10.1007/s00125-020-05327-w
- Arekatla G, Trenzinger C, Reimann A, et al. Optogenetic manipulation identifies the roles of ERK and AKT dynamics in controlling mouse embryonic stem cell exit from pluripotency. *Dev Cell*. 2023;58(12):1022–1036.e4. doi:10.1016/j.devcel.2023.04.013
- Zhang N, Wang XH, Mao SL, et al. Astragaloside IV improves metabolic syndrome and endothelium dysfunction in fructose-fed rats. Molecules. 2011;16(5):3896–3907. doi:10.3390/molecules16053896
- Jiang P, Ma D, Wang X, et al. Astragaloside IV prevents obesity-associated hypertension by improving pro-inflammatory reaction and leptin resistance. *Mol Cells*. 2018;41(3):244–255. doi:10.14348/molcells.2018.2156
- Quarta C, Fioramonti X, Cota D. POMC neurons dysfunction in diet-induced metabolic disease: hallmark or mechanism of disease? *Neuroscience*. 2020;447:3–14. doi:10.1016/j.neuroscience.2019.09.031
- 85. Liu H, Zhang X, Shi P, et al. α7 Nicotinic acetylcholine receptor: a key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J Neuroinflammation. 2023;20(1):84. doi:10.1186/s12974-023-02768-z
- Song Z, Wei D, Chen Y, et al. Association of astragaloside IV-inhibited autophagy and mineralization in vascular smooth muscle cells with IncRNA H19 and DUSP5-mediated ERK signaling. *Toxicol Appl Pharmacol.* 2019;364:45–54. doi:10.1016/j.taap.2018.12.002

- Sun D, Wang Y, Pang B, et al. Astragaloside IV mediates the PI3K/Akt/mTOR pathway to alleviate injury and modulate the composition of intestinal flora in ApoE -/- atherosclerosis model rats. *Discov Med.* 2024;36(184):1070–1079. doi:10.24976/Discov.Med.202436184.99
- Zhu Y, Qian X, Li J, et al. Astragaloside-IV protects H9C2(2-1) cardiomyocytes from high glucose-induced injury via miR-34a-mediated autophagy pathway. Artif Cells Nanomed Biotechnol. 2019;47(1):4172–4181. doi:10.1080/21691401.2019.1687492
- Zhu Z, Li J, Zhang X. Astragaloside IV protects against oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell injury by reducing oxidative stress and inflammation. *Med Sci Monit.* 2019;25:2132–2140. doi:10.12659/MSM.912894
- 90. Man B, Hu C, Yang G, et al. Berberine attenuates diabetic atherosclerosis via enhancing the interplay between KLF16 and PPARα in ApoE-/mice. *Biochem Biophys Res Commun.* 2022;624:59–67. doi:10.1016/j.bbrc.2022.07.072
- 91. Wu M, Yang S, Wang S, et al. Effect of berberine on atherosclerosis and gut microbiota modulation and their correlation in high-fat diet-fed ApoE-/- mice. *Front Pharmacol.* 2020;11:223. doi:10.3389/fphar.2020.00223
- 92. Zhu L, Zhang D, Zhu H, et al. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe-/- mice. *Atherosclerosis*. 2018;268:117–126. doi:10.1016/j.atherosclerosis.2017.11.023
- Ma YG, Liang L, Zhang YB, et al. Berberine reduced blood pressure and improved vasodilation in diabetic rats. J Mol Endocrinol. 2017;59 (3):191–204. doi:10.1530/JME-17-0014
- Zhong C, Xie Y, Wang H, et al. Berberine inhibits NLRP3 inflammasome activation by regulating mTOR/mtROS axis to alleviate diabetic cardiomyopathy. Eur J Pharmacol. 2024;964:176253. doi:10.1016/j.ejphar.2023.176253
- 95. Li G, Xing W, Zhang M, et al. Antifibrotic cardioprotection of berberine via downregulating myocardial IGF-1 receptor-regulated MMP-2/ MMP-9 expression in diabetic rats. Am J Physiol Heart Circ Physiol. 2018;315(4):H802–H813. doi:10.1152/ajpheart.00093.2018
- 96. Wang M, Wang J, Tan R, et al. Effect of berberine on PPAR α /NO activation in high glucose- and insulin-induced cardiomyocyte hypertrophy. Evid Based Complement Alternat Med. 2013;2013:285489. doi:10.1155/2013/285489
- 97. Paul M, Hemshekhar M, Kemparaju K, et al. Berberine mitigates high glucose-potentiated platelet aggregation and apoptosis by modulating aldose reductase and NADPH oxidase activity. *Free Radic Biol Med.* 2019;130:196–205. doi:10.1016/j.freeradbiomed.2018.10.453
- 98. Sun N, Shen C, Zhang L, et al. Hepatic krüppel-like factor 16 (KLF16) targets PPARα to improve steatohepatitis and insulin resistance. Gut. 2021;70(11):2183–2195. doi:10.1136/gutjnl-2020-321774
- Lin Y, Wang Y, Li PF. PPARα: an emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases. Front Endocrinol. 2022;13:1074911. doi:10.3389/fendo.2022.1074911
- Félétou M. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options? Br J Pharmacol. 2009;156(4):545–562. doi:10.1111/j.1476-5381.2009.00052.x
- 101. Wang J, Huang Y, Wang Z, et al. The mTOR signaling pathway: key regulator and therapeutic target for heart disease. *Biomedicines*. 2025;13 (2):397. doi:10.3390/biomedicines13020397
- Vasudevan SO, Behl B, Rathinam VA. Pyroptosis-induced inflammation and tissue damage. Semin Immunol. 2023;69:101781. doi:10.1016/j. smim.2023.101781
- 103. Macvanin M, Gluvic Z, Radovanovic J, et al. New insights on the cardiovascular effects of IGF-1. Front Endocrinol. 2023;14:1142644. doi:10.3389/fendo.2023.1142644
- 104. Kropp M, Golubnitschaja O, Mazurakova A, et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. EPMA J. 2023;14(1):21–42. doi:10.1007/s13167-023-00314-8
- 105. Mrugacz M, Bryl A, Zorena K. Retinal vascular endothelial cell dysfunction and neuroretinal degeneration in diabetic patients. J Clin Med. 2021;10(3):458. doi:10.3390/jcm10030458
- Ansari P, Tabasumma N, Snigdha NN, et al. Diabetic retinopathy: an overview on mechanisms, pathophysiology and pharmacotherapy. Diabetology. 2022;3(1):159–175. doi:10.3390/diabetology3010011
- Kang Q, Yang C. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. *Redox Biol.* 2020;37:101799. doi:10.1016/j.redox.2020.101799
- 108. Hussain A, Ashique S, Afzal O, et al. A correlation between oxidative stress and diabetic retinopathy: an updated review. *Exp Eye Res.* 2023;236:109650. doi:10.1016/j.exer.2023.109650
- Gomułka K, Ruta M. The role of inflammation and therapeutic concepts in diabetic retinopathy-a short review. Int J Mol Sci. 2023;24(2):1024. doi:10.3390/ijms24021024
- 110. Yue T, Shi Y, Luo S, et al. The role of inflammation in immune system of diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. *Front Immunol.* 2022;13:1055087. doi:10.3389/fimmu.2022.1055087
- 111. Li X, Fu YH, Tong XW, et al. RAAS in diabetic retinopathy: mechanisms and therapies. Arch Endocrinol Metab. 2024:68:e230292. doi:10.20945/2359-4292-2023-0292.
- 112. Qiao Y, Fan CL, Tang MK. Astragaloside IV protects rat retinal capillary endothelial cells against high glucose-induced oxidative injury. *Drug Des Devel Ther.* 2017;11:3567–3577. doi:10.2147/DDDT.S152489
- 113. Li JQ, Shi YH, Null M-X, et al. Discovery of astragaloside IV against high glucose-induced apoptosis in retinal ganglion cells: bioinformatics and in vitro studies. *Gene*. 2024;905:148219. doi:10.1016/j.gene.2024.148219
- 114. Basheeruddin M, Qausain S. Hypoxia-inducible factor 1-alpha (HIF-1α): an essential regulator in cellular metabolic control. Cureus. 2024. doi:10.7759/cureus.63852
- 115. Su H, Peng C, Liu Y. Regulation of ferroptosis by PI3K/akt signaling pathway: a promising therapeutic axis in cancer. *Front Cell Dev Biol*. 2024;12:1372330. doi:10.3389/fcell.2024.1372330
- 116. Tang X, Li X, Zhang D, et al. Astragaloside-IV alleviates high glucose-induced ferroptosis in retinal pigment epithelial cells by disrupting the expression of miR-138-5p/Sirt1/Nrf2. *Bioengineered*. 2022;13(4):8240–8254. doi:10.1080/21655979.2022.2049471
- 117. Ding D, Shang W, Shi K, et al. FTO/m6A mediates miR-138-5p maturation and regulates gefitinib resistance of lung adenocarcinoma cells by miR-138-5p/LCN2 axis. BMC Cancer. 2024;24(1):1270. doi:10.1186/s12885-024-13036-5
- 118. Ding Y, Yuan S, Liu X, et al. Protective effects of astragaloside IV on db/db mice with diabetic retinopathy. *PLoS One*. 2014;9(11):e112207. doi:10.1371/journal.pone.0112207
- 119. Wang T, Zhang Z, Song C, et al. Astragaloside IV protects retinal pigment epithelial cells from apoptosis by upregulating miR-128 expression in diabetic rats. *Int J Mol Med.* 2020;46(1):340–350. doi:10.3892/ijmm.2020.4588

- 120. Yin Z, Tan R, Yuan T, et al. Berberine prevents diabetic retinopathy through inhibiting HIF-1α /VEGF/ NF-κ B pathway in db/db mice. *Pharmazie*. 2021;76(4):165–171. doi:10.1691/ph.2021.01012
- 121. Ai X, Yu P, Luo L, et al. Berberis dictyophylla F. inhibits angiogenesis and apoptosis of diabetic retinopathy via suppressing HIF-1α/VEGF/ DLL-4/Notch-1 pathway. J Ethnopharmacol. 2022;296:115453. doi:10.1016/j.jep.2022.115453
- 122. Wang N, Zhang C, Xu Y, et al. Berberine improves insulin-induced diabetic retinopathy through exclusively suppressing Akt/mTOR-mediated HIF-1α/VEGF activation in retina endothelial cells. Int J Biol Sci. 2021;17(15):4316–4326. doi:10.7150/ijbs.62868
- 123. Yang Y, Wen Z, Zhang Y, et al. Berberine alleviates diabetic retinopathy by regulating the Th17/Treg ratio. *Immunol Lett.* 2024;267:106862. doi:10.1016/j.imlet.2024.106862
- 124. Chen H, Ji Y, Yan X, et al. Berberine attenuates apoptosis in rat retinal Müller cells stimulated with high glucose via enhancing autophagy and the AMPK/mTOR signaling. *Biomed Pharmacother*. 2018;108:1201–1207. doi:10.1016/j.biopha.2018.09.140
- 125. Jha R, Lopez-Trevino S, Kankanamalage HR, et al. Diabetes and renal complications: an overview on pathophysiology, biomarkers and therapeutic interventions. *Biomedicines*. 2024;12(5):1098. doi:10.3390/biomedicines12051098
- 126. Hoogeveen EK. The epidemiology of diabetic kidney disease. Kidney Dial. 2022;2(3):433-442. doi:10.3390/kidneydial2030038
- 127. Li X, Lindholm B. Cardiovascular risk prediction in chronic kidney disease. Am J Nephrol. 2022;53(10):730-739. doi:10.1159/000528560
- Kriz W, Löwen J, Gröne HJ. The complex pathology of diabetic nephropathy in humans. Nephrol Dial Transplant. 2023;38(10):2109–2119. doi:10.1093/ndt/gfad052
- 129. Giralt-López A, Molina-Van den Bosch M, Vergara A, et al. Revisiting experimental models of diabetic nephropathy. Int J Mol Sci. 2020;21 (10):3587. doi:10.3390/ijms21103587
- Jin Q, Liu T, Qiao Y, et al. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. *Front Immunol.* 2023;14:1185317. doi:10.3389/fimmu.2023.1185317
- Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, et al. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. *Front Mol Biosci.* 2022;9:1002710. doi:10.3389/fmolb.2022.1002710
- 132. Wang X, Gao Y, Tian N, et al. Astragaloside IV inhibits glucose-induced epithelial-mesenchymal transition of podocytes through autophagy enhancement via the SIRT-NF-κB p65 axis. *Sci Rep.* 2019;9(1):323. doi:10.1038/s41598-018-36911-1
- 133. He KQ, Li WZ, Chai XQ, et al. Astragaloside IV prevents kidney injury caused by iatrogenic hyperinsulinemia in a streptozotocin-induced diabetic rat model. Int J Mol Med. 2018;41(2):1078–1088. doi:10.3892/ijmm.2017.3265
- 134. Su Y, Chen Q, Ma K, et al. Astragaloside IV inhibits palmitate-mediated oxidative stress and fibrosis in human glomerular mesangial cells via downregulation of CD36 expression. *Pharmacol Rep.* 2019;71(2):319–329. doi:10.1016/j.pharep.2018.12.008
- 135. Zhang M, Liu W, Liu Y, et al. Astragaloside IV inhibited podocyte pyroptosis in diabetic kidney disease by regulating SIRT6/HIF-1α axis. *DNA Cell Biol*. 2023;42(10):594–607. doi:10.1089/dna.2023.0102
- 136. Zhang Y, Tao C, Xuan C, et al. Transcriptomic analysis reveals the protection of astragaloside Iv against diabetic nephropathy by modulating inflammation. Oxid Med Cell Longev. 2020;2020:9542165. doi:10.1155/2020/9542165
- 137. Chen Q, Su Y, Ju Y, et al. Astragalosides IV protected the renal tubular epithelial cells from free fatty acids-induced injury by reducing oxidative stress and apoptosis. *Biomed Pharmacother*. 2018;108:679–686. doi:10.1016/j.biopha.2018.09.049
- 138. Sun H, Wang W, Han P, et al. Astragaloside IV ameliorates renal injury in db/db mice. Sci Rep. 2016;6(1):32545. doi:10.1038/srep32545
- 139. Song G, Han P, Sun H, et al. Astragaloside IV ameliorates early diabetic nephropathy by inhibition of MEK1/2-RSK2 signaling in streptozotocin-induced diabetic mice. J Int Med Res. 2018;46(7):2883–2897. doi:10.1177/0300060518778711
- 140. Lei X, Zhang L, Li Z, et al. Astragaloside IV/lncRNA-TUG1/TRAF5 signaling pathway participates in podocyte apoptosis of diabetic nephropathy rats. Drug Des Devel Ther. 2018;12:2785–2793. doi:10.2147/DDDT.S166525
- 141. He J, Cui J, Shi Y, et al. Astragaloside IV attenuates high-glucose-induced impairment in diabetic nephropathy by increasing klotho expression via the NF-κB/NLRP3 axis. J Diabetes Res. 2023;2023:7423661. doi:10.1155/2023/7423661
- 142. Wang J, Wang L, Feng X, et al. Astragaloside IV attenuates fatty acid-induced renal tubular injury in diabetic kidney disease by inhibiting fatty acid transport protein-2. *Phytomedicine*. 2024;134:155991. doi:10.1016/j.phymed.2024.155991
- 143. Guo H, Wang Y, Zhang X, et al. Astragaloside IV protects against podocyte injury via SERCA2-dependent ER stress reduction and AMPKaregulated autophagy induction in streptozotocin-induced diabetic nephropathy. Sci Rep. 2017;7(1):6852. doi:10.1038/s41598-017-07061-7
- 144. Xu H, Van Remmen H. The sarcoendoplasmic reticulum calcium ATPase (SERCA) pump: a potential target for intervention in aging and skeletal muscle pathologies. *Skelet Muscle*. 2021;11(1):25. doi:10.1186/s13395-021-00280-7
- 145. Lyu X, Zhang TT, Ye Z, et al. Astragaloside IV mitigated diabetic nephropathy by restructuring intestinal microflora and ferroptosis. *Mol Nutr Food Res.* 2024;68(6):e2300734. doi:10.1002/mnfr.202300734
- 146. Zhang Y, Mou Y, Zhang J, et al. Therapeutic implications of ferroptosis in renal fibrosis. Front Mol Biosci. 2022;9:890766. doi:10.3389/ fmolb.2022.890766
- 147. Guo H, Cao A, Chu S, et al. Astragaloside IV attenuates podocyte apoptosis mediated by endoplasmic reticulum stress through upregulating sarco/endoplasmic reticulum Ca2+-ATPase 2 expression in diabetic nephropathy. *Front Pharmacol.* 2016;7:500. doi:10.3389/fphar.2016.00500
- 148. Wang ZS, Xiong F, Xie XH, et al. Astragaloside IV attenuates proteinuria in streptozotocin-induced diabetic nephropathy via the inhibition of endoplasmic reticulum stress. *BMC Nephrol.* 2015;16(1):44. doi:10.1186/s12882-015-0031-7
- 149. Fan Y, Fan H, Li P, et al. Mitogen-activating protein kinase kinase kinase kinase-3, inhibited by astragaloside IV through H3 lysine 4 monomethylation, promotes the progression of diabetic nephropathy by inducing apoptosis. *Bioengineered*. 2022;13(5):11517–11529. doi:10.1080/21655979.2022.2068822
- 150. Gui D, Huang J, Guo Y, et al. Astragaloside IV ameliorates renal injury in streptozotocin-induced diabetic rats through inhibiting NFκB-mediated inflammatory genes expression. *Cytokine*. 2013;61(3):970–977. doi:10.1016/j.cyto.2013.01.008
- 151. Zhao T, Tian J, Xu T, et al. Astragaloside IV improves the barrier damage in diabetic glomerular endothelial cells stimulated by high glucose and high insulin. *Evid Based Complement Alternat Med.* 2022;2022:7647380. doi:10.1155/2022/7647380
- 152. Fan Y, Fan H, Zhu B, et al. Astragaloside IV protects against diabetic nephropathy via activating eNOS in streptozotocin diabetes-induced rats. BMC Complement Altern Med. 2019;19(1):355. doi:10.1186/s12906-019-2728-9
- 153. Zhang M, Liu W, Liu Y, et al. Astragaloside IV Inhibited Podocyte Pyroptosis in Diabetic Kidney Disease by Regulating SIRT6/HIF-1α Axis. doi:10.1089/dna.2023.0102

- 154. Tang LQ, Ni WJ, Cai M, et al. Renoprotective effects of berberine and its potential effect on the expression of β -arrestins and intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in streptozocin-diabetic nephropathy rats. *J Diabetes*. 2016;8(5):693–700. doi:10.1111/1753-0407.12349
- 155. Xie X, Chang X, Chen L, et al. Berberine ameliorates experimental diabetes-induced renal inflammation and fibronectin by inhibiting the activation of RhoA/ROCK signaling. *Mol Cell Endocrinol*. 2013;381(1–2):56–65. doi:10.1016/j.mce.2013.07.019
- 156. Liu W, Tang F, Deng Y, et al. Berberine reduces fibronectin and collagen accumulation in rat glomerular mesangial cells cultured under high glucose condition. *Mol Cell Biochem*. 2009;325(1–2):99–105. doi:10.1007/s11010-008-0024-y
- 157. Wang YY, Tang LQ, Wei W. Berberine attenuates podocytes injury caused by exosomes derived from high glucose-induced mesangial cells through TGFβ1-PI3K/AKT pathway. *Eur J Pharmacol.* 2018;824:185–192. doi:10.1016/j.ejphar.2018.01.034
- 158. Ma Z, Zhu L, Wang S, et al. Berberine protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition involving the inactivation of the NLRP3 inflammasome. *Ren Fail*. 2022;44(1):923–932. doi:10.1080/0886022X.2022.2079525
- 159. Wang FL, Tang LQ, Yang F, et al. Renoprotective effects of berberine and its possible molecular mechanisms in combination of high-fat diet and low-dose streptozotocin-induced diabetic rats. *Mol Biol Rep.* 2013;40(3):2405–2418. doi:10.1007/s11033-012-2321-5
- 160. Liu W, Liu P, Tao S, et al. Berberine inhibits aldose reductase and oxidative stress in rat mesangial cells cultured under high glucose. *Arch Biochem Biophys.* 2008;475(2):128–134. doi:10.1016/j.abb.2008.04.022
- 161. Sawma T, Shaito A, Najm N, et al. Role of RhoA and rho-associated kinase in phenotypic switching of vascular smooth muscle cells: implications for vascular function. *Atherosclerosis*. 2022;358:12–28. doi:10.1016/j.atherosclerosis.2022.08.012
- 162. Cao Y, Lin JH, Hammes HP, et al. Cellular phenotypic transitions in diabetic nephropathy: an update. Front Pharmacol. 2022;13:1038073. doi:10.3389/fphar.2022.1038073
- 163. Jannapureddy S, Sharma M, Yepuri G, et al. Aldose reductase: an emerging target for development of interventions for diabetic cardiovascular complications. *Front Endocrinol.* 2021;12:636267. doi:10.3389/fendo.2021.636267
- 164. Zhang Q, Zhu LL, Chen GG, et al. Pharmacokinetics of astragaloside iv in beagle dogs. Eur J Drug Metab Pharmacokinet. 2007;32(2):75–79. doi:10.1007/BF03190995
- 165. Chen W, Miao YQ, Fan DJ, et al. Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS Pharm Sci Tech. 2011;12(2):705–711. doi:10.1208/s12249-011-9632-z
- 166. Leng B, Li C, Sun Y, et al. Protective effect of astragaloside iv on high glucose-induced endothelial dysfunction via inhibition of P2X7R dependent P38 MAPK signaling pathway. Oxid Med Cell Longev. 2020;2020:5070415. doi:10.1155/2020/5070415
- 167. Wang Y, Campbell T, Perry B, et al. Hypoglycemic and insulin-sensitizing effects of berberine in high-fat diet- and streptozotocin-induced diabetic rats. *Metabolism*. 2011;60(2):298–305. doi:10.1016/j.metabol.2010.02.005
- Zhu X, Yang J, Zhu W, et al. Combination of berberine with resveratrol improves the lipid-lowering efficacy. Int J Mol Sci. 2018;19(12):3903. doi:10.3390/ijms19123903
- 169. Qing LS, Chen TB, Sun WX, et al. pharmacokinetics comparison, intestinal absorption and acute toxicity assessment of a novel water-soluble astragaloside iv derivative (astragalosidic acid, LS-102). Eur J Drug Metab Pharmacokinet. 2019;44(2):251–259. doi:10.1007/s13318-018-0515-5
- Kutbi HI, Asfour HZ, Kammoun AK, et al. Optimization of hyaluronate-based liposomes to augment the oral delivery and the bioavailability of berberine. *Materials*. 2021;14(19):5759. doi:10.3390/ma14195759
- 171. Kohli K, Mujtaba A, Malik R, et al. Development of natural polysaccharide-based nanoparticles of berberine to enhance oral bioavailability: formulation, optimization, ex vivo, and in vivo assessment. *Polymers*. 2021;13(21):3833. doi:10.3390/polym13213833
- 172. Fan D, Wu X, Dong W, et al. Enhancement by sodium caprate and sodium deoxycholate of the gastrointestinal absorption of berberine chloride in rats. *Drug Dev Ind Pharm*. 2013;39(9):1447–1456. doi:10.3109/03639045.2012.723219

Drug Design, Development and Therapy

Publish your work in this journal

Drug Design, Development and Therapy is an international, peer-reviewed open-access journal that spans the spectrum of drug design and development through to clinical applications. Clinical outcomes, patient safety, and programs for the development and effective, safe, and sustained use of medicines are a feature of the journal, which has also been accepted for indexing on PubMed Central. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/drug-design-development-and-therapy-journal

