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Abstract: Digestive diseases represent a diverse and complex group of systemic disorders, often marked by intricate pathogenic 
mechanisms and substantial rates of morbidity, disability, and mortality. While effective therapies exist for certain conditions, such as 
peptic ulcers, gastrointestinal hemorrhage, and viral hepatitis, many others remain difficult to manage due to their limited treatment 
options, poor response to current therapies, and multifactorial etiologies. As a result, there is a pressing need to develop novel 
therapeutic agents that offer greater specificity and improved clinical outcomes. Edaravone, a free radical scavenger widely used in the 
management of neurological disorders, has demonstrated a favorable safety profile and minimal adverse effects. Recent research has 
expanded our understanding of Edaravone’s pharmacological actions, revealing its broad therapeutic potential beyond the nervous 
system. Its capacity to neutralize reactive oxygen species, reduce oxidative stress, suppress inflammation, inhibit apoptosis, modulate 
immune function, and enhance tissue repair positions it as a promising candidate for treating digestive disorders. This review 
highlights current advances in the application of Edaravone in digestive disease models and clinical settings, to offer new perspectives 
for future prevention, therapeutic strategies, and scientific investigation in this field. 
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Introduction
Economic development and improved living standards have led to increased dietary diversity, accompanied by a rise in 
diseases of the digestive system.1 According to the World Health Organization (WHO), the mortality and disability rates 
resulting from digestive diseases throughout the world are increasing steadily, placing a heavy economic and financial 
burden on families and national healthcare systems.2 The causes and underlying mechanisms of these diseases are 
extremely complex,3–5 and the medical community currently lacks a clear understanding of the etiology and mechanisms 
associated with most digestive disorders. For many of these conditions, conventional drug treatments are typically limited 
to symptomatic relief, failing to address the underlying pathology and often associated with serious side effects.6–8 

Therefore, the development of more effective therapeutic agents with fewer adverse effects is particularly important in 
the management of digestive diseases.

Edaravone, 1-phenyl-3-methyl-2-pyrazolin-5-one, is a white or off-white crystalline powder, odorless, readily soluble 
in methanol, soluble in ethanol and chloroform, slightly soluble in acetonitrile, acetone, and 0.1 mol/L sodium hydroxide, 
and very slightly soluble in water and 0.1 mol/L hydrochloric acid.9,10 It is usually administered by intravenous infusion, 
and easily crosses the blood-brain barrier. Currently, Edaravone is used primarily as a first-line clinical drug for 
neuroprotection. Edaravone was officially marketed in Japan in 2001 and has since been included in the guidelines for 
stroke treatment in both China and Japan. Furthermore, supported by clinical trial evidence—particularly its demon
strated efficacy in amyotrophic lateral sclerosis—Edaravone has been approved and marketed in multiple countries.11 

Moreover, several animal studies have extended the therapeutic potential of Edaravone to other neurological disorders, 
including cerebral aneurysms, epilepsy, and vascular dementia.12–14 It continues to be used as a first-line brain-protective 
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drug, and has significant efficacy, high safety, and minimal side effects.15 Edaravone is associated with various proper
ties, including antioxidant activity against oxidative stress,16 and antifibrotic,17 anti-inflammatory,18 and anti-apoptotic 
functions.10 Its therapeutic efficacy in neurological disorders is attributed primarily to its potent pharmacological actions. 
Its pharmacological effects have led to interest in exploring its therapeutic applications in other diseases. This has led to 
investigation of the effects of Edaravone on disorders associated with various systems, including the digestive,19 

respiratory,20 urinary,21 reproductive,22 circulatory,23 and nervous systems,24 and particularly within the digestive system 
(Figure 1). Current research suggests that Edaravone possesses substantial therapeutic potential in a range of digestive 
diseases, including acute liver injury, liver fibrosis, pancreatitis, ischemia-reperfusion (I/R)-induced intestinal injury, 
inflammatory bowel disease (IBD), digestive system cancer, viral hepatitis, fulminant hepatic failure, and complications 
related to liver transplantation. To date, research and reviews on Edaravone have primarily focused on its applications in 
neurological diseases, with no comprehensive review addressing its potential use in the treatment of digestive system 
disorders. Therefore, we collected all relevant studies on Edaravone in digestive diseases published up to May 2025 from 
the PubMed and CNKI databases and conducted a comprehensive analysis. This review aims to summarize current 
research progress on the use of Edaravone in digestive diseases and to offer new insights into its potential roles in the 
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prevention, treatment, and pathophysiological study of digestive system disorders. Table 1 provides a list of studies on 
Edaravone in different digestive diseases, which will be described in detail later in this review.

Research Progress on the Use of Edaravone in Digestive Diseases
Edaravone in the Treatment of Acute Liver Injury
Acute liver injury refers to severe damage and death of liver cells. It can be caused by various factors and leads to 
significant organ dysfunction.82 The primary causes of acute liver injury include infections, chemical toxicity, immune 
dysfunction, malnutrition, bile duct obstruction, tumors, and genetic factors.83 Acute liver injury can be classified in 
terms of its etiology into injuries induced by endotoxin, paraquat, ischemia-reperfusion, drugs, and alcohol, as well as 
damage caused by immune activity and severe acute pancreatitis (Figure 2). Current research has demonstrated the 
complex pathogenesis of these disorders, involving mechanisms such as inflammation, oxidative stress, and apoptosis of 
hepatocytes. Therefore, preventing or inhibiting these processes is crucial in mitigating liver damage.

Endotoxin-Induced Acute Liver Injury
Clinically, sepsis and post-hepatic surgery can lead to acute liver injury. Infections can lead to an accumulation of 
reactive oxygen species (ROS), generating large amounts of free radicals and causing oxidative stress. Endotoxins can 

Figure 1 Edaravone-Related Disease Research.
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Table 1 Studies on Edaravone in Different Digestive Diseases

Number Disease 
Model

Key Mechanisms Main Findings References

1 Acute Liver 

Injury

Alleviates oxidative stress and scavenges ROS 

production; inhibits inflammatory response; 

decreases hepatocyte apoptosis; inhibits NF-κB 
activation; increases cell survival

Increases SOD activity and GSH levels; 

decreases MDA and Caspase-3 activity; 

decreases lipid peroxidation; increases anti- 
inflammatory factors (IL-10); decreases 

inflammatory cell infiltration and pro- 

inflammatory factors (TNF-α, IL-6); suppresses 
Caspase-3 activity; reduces serum transaminase, 

bilirubin and LDH levels; regulates exosomal 

miRNA expression; protects mitochondrial 
structure; enhances liver energy metabolism; 

improves liver blood flow; improves liver 

function; increases survival rate; alleviates liver 
pathological damage

[25–41]

2 Liver Fibrosis Scavenges ROS production; inhibits 
inflammatory response; inhibits NF-κB 

activation

Scavenges free radicals; inhibits HSC activation; 
decreases pro-inflammatory factors (IL-1β); 

alleviates liver pathological damage and liver 
fibrosis

[42–45]

3 Pancreatitis Alleviates oxidative stress; inhibits inflammatory 
response; modulates TLR4/NF-κB signaling 

pathway

Inhibits COX-2 protein expression; decreases 
amylase levels; decreases pro-inflammatory 

factors (IL-6, TNF-α); decreases fluid, 

pathological damage and improves cure rates; 
enhances the curative effect when combined 

with octreotide

[46–52]

4 Ischemia- 

Reperfusion 

Intestinal 
Injury

Alleviates oxidative stress and scavenges ROS 

production; inhibits inflammatory response; 

reduces intestinal bacterial translocation

Decreases MPO activity; decreases pro- 

inflammatory factor (IL-1β, IL-6) levels; 

alleviates intestinal pathological damage and 
improves survival time

[53–59]

5 Inflammatory 
Bowel Disease

Alleviates oxidative stress and scavenges ROS 
production; inhibits inflammatory response

Decreases MPO activity; increases anti- 
inflammatory factor levels; decreases pro- 

inflammatory factor levels; reduces pathological 

damage and disease progression

[60–63]

6 Digestive 

system cancer

Alleviates oxidative stress and scavenges ROS 

production; inhibits NF-κB signaling pathway; 
modulates tumor cell apoptosis; alleviate the 

side effects of radiotherapy and chemotherapy

Enhances the anti-tumor effects of CPT-11; 

reduces tumor growth; decreases the number 
of pulmonary metastases; alleviate the 

cardiotoxicity, nephrotoxicity, neurotoxicity, 

ototoxicity and hair loss caused by 
chemotherapy; Reduce radiation-induced brain 

necrosis and oral mucositis

[64–78]

7 Viral Hepatitis Scavenges ROS production; enhances cell 

survival

Improves liver function, inhibits hepatic 

necrosis, and enhances survival rate

[79]

8 Fulminant 

Hepatic Failure

Modulates mitochondrial apoptosis pathway 

(Bcl-xL/Bax)

Decreases serum transaminase levels and 

pathological damage

[80]

9 Live 

Transplantation

Inhibits donor hepatocyte apoptosis; enhances 

transplanted cell survival

Improves post-transplant hepatocyte survival 

rate and serum albumin levels

[81]

Abbreviations: ROS, reactive oxygen species; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; SOD, superoxide dismutase; MDA, malondialdehyde; 
IL-10, interleukin 10; TNF-α, tumor necrosis factor alpha; IL-6, interleukin 6; LDH, lactate dehydrogenase; HSC, hepatic stellate cell; IL-1β, interleukin 1 beta; COX-2, 
cyclooxygenase-2; TLR4/NF-κB, toll-like receptor 4/nuclear factor kappa-light-chain-enhancer of activated B cells; MPO, myeloperoxidase; Bcl-xL/Bax, B-cell lymphoma-extra 
large/Bcl-2-associated X protein; CPT-11, irinotecan.
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activate Kupffer cells, leading to the release of eicosanoids and inflammatory mediators, such as tumor necrosis factor- 
alpha (TNF-α), interleukin-1β (IL-1β), and interferon-gamma (IFN-γ), and cytokine-induced neutrophil chemoattractants 
(CINCs).84 Thus, oxidative stress and inflammation play vital roles in the progression of liver injury. In a mouse model of 
acute liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS), Edaravone reduced the levels of 
inflammatory markers (TNF-α, IL-6) and the activity of caspase-3, decreased hepatocyte apoptosis, improved liver 
function, and reduced mortality. These findings suggest that Edaravone may mitigate GalN/LPS-induced liver injury by 
reducing cellular inflammation and inhibiting apoptosis.25 Similarly, in a rat model of acute liver injury induced by GalN/ 
LPS, Edaravone was found to significantly reduce the levels of the antioxidant enzyme heme oxygenase-1 and 
myeloperoxidase, as well as alleviate oxidative stress, prevent inflammatory cell infiltration, and lower the production 
of pro-inflammatory cytokines (TNF-α, IL-6), leading to a decrease in liver enzyme levels and reduced mortality.26 In 
a rat model of endotoxin-induced acute liver injury after partial hepatectomy, Edaravone not only alleviated inflammation 
induced by liver damage by inhibiting the activation of NF-κB but also suppressed oxidative stress in the liver, 
significantly reducing postoperative mortality.27

Paraquat-Induced Acute Liver Injury
Paraquat (PQ) is a widely used herbicide, known for its rapid non-selective action and high toxicity. Paraquat poisoning 
is associated with a high fatality rate after ingestion by humans or animals and can cause damage to various organs, 
especially the liver.85,86 Paraquat induces substantial oxidative stress87,88 and inflammation89 in the liver. A retrospective 
analysis of 44 cases of paraquat poisoning revealed that patients treated with Edaravone showed a notable increase in 
serum superoxide dismutase (SOD) levels, accompanied by significant reductions in inflammatory cytokines (IL-6, IL- 
10, TNF-α), malondialdehyde (MDA), and liver transaminases, compared to untreated individuals. These results suggest 
that Edaravone mitigates paraquat-induced hepatotoxicity by reducing oxidative stress and suppressing inflammatory 
responses.28 An early study also showed that in a mouse model of PQ-induced pulmonary injury, Edaravone markedly 
reduced liver damage and increased survival rates.29

Ischemia-Reperfusion Liver Injury
Ischemia-reperfusion (I/R) liver injury can occur during liver surgery, hypovolemia, or after liver transplantation. During 
liver I/R, large amounts of ROS are generated, leading to oxidative stress and exacerbating hepatocyte damage.90,91 

Figure 2 Causes and Classification of Acute Liver Injury.
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Therefore, preventing or inhibiting oxidative stress during liver I/R injury is critical. In a study of liver I/R injury induced 
by the Pringle maneuver, Edaravone significantly reduced the activities of myeloperoxidase and serum transaminases, as 
well as the levels of pro-inflammatory cytokines such as IL-6. It also reduced inflammatory cell infiltration, thus 
increasing survival rates in experimental animals.30 Edaravone treatment also reduced lipid peroxidation in the liver 
and the leakage of liver enzymes, as well as the levels of pro-inflammatory cytokines, such as TNF-α, and the adhesion 
molecule E-selectin.31 In a rat model of liver I/R, Edaravone was found to improve blood flow in the portal vein, reduce 
the levels of liver enzymes in the perfusion fluid, and decrease histological changes and MDA concentrations, thereby 
mitigating hepatocyte injury.32 In both in vivo and in vitro liver I/R experiments, Edaravone was shown to lower elevated 
aspartate aminotransferase (AST) levels in liver cells, thus preserving hepatocyte ATP levels. In vivo, Edaravone reduced 
AST levels in rat sera, decreased the amount of phosphatidylcholine hydroperoxide (PCOOH) in the liver, and restored 
the energy balance. In conclusion, Edaravone effectively scavenges superoxide species in liver cells and mitigates 
oxidative liver damage during surgery.33 Studies have also shown that Edaravone can influence the release of inflam
matory factors (TNF-α, IL-1β) by modulating the activities of the microRNA PC-3p-190-42101 in plasma exosomes, 
thereby protecting the liver from I/R injury.19 Liver I/R is associated with oxidative damage to the mitochondria; 
however, Edaravone can alleviate mitochondrial structural damage and protect against oxidative stress in the organelle, 
thus improving energy metabolism in the liver. Additionally, Edaravone can normalize levels of pro-inflammatory 
cytokines, alleviate leukocyte infiltration, and reduce liver lipid peroxidation caused by I/R.34 Additional studies have 
indicated that Edaravone reduces the levels of free radicals induced by I/R-associated liver injury, thus preventing organ 
damage by limiting the harmful effects of free radicals.35

Drug-Induced Liver Injury
Drug-induced liver injury (DILI) occurs during the metabolism of drugs in the liver through the cytochrome P450 
system, resulting in the formation of toxic metabolites, such as electrophilic groups, free radicals, and oxygen species. 
These toxic metabolites can interfere with cellular metabolism, disrupt the integrity of cell membranes, and ultimately 
lead to the death of hepatocytes.92 The severity of DILI is often dose-dependent. When Edaravone enters the body, it is 
converted into its anionic form, which can donate an electron to oxygen free radicals, thus neutralizing these species and 
mitigating their potential damage. Additionally, Edaravone can increase the activity of the antioxidant enzyme SOD, 
increasing antioxidant defenses. It also inhibits inflammatory responses and reduces the release of pro-inflammatory 
cytokines.36 In a study by Huang et al, using a mouse model of acetaminophen-induced DILI, it was observed that 
Edaravone reduced the serum levels of alanine aminotransferase (ALT) and the pro-inflammatory IL-6, while increasing 
the levels of the anti-inflammatory cytokine IL-2. It also reduced lipid peroxide (LPO) and MDA concentrations in liver 
tissue, enhanced SOD activity, prevented hepatocyte degeneration, and reduced inflammatory cell infiltration, thereby 
alleviating liver necrosis.37 In a rat model of acute liver injury induced by carbon tetrachloride (CCl4), Edaravone 
significantly lowered the serum levels of ALT, lactate dehydrogenase (LDH), and total bilirubin (TB), reduced hepatic 
steatosis, and markedly reduced hepatocyte apoptosis.38 These findings suggest that Edaravone exerts a protective effect 
against DILI, potentially through mechanisms involving its antioxidant and anti-apoptotic properties, immune modula
tion, and inhibition of inflammatory responses.

Alcoholic Liver Injury
Approximately 90% of ethanol is metabolized in the liver, and chronic or excessive alcohol consumption leads to 
progressive liver damage. The metabolism of ethanol induces oxidative stress in the liver and reduces the antioxidant 
capacity of the cells.93 The induction of apoptosis in hepatocytes is a major contributor to the development of alcoholic 
liver injury, with ethanol triggering lipid peroxidation and inducing apoptosis.94 The pro-inflammatory cytokine, TNF-α, 
plays a key role in liver cell necrosis and is associated with the development of alcoholic liver injury. It generates 
a positive feedback loop with ROS intermediates, stimulating the production of other inflammatory factors, promoting 
neutrophil infiltration, and triggering lipid peroxidation, while also activating caspases to induce apoptosis.95,96 

Edaravone can protect against alcoholic liver injury by the alleviation of oxidative stress and the scavenging of free 
radicals in liver cells. It also reduces ethanol-induced hepatocyte apoptosis by inhibiting the Caspase-3 pathway. 
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Additionally, Edaravone alleviates the inflammatory response by lowering TNF-α production and reduces Caspase- 
3-induced apoptosis.39

Immune-Mediated Liver Injury
Immune-mediated liver injury is associated particularly with viral infections. Concanavalin A (ConA) can induce lipid 
peroxidation in hepatocyte membranes and promote the generation of ROS, leading to structural damage, dysfunction, 
degeneration, and necrosis in hepatocytes, and causing acute immune-mediated liver injury.97 SOD is an important 
antioxidant enzyme that protects liver organelles from free radical damage, while MDA is a toxic byproduct of lipid 
metabolism. The levels of glutathione (GSH) are also a reflection of the body’s antioxidant capacity; decreased GSH 
concentrations are indicative of reduced antioxidative defense and increased generation of free radicals.98,99 In a study by 
Chen et al, Edaravone was found to raise the levels of SOD in the liver, as well as reducing the production of MDA, 
increasing GSH, and alleviating lipid peroxidation in a mouse model of immune-mediated liver injury, thereby mitigating 
liver damage caused by oxidative stress. These results suggest that Edaravone protects against immune-mediated liver 
injury by enhancing the body’s antioxidant capacity and shielding liver organelles from damage caused by free radicals.40

Liver Injury Induced by Severe Acute Pancreatitis
Severe acute pancreatitis (SAP) is not only a pancreatic disease but also a systemic syndrome that involves damage to 
various organs, including the liver, kidneys, lungs, and brain.100 The liver, as the body’s metabolic center, plays a crucial 
role in regulating metabolism, detoxification, and the inactivation of cellular inflammatory mediators during SAP 
progression.100 The liver can neutralize the initiating pro-inflammatory factor TNF-α, which triggers a cascade of 
inflammatory reactions, leading to systemic inflammation and potentially to the systemic inflammatory response 
syndrome (SIRS) and multi-organ dysfunction syndrome (MODS).101,102 Liver damage caused by SAP is a complex 
pathological process associated with multiple factors. Liver injury induced by SAP can result in liver failure, disrupting 
the detoxification and inflammatory mediator inactivation functions of the organ and leading to widespread inflammation 
and ultimately MODS. In a study by Zhang et al, rats treated with Edaravone showed significantly lower serum amylase 
(AMY) levels at all time points compared to rats in the SAP model group. Serum ALT and AST activities were reduced, 
and pathological changes in the pancreas and liver were alleviated. Edaravone also reduced serum TNF-α, IL-6, and 
MDA levels, while increasing the levels of SOD. Therefore, it can be concluded that Edaravone protects the liver and 
pancreas from damage in SAP by scavenging excess ROS, enhancing SOD activity, and alleviating oxidative stress- 
induced injury to these organs.41

Edaravone in the Treatment of Liver Fibrosis
Liver fibrosis is a common occurrence in various chronic liver diseases and is characterized by excessive deposition of 
extracellular matrix (ECM) material, the formation of fibrous scars, hepatocyte damage, distortion of liver lobules, and 
changes in the structures of blood vessels. Ultimately, it may lead to cirrhosis, hepatocellular carcinoma, or liver 
failure.103 The production of ROS and the consequent generation of lipid peroxidation end products can activate hepatic 
stellate cells (HSCs), resulting in their proliferation and excessive ECM synthesis while reducing ECM degradation, 
contributing to the development of liver fibrosis.104 Therefore, damage to DNA caused by excessive ROS production is 
considered a major contributor to liver injury and fibrosis. In a rat model of dimethylnitrosamine (DMN)-induced 
cirrhosis, Edaravone was found to inhibit HSC activation, thereby reducing liver fibrosis.42 Edaravone also inhibited the 
recruitment of monocytes/macrophages and the production of IL-1β in macrophages. Additionally, Edaravone suppressed 
the production of ROS in macrophages and blocked the NF-κB signaling pathway, thus reducing IL-1β secretion, which 
in turn prevented HSC activation.43 In a thioacetamide (TAA)-induced model of chronic liver fibrosis, Edaravone 
reduced ROS production, suppressed the NF-κB pathway, and decreased IL-1β release from macrophages, thereby 
inhibiting HSC activation and preventing TAA-induced liver fibrosis.44 Furthermore, in a study by Li et al, rats with liver 
fibrosis induced by CCl4 showed significantly lower levels of MDA and higher SOD activities in the liver following 
Edaravone treatment, along with a reduction in hydroxyproline (HYP) content in liver tissue, suggesting that Edaravone 
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enhanced ROS clearance and protected hepatocytes from damage caused by lipid peroxidation, thus playing a role in the 
prevention and treatment of liver fibrosis.45

Edaravone in the Treatment of Pancreatitis
Severe acute pancreatitis (SAP) is a common acute abdomen condition, characterized by rapid onset and progression, 
numerous complications, and high mortality.105 SAP begins with the production of digestive enzymes in pancreatic 
acinar cells, leading to cell injury and both local and systemic inflammatory responses.106 Cyclooxygenase-2 (COX-2) is 
closely involved in SAP development as it is the rate-limiting enzyme that converts arachidonic acid to prostaglandins, 
promoting inflammation.107 The expression of COX-2 has been found to be positively correlated with pancreatic damage, 
AMY levels, and the volume of ascitic fluid. In a rat model of SAP, Edaravone treatment significantly reduced COX-2 
protein expression in the pancreas, lowered AMY levels, reduced ascitic fluid volumes, and mitigated pathological 
damage in the pancreas, thereby alleviating pancreatic injury.46 A clinical report involving 31 patients observed that 
Edaravone significantly relieved abdominal pain, reduced serum and urinary AMY levels, alleviated pancreatic pathol
ogy, slowed the development of pancreatitis, and improved patient prognosis and survival rates.47 Additionally, when 
somatostatin was combined with Edaravone in treating pancreatitis, the effects were even more pronounced, lowering the 
levels of C-reactive protein (CRP) and increasing the cure rate.48 In a mouse model of SAP, Edaravone was observed to 
modulate the Toll-like receptor 4 (TLR4)/NF-κB signaling pathway, reduce apoptosis in pancreatic cells, and lower the 
levels of inflammatory cytokines (IL-6, IL-1β, TNF-α), thus reducing pancreatic damage after SAP.49 In a duodenal loop- 
induced SAP model, Edaravone treatment blocked increases in the pancreatic wet weight, reduced ascitic fluid volumes, 
lowered the levels of LPO and serum AMY, and attenuated pancreatic damage.50 Similarly, in rat models of SAP, 
Edaravone reduced serum AMY levels and MPO activity, prevented neutrophil infiltration, and alleviated pathological 
damage in the pancreas and lungs. Edaravone also significantly reduced the levels of IL-6, TNF-α, and MDA in the lungs 
of rats with acute pancreatitis, suggesting that the drug may not only treat acute pancreatitis but also protect against 
associated lung injury.51 In studies on chronic pancreatitis (CP), Edaravone demonstrated antioxidant, anti-inflammatory, 
and anti-fibrotic properties, alleviating pathological damage in pancreatic tissue. In a study by Zhou et al, in a dibutyltin 
dichloride (DBTC)-induced model of CP, Edaravone lowered MDA concentrations, reduced the release of inflammatory 
cytokines such as transforming growth factor-β (TGF-β), IL-6, and TNF-α, and increased SOD activity, thereby 
preventing pancreatic fibrosis and the activation of pancreatic stellate cells (PSCs).52

Edaravone in the Treatment of Ischemia-Reperfusion-Induced Intestinal Injury
The intestine represents the largest reservoir of bacteria and endotoxins in the body, with the intestinal mucosa acting as 
a barrier to prevent the entry of bacteria and endotoxins into the circulation.108 Conditions such as severe infection, 
trauma, shock, intestinal obstruction, extracorporeal circulation surgery, and small intestinal transplantation can lead to I/ 
R injury in the intestine, resulting in the generation of excessive ROS, and leading to oxidative stress, disruption of the 
intestinal mucosal barrier, increased vascular permeability, bacterial translocation to the circulation, and the release of 
inflammatory mediators and apoptotic factors. This cascade of events ultimately leads to systemic inflammation, cytokine 
storms, MODS, and even death.109–111 In a rat model of intestinal I/R injury, Edaravone was found to reduce ROS 
production, alleviate mucosal erosion and hemorrhage in the small intestine, and inhibit increases in lumen proteins, 
hemoglobin, thiobarbituric acid-reactive substances (TBA), and MPO activity. Edaravone also reduced both the mRNA 
and protein expression of CINC-1, thereby providing protective effects against small intestinal I/R injury.53 A study by 
Liao et al used an in vitro oxygen-glucose deprivation (OGD) model to induce ischemia-hypoxia damage in crypt 
epithelial cells in the rat small intestine showed that Edaravone blocked the accumulation of free radicals, thereby 
preventing damage to membrane lipids, proteins, and nucleic acids, as well as apoptosis.54 In a rat intestinal I/R model, 
Edaravone reduced the levels of MDA in the serum and intestinal tissues and decreased the activities of antioxidant 
enzymes such as SOD, thus alleviating damage to the intestinal mucosa.55 In a study by Kang, Edaravone was effective 
in reducing necrosis in the villi of the small intestine, accompanied by decreased villus shedding, lowered levels of pro- 
inflammatory cytokines (IL-1β, IL-6, TNF-α), increased production of the anti-inflammatory IL-10, and inhibition of 
bacterial translocation.56 When octreotide was combined with Edaravone to treat acute pancreatitis, reduced generation 
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of intestinal free radicals, lowered lipid peroxidation, decreased ROS-induced inflammatory oxidative stress, and lowered 
levels of endotoxins, D-lactic acid, and IL-1β were observed, thus protecting intestinal mucosal function in patients with 
SAP.57 After acute mesenteric artery thrombosis (ASMAT), intra-arterial administration of Edaravone significantly 
reduced pathological damage in the intestinal mucosa of rabbits and increased their survival.58,59

Edaravone in the Treatment of Inflammatory Bowel Disease (IBD)
Ulcerative colitis (UC) is closely associated with the production of excessive ROS in the intestinal microenvironment. 
Disruption of oxidative homeostasis caused by the release of metabolites from epithelial cells generates large amounts of 
ROS, which can damage structural proteins associated with the epithelia and tight junctions, leading to impairment of the 
intestinal mucosal barrier.112,113 Damaged intestinal epithelial cells activate the NF-κB pathway by binding to gut 
bacteria through pattern recognition receptors, which in turn promotes the expression and release of inflammatory 
cytokines, such as IL-6, TNF-α, and IFN-γ. The release of ROS plays an important role in the pathogenesis of clinical 
IBDs, such as UC and Crohn’s disease.114 In an experimental rat model of colitis induced by dextran sulfate sodium 
(DSS), administration of Edaravone at a dose of 20 mg/kg/day was found to markedly suppress ROS production in the 
intestine, while decreasing mucosal MPO activity, LPO, and serum IL-6 levels, thereby inhibiting UC progression.60,61 

Furthermore, Compound injection containing Edaravone significantly reduced the levels of pro-inflammatory cytokines, 
increased those of anti-inflammatory cytokines, reduced M1 macrophage infiltration, increased M2 macrophage numbers, 
enhanced the integrity of the intestinal barrier, reduced the disease activity index (DAI), and minimized both weight and 
colon length loss, thus exhibiting a better anti-inflammatory effect than Edaravone alone.62 Similarly, in an indometha
cin-induced rat model of acute Crohn’s disease, Edaravone, functioning as a free radical scavenger, significantly 
alleviated the severity of mesenteric longitudinal ulcers.63

Edaravone in the Treatment of Digestive System Cancer
Recent studies have revealed that Edaravone shows significant antitumor activity across various digestive system cancer 
models, showing potential for enhancing the effectiveness of chemotherapy. In vitro investigations have demonstrated 
that Edaravone can suppress the proliferation and differentiation of hepatocellular carcinoma (HepG2) and gastric cancer 
(TMK-1) cells by modulating the EGFR signaling pathway and interfering with cell cycle progression.64 In a murine 
colon cancer model, the combined treatment of Edaravone and irinotecan (CPT-11) led to a notable reduction in tumor 
volume and pulmonary metastatic foci. This effect is attributed to Edaravone’s ability to neutralize chemotherapy- 
induced ROS, inhibit NF-κB activation, and induce caspase-3-dependent apoptosis.65,66 Beyond its potent antitumor 
effects, Edaravone also alleviates various chemotherapy-induced toxicities, such as cardiotoxicity,67 nephrotoxicity,68,69 

neurotoxicity,70,71 ototoxicity,72,73 and alopecia,74 significantly reducing the side effects of cancer treatments. 
Furthermore, Edaravone helps mitigate radiotherapy-induced side effects by inhibiting radiation-triggered apoptosis, 
preventing the formation of phosphorylated histone H2AX (γH2AX) foci, and reducing the incidence of radiation- 
induced brain necrosis and oral mucositis.75–78 These collective findings underscore the therapeutic potential of 
Edaravone in the treatment of digestive system cancer.

Edaravone in the Treatment of Other Digestive System Diseases
There are numerous factors that cause hepatitis, including viral infections, autoimmune abnormalities, and alcohol. Among 
these, viral hepatitis, resulting from infection by different viruses, is associated with inflammation and necrosis of the liver. 
During this process, the liver generates large amounts of ROS, which in turn activate hepatic Kupffer cells (CD68+ Kupffer 
cells).115–117 The targeting of CD68+ Kupffer cells plays an important role in the treatment of viral hepatitis. A study by 
Yasuda et al encapsulated Edaravone in nanoparticles which were used to treat a mouse model of hepatitis induced by ConA, 
simulating viral hepatitis. The results showed that Edaravone was distributed rapidly to Kupffer cells in the liver where it 
scavenged excess ROS, inhibited liver necrosis and oxidative stress, and increased the survival rates of the mice, along with 
notable improvements in liver function.79 Therefore, Edaravone has the potential for use as a nanoparticle therapy for viral 
hepatitis due to its redox properties and ability to target Kupffer cells. Moreover, Edaravone has potential therapeutic value for 
several other diseases of the digestive system. For instance, in a Fas-induced mouse model of fulminant hepatic failure, 
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Edaravone not only reduced serum transaminase levels but also alleviated pathological liver damage. Further mechanistic 
studies revealed that Edaravone prevented the release of cytochrome c and activation of caspase-3, reducing apoptosis in 
hepatocytes. The anti-apoptotic mechanism of Edaravone might involve modulation of mitochondrial Bcl-xL and Bax.80 

Additionally, Edaravone can inhibit apoptosis in transplanted liver cells, thus increasing the survival of transplanted 
hepatocytes. Specifically, during hepatocyte transplantation, Edaravone administration was found to significantly reduce the 
number of TUNEL(+) apoptotic cells in donor livers, increase hepatocyte numbers, and enhance the number of hepatocytes in 
recipients along with elevated levels of serum albumin.81

Conclusion
Advancements in medical science and technology have led to significant progress in diagnosing and treating digestive 
diseases. However, these conditions’ complex pathogenesis and diversity, especially in the absence of specific, effective drugs, 
continue to pose a major challenge in clinical practice. Digestive system disorders often present with similar symptoms, such 
as abdominal pain and indigestion, highlighting the urgent need for a broad-spectrum, effective therapeutic drug. Edaravone, 
a widely used clinical treatment, has garnered increasing attention for its potential in managing digestive diseases, owing to its 
excellent safety profile and consistent therapeutic effects. A wealth of animal studies and preclinical evidence has established 
the notable therapeutic efficacy of Edaravone in the treatment of various digestive disorders, including acute liver injury, liver 
fibrosis, pancreatitis, I/R-induced intestinal injury, IBD, digestive system can, viral hepatitis, fulminant hepatic failure, and 
liver transplantation. These diseases are frequently linked to oxidative stress, and Edaravone, with its strong antioxidant 
properties, can neutralize excess free radicals, thereby reducing tissue damage, inhibiting inflammation, and promoting tissue 
repair. Moreover, with its well-established pharmacological mechanisms and excellent safety profile, Edaravone offers 
promising new insights and potential for clinical applications in the treatment of digestive diseases.

Despite these promising findings, several limitations and challenges in applying Edaravone for treating digestive diseases 
need further investigation. Firstly, the scope of research needs to be broadened. While Edaravone has demonstrated therapeutic 
efficacy across a range of digestive disorders and common conditions, there is a notable lack of studies exploring its potential 
for treating other conditions, such as esophageal disorders, peptic ulcers, biliary diseases, and appendicitis. Therefore, future 
studies should expand the research scope to explore Edaravone’s therapeutic effects across a broader range of digestive 
diseases, enhancing its clinical applicability and treatment potential. Furthermore, there is a need to integrate basic and clinical 
research further. Most studies on Edaravone for digestive disorders have focused on laboratory experiments and small-scale 
clinical trials, resulting in limited large-scale clinical data. Thus, future research should emphasize combining basic research 
with clinical studies. Larger, more comprehensive clinical trials are necessary to verify its efficacy across diverse patient 
populations and investigate its underlying mechanisms. This approach will facilitate the transition of Edaravone from 
laboratory research to widespread clinical application in digestive diseases. Finally, monitoring and managing potential 
adverse effects requires further exploration. Although Edaravone is generally regarded as safe, some risks, such as liver and 
kidney damage and allergic reactions, may still arise.118 Future research should address the potential adverse effects of 
Edaravone when treating digestive diseases to assess its safety profile further and determine ways to minimize possible 
adverse reactions through dose adjustments or combination therapies. Finally, the potential of Edaravone as a targeted therapy 
remains largely unexplored. Future research should focus on strategies to enhance its targeting capabilities, such as leveraging 
nanotechnology to deliver Edaravone to affected areas, thereby improving its therapeutic efficacy.

In conclusion, Edaravone is a clinically recognized drug with a well-established safety profile and a broad range of 
pharmacological effects. Moreover, it demonstrates considerable promise in treating digestive disorders. With continued 
exploration of its underlying mechanisms and the advancement of novel drug delivery systems, Edaravone has the 
potential to become a cornerstone therapy for a variety of digestive diseases.
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