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Abstract: Epilepsy is associated with widespread neurological circumstances due to aberrant neuronal discharges in the brain, which 
have significant adverse effects on patient’s quality of life and increase their risk of death. Immune imbalance, particularly disruption 
of the Th17/Treg cell balance, has gained increasing attention in the pathophysiology of epilepsy as our understanding of neuroim-
mune interactions improves. This paper examines the potential therapeutic effects and thoroughly discusses the processes by which the 
Th17/Treg cell imbalance contributes to the development of epilepsy. The primary emphasis is on the mechanism by which this 
imbalance impairs blood–brain barrier integrity, neuroinflammation, and other elements. On the therapeutic front, targeting the Th17/ 
Treg axis for immune regulation—through approaches such as ketogenic diets, nanomaterials, and gene editing—shows promising 
prospects for restoring immune balance. By furthering our knowledge of the connection between Th17/Treg cell imbalance and 
epilepsy etiology, this work offers a crucial theoretical foundation for creating innovative immunotherapy approaches. 
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Introduction
Approximately 70 million people worldwide have epilepsy, one-third of whom have drug-resistant epilepsy. This 
therapeutic challenge has driven researchers to explore the novel mechanisms underlying epilepsy to identify more 
effective treatment strategies.1,2 A recent study demonstrated that immunological imbalance is significantly correlated 
with the pathophysiology of epilepsy. Studies have identified a marked imbalance in the Th17/Treg cell ratio in patients 
with epilepsy;3 an excessive increase in pro-inflammatory helper T cell 17 (Th17) cells and a substantial decline in 
regulatory T cells (Tregs), which have immunoregulatory functions, are hallmarks of this imbalance.4

Tregs and Th17 cells are essential for preserving the equilibrium of the immune system. Th17 cells primarily disrupt 
the blood–brain barrier (BBB) by secreting various pro-inflammatory factors.3,5 In contrast, Tregs maintain immune 
homeostasis by suppressing the overactivation of Th17 cells.6 Reduced Treg cell function or quantity causes improper 
proliferation of Th17 cells, which, in turn, induces tissue damage and autoimmune reactions. According to research, an 
imbalance in Th17/Treg cells plays a vital pathogenic role in neurological pathologies, such as multiple sclerosis (MS) 
and experimental autoimmune encephalomyelitis (EAE), as it promotes BBB disruption and escalates neuroinflammatory 
reactions.7–10 Notably, patients with epilepsy frequently display comparable immunological imbalance mechanisms in 
the peripheral blood and cerebrospinal fluid.4,11 Based on these studies, adjustments to the Th17/Treg cell balance have 
generated remarkable therapeutic benefits in EAE and MS.12,13 This finding opens new avenues for epilepsy treatment, 
suggesting that restoring the Th17/Treg cell balance through immunomodulation could become a novel intervention 
target for drug-resistant epilepsy.
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Recent clinical research has shown that immunomodulatory strategies targeting the Th17/Treg axis have achieved 
preliminary success. The ketogenic diet (KD), as a non-pharmacological treatment, demonstrates significant immuno-
modulatory effects in patients with refractory epilepsy. Studies have indicated that a ketogenic diet can significantly 
reduce the proportion of Th17 cells and interleukin (IL)-17A levels in the peripheral blood of children with refractory 
epilepsy while increasing the number of Treg cells and forkhead box protein 3 (Foxp3) expression, thereby restoring the 
Th17/Treg balance.4 This restoration of immune balance was positively correlated with reduced seizure frequency. 
Moreover, peripheral Treg cells and γδT cells play opposing roles in the pathogenesis of refractory epilepsy in children, 
and enhancing the function of Treg cells can significantly suppress seizures.14 These findings suggest that therapeutic 
strategies aimed at regulating the Th17/Treg cell balance have a solid theoretical basis and show promising prospects in 
clinical practice, particularly for patients with drug-resistant epilepsy.

This review explores the essential role of the Th17/Treg cell imbalance in the pathophysiology of epilepsy. 
A thorough understanding of this mechanism is crucial to establish new therapeutic approaches. In particular, ketogenic 
diets, as a primary approach, have demonstrated favorable clinical efficacy in epilepsy treatment within the realm of 
immunomodulatory therapies. Moreover, emerging therapeutic approaches, such as gene editing technologies and the use 
of nanomaterials for targeted drug delivery, have shown promising application prospects.

Physiological Role of the Th17/Treg Cell Balance
Th17 cells, as a critical subset of CD4+ T lymphocytes, undergo differentiation primarily driven by the synergistic effects 
of cytokines, such as transforming growth factor-β (TGF-β), IL-6, IL-1β, and IL-23. Numerous effector compounds, 
which include interferon-γ (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-22, IL-17, and IL- 
21, are secreted by mature Th17 cells and are vital for host defense responses and the etiology of autoimmune disorders 
(Figure 1).8,15–17

Tregs, another important subset of CD4+ T lymphocytes, have unique functions in maintaining immune system 
homeostasis and self-tolerance. High expression of the characteristic transcription factor Foxp3 is crucial for recognizing 
self-antigens and preventing autoimmune responses. Additionally, under the regulation of TGF-β, Treg cells effectively 
modulate the progression of chronic infections and allergic reactions.6,18–20 Treg cells block Th17 cell activation and 
proliferation by direct cell-to-cell contact or by secreting inhibitory cytokines, including IL-10, IL-35, and TGF-β, which 
dampens overactive immune responses;6 on the other hand, they mediate apoptosis of effector T cells, antigen-presenting 
cells, and natural killer (NK) cells by expressing perforin and granzyme B, thereby further regulating immune responses 
(Figure 1).21,22 This multilayered immune regulatory network ensures the dynamic balance of the immune system.

Neuroimmune Regulatory Role of Th17/Treg Imbalance in the Pathogenesis of 
Epilepsy
Th17/Treg Imbalance Regulates the Immune Microenvironment in Epilepsy: Pathogenic Mechanisms
The local immunological milieu of the central nervous system (CNS) may undergo substantial alterations due to epileptic 
seizures. These changes are not only a consequence of seizures; they may also contribute to the worsening of epilepsy.23 

Research has indicated that individuals with epilepsy have markedly higher levels of several cytokines in their serum and 
cerebrospinal fluid.23 Among these, key inflammatory factors secreted by Th17 cells include IL-17A, IL-6, GM-CSF, and 
TNF-α. These inflammatory factors activate glial cells, induce oxidative stress and excitotoxicity, and ultimately cause 
neuronal damage.14,24 Notably, IL-17A increases neuronal excitability and indirectly regulates nervous system function 
by affecting satellite cells and immune cells, thereby promoting the onset and progression of epilepsy.25,26 Nonetheless, 
by secreting anti-inflammatory substances like IL-10 and TGF-β or by competitively consuming IL-2 to halt Th17 
growth and function, Tregs can reduce inflammation in the CNS; however, in patients with epilepsy, this inhibitory effect 
is significantly weakened.4,27,28

Treg cells were shown to significantly infiltrate the brain tissue in a pilocarpine-induced temporal lobe epilepsy 
animal model, with a significant negative correlation observed between the number of Treg cells in the brain and the 
frequency of seizures.24 Anti-CD25 monoclonal antibodies have been shown to systematically diminish brain Treg cells, 
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which sets off a cascade of neuroimmune reactions, such as astrocyte proliferation, microglial activation, upregulation of 
pro-inflammatory factors (IL-1β, TNF-α, IL-6), and marked increases in markers of oxidative stress (malondialdehyde 
(MDA) and 4-hydroxynonenal (4-HNE)).14,29–31 These changes result in substantial neuronal loss in the CA1 and CA3 
regions of the hippocampus, ultimately leading to an increased frequency of spontaneous seizures and the exacerbation of 
chronic temporal lobe epilepsy (TLE)-related behavioral disorders. The protective role of Treg cells in the pathophysiol-
ogy of epilepsy is further strengthened by the intracerebroventricular injection of chemokine ligand 20 (CCL20), which 
increases the number of Treg cells in the brain and significantly suppresses seizures.24 This Th17/Treg imbalance- 
induced alteration of the immune microenvironment not only exacerbates neuroinflammatory responses but may also 
promote the onset and progression of epilepsy through multiple mechanisms.

Abnormalities in Treg cells are not only characterized by a reduction in their numbers, which is negatively correlated 
with seizure frequency; they are also closely associated with functional impairments, jointly contributing to the onset and 
progression of epilepsy.14,32 Peripheral blood Treg cells in patients with epilepsy exhibit significant functional abnorm-
alities, which primarily manifest as the increased production of anti-inflammatory factors, such as IL-10.33 This 
compensatory increase reflects the body’s attempt to suppress neuroinflammatory responses by enhancing Treg cell 
function; however, this compensatory mechanism is often insufficient to control disease progression.

Figure 1 CD4+ T cells differentiate into two subtypes, Th17 cells and regulatory T (Treg) cells, under the regulation of different environmental factors and cytokines. The 
differentiation of Th17 cells is stimulated and regulated by pro-inflammatory cytokines, such as interleukin (IL)-6, IL-1β, and IL-23. They primarily secrete cytokines, such as 
IL-17, IL-21, IL-22, interferon-γ (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF), which play a crucial role in tissue inflammatory responses by 
promoting the recruitment of immune cells and the release of inflammatory factors in tissues, thereby exacerbating inflammatory pathological processes. In contrast, the 
differentiation of Treg cells is supported by the regulation of transforming growth factor-β (TGF-β) and the expression of the forkhead box protein 3 (FOXP3) gene. These 
cells primarily secrete inhibitory molecules, such as IL-10, granzyme B, perforin, IL-35, and TGF-β. These molecules help maintain immune homeostasis in the body by 
inhibiting the activation of effector T cells, reducing the release of inflammatory factors, and regulating the balance, thereby preventing excessive inflammatory responses and 
the development of autoimmune diseases. Created in BioRender. MU, l. (2025) https://BioRender.com/ahykxiv.
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At the molecular level, abnormally activated Th17 cells secrete large amounts of inflammatory factors in patients with 
epilepsy. These inflammatory factors directly participate in neuroinflammatory responses and lead to significant func-
tional abnormalities in Treg cells. These functional impairments arise mainly from the synergistic disruption of multiple 
signaling pathways. Vital components of Treg induction are the prostaglandin E2 (PGE2) and IL-10 receptor coactivation 
pathways. PGE2 binds to EP2/EP4 receptors and, in conjunction with the IL-10 receptor, stimulates the maturation of 
naïve CD4+ T cells into Treg cells.5,34,35 Excessive inflammatory factors inhibit PGE2 synthesis and interfere with IL-10 
signaling, resulting in downregulation of Foxp3 expression and weakened Treg function.34 Specifically, IL-17 secreted by 
Th17 cells and elevated levels of TNF-α can disrupt the epigenetic foundation required for maintaining high Foxp3 
expression in Treg cells by upregulating histone deacetylase (HDAC) activity, which perturbs the Foxp3 gene promoter 
region.36 Additionally, the Smad-dependent and Smad-independent pathways of TGF-β play essential roles in stabilizing 
Treg function. The Smad2/3-Smad4 complex directly activates Foxp3 transcription while maintaining the epigenetic 
modifications of the Foxp3 gene by inhibiting the PI3K/AKT/mTOR signaling pathway.37,38 However, in patients with 
epilepsy, high levels of IL-6 and IL-17 seriously interfere with TGF-β signaling pathways, leading Treg cells to develop 
into effector T cells or even pro-inflammatory Th17 cells. This creates a vicious cycle that worsens the immunological 
imbalance.5,39–41

Currently, the causal relationship between the Th17/Treg cell imbalance and the pathogenesis of epilepsy remains 
unclear and may be bidirectional.42,43 Under normal conditions, Th17 and Treg cells maintain a dynamic balance, which 
can be disrupted through two pathways. First, seizures are brought on by a surge in Th17 cells or a decline in Treg cells, 
which boosts neuroinflammatory components. Secondly, seizures damage neurons and activate glial cells, which release 
inflammatory factors (such as IL-2 and IL-6) that further encourage Th17 cell proliferation and impair Treg function, 
thereby initiating a vicious cycle.24,44–47 This complex feedback mechanism limits the effectiveness of single therapeutic 
strategies, necessitating further research on the interplay of these factors.

Th17/Treg Imbalance Regulates BBB Function in Epilepsy: Pathogenic Mechanism
An essential component for preserving the stability of the CNS is the BBB. Studies have demonstrated an intricate 
connection between neuroinflammation and BBB integrity.48,49 T-cells are crucial for this process because they are an 
indispensable component of the adaptive immune system.

Under typical physiological conditions, the BBB is not substantially disrupted by Th17 cells; however, pathological 
alterations occur when there is excessive inflammation in the central and peripheral nervous systems and insufficient Treg 
function or number. This viewpoint is supported by the observation of a considerable increase in the proportion of Th17 
cells in the peripheral blood of individuals with drug-resistant epilepsy (DRE). These cells impact brain microvascular 
endothelial cells by secreting inflammatory molecules, such as IL-17 and IL-22, which lower the expression of tight 
junction proteins, such as claudin-5 and occludin, ultimately improving BBB permeability.4,50,51 Additionally, Th17 cells 
can trigger endothelial cell death via the TRAIL-DR5 signaling pathway, further exacerbating BBB damage.49

Recent studies have highlighted the potential role of ferroptosis, an iron-dependent form of regulated cell death, in 
modulating the immune microenvironment and inflammatory responses. Ferroptosis-related gene signatures are asso-
ciated with specific immune cell infiltration patterns and treatment responses in various diseases.52 In the context of 
epilepsy, ferroptosis may contribute to BBB disruption and neuroinflammation,53,54 potentially influencing the Th17/Treg 
balance and disease progression. Consequently, more peripheral immune cells, particularly Th17 cells, infiltrate the CNS. 
Activated astrocytes further promote T-cell infiltration by secreting chemokines such as CCL5. These infiltrating Th17 
cells directly damage neurons and stimulate microglia and astrocytes to produce more pro-inflammatory factors, creating 
an “inflammatory storm”. This vicious cycle ultimately increases neuronal excitability and the triggering of epileptic 
seizures.55

Disruption of the BBB allows more inflammatory cells and factors to enter the CNS and may promote the progression 
of epilepsy by altering the ion balance. Conversely, Treg cells, as immunosuppressive cells, prevent Th17 cells from 
becoming overactive by unleashing anti-inflammatory molecules, including TGF-β and IL-10, maintaining BBB home-
ostasis and reducing inflammatory damage. If Treg cell numbers or functions are impaired, the balance between Th17 
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cells and their pro-inflammatory effects is disrupted, making the BBB more susceptible to damage. This constitutes a key 
immunopathological mechanism underlying epilepsy.56

Advances in Research on Immune Regulatory Mechanisms Related to Th17/Treg 
Imbalance in Antiepileptic Treatment Strategies
Ketogenic Diet
One important non-pharmacological treatment for refractory epilepsy is the ketogenic diet, a high-fat, moderate-protein, 
and low-carbohydrate diet; studies have confirmed its remarkable clinical efficacy and immunomodulatory effects.57 

Regarding the immune regulatory mechanism, the ketogenic diet can alter the proportion of T cell subsets, reducing Th17 
cells and increasing Tregs in the circulation of children with refractory epilepsy. This shift is accompanied by the 
downregulation of IL-17A and RORγt expression, as well as the upregulation of regulatory T cell factors, such as Foxp3, 
GITR, and CTLA-4, potentially achieved through inhibition of the mTOR/HIF-1α signaling pathway.4,14

At the molecular level, a ketogenic diet regulates the expression of neuregulin 1 (NRG1) by influencing histone 
acetylation levels, which are critical for its antiepileptic effect.58 This suggests that a ketogenic diet may modulate 
neuroimmune function through epigenetic modifications, thereby reshaping the Th17/Treg balance at the immunological 
level and providing new insights into its therapeutic mechanisms.

The gut–brain axis plays an important role in the therapeutic benefits of a ketogenic diet. Research published in the 
journal Cell has shown that a ketogenic diet significantly impacts the gut microbiota and its functions.59 In children with 
refractory epilepsy undergoing treatment, reductions in Bifidobacterium, Eubacterium, and Blautia were observed, in 
addition to an increase in Escherichia coli and a concurrent decline in pathways related to carbohydrate metabolism.60 

These microbial changes are closely associated with seizure control. In addition, when the gut microbiota of treated 
subjects was transplanted into mice, the mice exhibited significantly enhanced seizure resistance.61

Multiple large-scale studies have yielded encouraging results regarding the clinical efficacy of a ketogenic diet. 
According to a randomized controlled trial that included 427 children and adolescents, up to 55% of patients following 
the traditional 4:1 ketogenic diet had a seizure-free status within 3 months, with a seizure reduction rate of up to 85%.62 

Another systematic review and network meta-analysis involving 907 patients confirmed these findings. The standard 
ketogenic diet, modified Atkins diet, and low glycemic index treatment were among the ketogenic diets compared in this 
study.63 Results indicated that all these treatment approaches significantly reduced seizure frequency, with the low 
glycemic index treatment showing a superiority ratio of 24.7 (95% confidence interval (CI): 5.3–115.4), which was 
markedly better than conventional treatment approaches.63

Regarding safety, the ketogenic diet generally demonstrated good tolerability. Although some gastrointestinal-related 
adverse effects, such as abdominal pain and diarrhea, may occur, these symptoms are typically short-term and 
manageable.64 Notably, altered therapy modalities, such as low glycemic index therapy and a modified Atkins diet, 
preserved therapeutic efficacy while lowering the frequency of side effects.57 A randomized controlled experiment with 
170 children verified that patient adherence to treatment was better, and the occurrence of side effects was much lower in 
the low glycemic index therapy group (33.3%) than in the standard ketogenic diet group (56.4%).57

The immunomodulatory effects of the ketogenic diet require additional clinical data. The KIWE study highlights the 
need for in-depth research on long-term efficacy, age-related differences, and combination therapies.64 Future research 
should concentrate on the effects on the patient’s standard of life, the creation of individualized treatment regimens, and 
how the microbiome affects neuroimmunity via the gut–brain axis. More clinical data are required to provide tailored 
care for infants and toddlers aged 1–36 months.65

Immunomodulatory Antiepileptic Strategies Targeting the PD-1/PD-L1 Pathway
As a new therapeutic approach, immunomodulatory therapy has shown effectiveness in treating inflammatory conditions, such as 
MS and inflammatory bowel disease.66–68 Research has shown that the function of Tregs is significantly regulated by 
programmed death receptor 1 (PD-1) and its ligand, PD-L1. This modulation is accomplished by influencing T-cell activation 
and proliferation signaling pathways.69,70 PD-L1 expression was significantly positively correlated with FOXP3 mRNA levels 
and was closely associated with the proportion of peripheral blood Treg cells.71–73 In the in vitro experiments, PD-L1 co- 
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stimulation increased the expansion rate of inducible Treg cells from 6.5% to 18.3%.74 Subsequent investigations revealed 
marked dysregulation of the PD-1/PD-L1 pathway in individuals with epilepsy. Individuals with refractory epilepsy have higher 
serum and cerebrospinal fluid levels of PD-1, which are linked to the severity of the condition, particularly in status epilepticus. 
This pathway may serve as a diagnostic biomarker and therapeutic target, and modulating its function could potentially improve 
the prognosis.75 In addition, during the pathological process of epilepsy, PD-1 may be involved in immunoregulatory mechan-
isms related to neurons and microglia. By influencing central immune inflammation and T-cell activation, the PD-1/PD-L1 
pathway further affects the overall homeostasis of the CNS.76,77 Thus, the PD-1/PD-L1 pathway may also be involved in the 
immunopathological mechanisms of epilepsy based on current studies on the regulatory function of Tregs in the development and 
progression of epilepsy. Interventions targeting this pathway may provide new insights into immunotherapy for epilepsy.

These findings demonstrate the dual function of the PD-1/PD-L1 pathway in immune regulation: on the one hand, it 
exerts immunosuppressive effects by inducing Treg cell proliferation and maintaining their function; on the other hand, 
excessive expression may disrupt the homeostatic balance of Treg cells, leading to functional impairment. Therefore, 
therapeutic strategies targeting the PD-1/PD-L1 signaling pathway require precise control of dosage and timing to 
achieve optimal therapeutic outcomes.78 Small-molecule kinase inhibitors, such as Janus kinase (JAK) inhibitors, have 
demonstrated significant clinical efficacy and favorable safety profiles for the treatment of autoimmune diseases. This 
study provides an important theoretical foundation and technical approach for developing novel immunomodulatory 
drugs.69

Challenges of Other Treatments
Owing to their accessibility and safety, olfactory mucosa mesenchymal stem cells (OM-MSCs) have recently gained 
attention as a prospective cell source for treating intractable epilepsy. Studies have shown that OM-MSC treatment can 
significantly improve seizure type, frequency, and severity in patients with epilepsy, with no significant adverse reactions 
observed during an 8-year follow-up period. According to brain magnetic resonance imaging (MRI), patients with 
epilepsy may experience less reduction in brain volume after receiving autologous OM-MSC therapy.79 OM-MSCs have 
been shown to restore neuronal networks, alleviate inflammation, attract Treg cells to the brain, and enhance cognitive, 
motor, and sensory abilities in animal models of epilepsy.79 These findings provide experimental evidence supporting the 
use of OM-MSCs in the treatment of epilepsy. Small sample sizes and a dearth of randomized controlled trials continue 
to restrict research despite the positive prognosis. Although the 8-year follow-up shows safety, the long-term conse-
quences need to be evaluated. Therefore, large-scale clinical trials are required to validate the therapeutic value of these 
drugs.

Immunosuppressive therapy is the primary treatment for various autoimmune diseases; however, its long-term 
application faces significant challenges. Studies have shown that excessive use of immunosuppressants may lead to 
severe complications, including increased infection risk and higher tumor incidence.80,81 Treg cells mostly preserve grafts 
by modulating immune responses. However, an increase in Th17 levels may cause acute rejection or persistent graft 
malfunction, which may arise from excessive Th17 cell suppression or anomalies in the number and function of 
peripheral Treg cells.82,83 This imbalance may further exacerbate immune response dysregulation and impair graft 
function. Therefore, the precise regulation of Th17/Treg balance has become a critical challenge in the treatment of 
epilepsy.84

However, traditional immunosuppressive therapies lack specificity. For instance, calcineurin inhibitors (CNIs) 
influence the growth and function of Foxp3+CD4+CD25+ Tregs and prevent graft rejection by inhibiting IL-2.85 

Studies have shown that transplant recipients using CNIs exhibit a noteworthy increase in Th17 frequency and 
a decrease in Treg frequency in the peripheral blood, which may increase the risk of kidney dysfunction.85

Novel therapeutic strategies are being explored to achieve precise immunomodulation. For instance, compound 511 
improves the Th1/Th2 and Treg/Th17 balance by regulating the PI3K/AKT/mTOR signaling pathway.82 Recent studies 
have uncovered the complex interplay between different signaling cascades in epilepsy regulation: the AMPK/PGC-1α 
pathway has been shown to influence seizure susceptibility through mitochondrial fusion,86 while the dynamic activation 
of the PI3K/AKT/mTOR pathway is critical for lymphocyte differentiation patterns.83 These interconnected pathways are 
potential therapeutic targets for the comprehensive management of epilepsy. However, these treatments need to strike 
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a balance between maintaining efficacy and minimizing adverse effects. In addition, developing personalized treatment 
plans poses significant challenges, requiring careful consideration of the patient’s specific circumstances and disease 
characteristics.87

Innovative Immunomodulatory Strategies: A New Dawn in Epilepsy Treatment
Th17/Treg balance is regulated by an insulin-like growth factor (IGF) system. The IGF1R exploits the AKT-mTOR 
pathway to suppress Treg production, promoting Th17 differentiation and exacerbating inflammatory responses. Mice 
lacking IGF1R exhibit alleviated symptoms of MS, suggesting that inhibiting IGF signaling may mitigate epilepsy- 
related inflammation by restoring the immune balance, thereby providing a novel therapeutic target.88

One important transcription factor that controls Th17 cell development and the release of pro-inflammatory mole-
cules, including IL-17, is RORγt. As Th17 cells, γδT cells, and ILC3s consistently express it, it may serve as a target for 
epilepsy treatment.89,90 Currently, progress has been made in developing RORγt inhibitors, including competitive 
antagonists and inverse agonists, which inhibit transcriptional activity by binding to the ligand-binding domain.90,91 

These inhibitors exhibit promising efficacy in autoimmune disorders, as evidenced by in vitro studies indicating 
a significant reduction in the development of Th17 and IL-17 expression levels without altering Th1 and Treg 
differentiation.91,92 However, challenges remain for clinical application. RORγt is crucial for immune homeostasis, 
and long-term inhibition may increase the risk of infections, impair barrier function, and disrupt microbiota balance.90,93 

Additionally, its ability to penetrate the BBB and its pharmacokinetic properties require further validation.
In addition to inhibiting Th17 cell function, increasing the number of Tregs has become a research focus. Studies have 

shown that the modulation of Foxp3 can enhance Treg cell function. Recent research has indicated that CD4+CD25 
+CD226- Treg cells have significant advantages over traditional CD4+CD25+CD127lo/- Treg cells. After 14 days of 
culture, the proportion of FOXP3+Helios- cells is lower, their epigenetic characteristics are more stable, and they exhibit 
stronger suppressive functions. These cells can inhibit effector T cell proliferation while producing fewer pro- 
inflammatory factors and more TGF-β1.94 Furthermore, the T-cell receptor (TCR) signaling pathway is critical for 
Treg differentiation and function. TCR activates transcription factors through the PI3K/AKT and MAPK pathways, 
promoting Foxp3 expression, which forms transcriptional complexes to regulate gene expression.95 This regulatory 
mechanism maintains Treg cell stability and provides a foundation for developing new cell expansion strategies.

Therapies for diseases of the CNS have advanced substantially in recent years owing to micro/nanocarrier technologies. 
Because micro/nanocarriers can effectively traverse the BBB, they can transport a variety of immunomodulatory medications, 
including immunoregulatory proteins and small interfering RNA (siRNAs). By employing brain-targeted modifications using 
transferrin receptor ligands or cell-penetrating peptides (such as TAT and Penetratin), these carriers can be actively transported 
across the BBB.96,97 Utilizing pH- or enzyme-sensitive structures, they enable controlled release within the microenvironment 
of diseased tissues, allowing drugs to accumulate locally at epileptic foci. This approach reduces peripheral toxic side effects 
and enables precise regulation of the Th17/Treg balance, mitigating neuroinflammation-induced neuronal damage.98 Although 
this technology is still in the exploratory stage in the field of epilepsy immunoregulation, its ability to cross the BBB has been 
demonstrated. Future preclinical studies are required to optimize their safety and targeting capabilities.

Additionally, researchers developed a modified IL-2 protein (mIL-2) that extends its half-life through H16L mutations and 
fusion with the Fc fragment. mIL-2 selectively activates the STAT5 signaling pathway in Treg cells, significantly expanding the 
Treg population in the peripheral blood, spleen, and lymph nodes without affecting the proliferation of CD8+ T cells and NK 
cells.99,100 This offers a novel approach for restoring the Th17/Treg balance in epilepsy; however, whether mIL-2 can effectively 
cross the BBB to reach the CNS and exert its effects remains unclear, representing a key area for future investigation.

Recently, a research team developed an innovative “dual-lock” gene delivery system that achieves spatiotemporal control of 
IL-2 gene delivery through the GFAP astrocyte-specific promoter and a tetracycline-inducible switch. This system effectively 
expands the Treg population in the brain and exerts protective effects in various neurological disease models.101 Studies have 
shown that brain-specific IL-2 delivery can prevent and improve age-related neurofunctional decline by activating the PI3K/AKT 
and JAK/STAT signaling pathways and restoring the molecular characteristics of glial cell compartments in the brain. This leads 
to significantly reduced expression levels of related markers compared to those in younger control groups.102
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Another groundbreaking study revealed that EXO-PD-L1-HGF (exosomes modified with PD-L1 and hepatocyte growth 
factor) could be precisely targeted to areas of ischemic brain injury via CXCR4 upregulation after intravenous injection. This 
system modulates immune responses through multiple mechanisms, including inhibition of effector T cell proliferation and 
significantly increasing the number of CD8+CD122+IL-10+ Treg cells, thereby effectively reducing inflammation.103 This 
novel therapeutic approach has the potential to significantly alter the immune microenvironment of brain cells and promote 
neuronal regeneration after stroke. In addition, multi-omics integration (such as genomics and transcriptomics) plays a critical 
role in deciphering the complex mechanisms of epilepsy. Identifying molecular biomarkers and epilepsy targets related to 
brain tumors provides new insights into immune-related mechanisms.104 This approach is essential for studying the Th17/Treg 
imbalance in epilepsy and developing precise medical strategies to restore immune balance.

In summary, although immunomodulation therapy for epilepsy has achieved groundbreaking progress in various 
fields, challenges remain, including crossing the BBB, the risk of immunosuppression, and the lack of large-scale clinical 
trials. By focusing on the key role of Th17/Treg cell imbalance in the course of epilepsy, this study provides a new 
intervention strategy for patients with drug-resistant epilepsy and further demonstrates the importance of precise 
modulation of the immune microenvironment in neuroprotection and brain function remodeling. The integration of multi- 
omics technologies offers powerful tools for the deep analysis of the complex mechanisms of epilepsy and identification 
of potential targets, advancing personalized immunotherapy from concept to clinical practice. Future efforts should focus 
on increasing sample sizes, fostering multicenter collaborations, and optimizing technologies to achieve more precise and 
safer interventions, bringing new hope and improving the quality of life of patients with refractory epilepsy.
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