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Abstract: Breast cancer (BC) is the most common type of cancer among women worldwide. A large number of studies have found 
that the high expression or dysregulation of cyclin-dependent protein kinases (CDKs) is closely associated with breast cancer. For 
example, the CDK4/6-Rb axis is involved in the G1/S phase transition of the cell cycle and plays an important role in BC; CDK1 and 
its associated cyclin are commonly involved in mitotic progression, and increased expression of CDK1-associated cyclin has been 
observed in BC; loss of CDK12 significantly ameliorates triple-negative breast cancer. CDKs are one of the major families within the 
group of PROteolysis Targeting Chimeras (PROTACs)-degraded kinases. PROTAC is a potent technology for protein-targeted 
degradation, whose molecules consist of the ligand of the Protein of Interest (POI), the ligand of the E3 ubiquitin ligase (E3), and 
a Linker. After binding to POI, PROTAC can recruit E3 to ubiquitinate POI via ubiquitin-proteasome mediated degradation. In this 
review, we summarize relevant research results and review that PROTAC can effectively inhibit the proliferation of breast cancer cells 
by inducing ubiquitination of CDK1, CDK4/6, CDK9, CDK12/13 and their subsequent degradation by proteasomes, which is expected 
to be a novel approach for the treatment of breast cancer. 
Keywords: breast cancer, ubiquitin, PROTAC, CDKs

Background
According to the latest statistics from the American Cancer Society, breast cancer(BC) remains the most common 
malignant tumor in women worldwide, replacing lung cancer, and its incidence is slowly increasing each year.1 The 
report from the International Agency for Research on Cancer indicates that the global number of new breast cancer cases 
is projected to exceed 3 million by 2040.2 With the in-depth research on cancer mechanisms and the continuous updating 
of treatment methods, the survival rate of high incidence cancers such as BC has been improved, but cancer is still the 
leading cause of death among middle-aged and elderly people, and BC is the leading cause of cancer death among 
women.3 These concerning trends highlight the urgency of developing more effective strategies to target BC.

Originally characterized as serine/threonine-specific protein kinases, CDKs are central to the regulation of the 
eukaryotic cell cycle.4 Cyclin acts as an activator for CDKs and is an integral part of the cell cycle machinery.5 CDK 
monomers are normally inactive, and they drive the eukaryotic cell cycle by combining with the corresponding cyclin to 
form a heterodimer with activity.6 In addition to CDK1, CDK2, CDK4, and CDK6, which regulate the cell cycle, an 
important sub-branch of the family, CDK7, CDK9, CDK12, and CDK13, regulates transcription.7 CDK7, CDK9, 
CDK12, and CDK13 directly phosphorylate the C-terminal structural domain (CTD) of RNA Pol II, thereby regulating 
different stages of transcript production. Mounting evidence has revealed a strong association between CDKs and cancer 
development. For instance, Liu et al8 found that CDK2 was a potential diagnostic and prognostic biomarker and novel 
tumor immune environment sign for glioma patients. And numerous studies have demonstrated that CDKs are also 
inextricably linked to various types of breast cancer, such as CDK1, which is involved in the development of TNBC as 
a key cell cycle regulator controlling G2/M;9 the CDK4/6-Rb axis, which has been shown to increase the rate of 
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progression from the G1 to the S stage, especially in estrogen-receptor-positive breast cancer;10,11 and CDK9, which 
promotes the epithelial-mesenchymal transition (EMT) induces cancer stem cells and is highly expressed in breast 
cancer.12 Therefore, targeting CDK has been identified as a promising approach for cancer therapy.13,14 CDKs are one of 
the major kinase families effectively degraded by PROTAC compounds,15,16 therefore, the application of PROTAC 
technology to directly degrade CDKs for the treatment of breast cancer provides a new solution for the treatment of 
breast cancer.

PROTAC technology is an effective tool for endogenous protein degradation developed in recent years. PROTAC is 
a bifunctional small molecule compound containing two different ligands in its structure: one is an E3 ligand and the 
other is a ligand that binds to POI. These two ligands are connected to each other by Linker, forming a ternary 
compound: target protein ligand-Linker-E3 ligand. This special structure allows PROTAC to bind to both the target 
protein and the E3 ligase, thus targeting the degradation of proteins that are difficult to inhibit by conventional drugs.17,18

Mechanism of Action of PROTAC
Ubiquitin and Its Mechanism of Action
There are many pathways of protein degradation, among which the ubiquitin-proteasome system (UPS) is the main pathway 
of protein degradation in cells, which maintains protein homeostasis by ubiquitin labelling of proteins to be degraded, and 
then recognition and degradation of these labelled proteins by the proteasome. Its ability to specifically degrade proteins 
involved in various metabolic activities is important for maintaining cellular protein homeostasis and regulating many 
cellular processes such as gene transcription, DNA pairing, cell cycle control and apoptosis.19,20 UPS is ATP-dependent and 
consists of two steps: polyubiquitination of target proteins and proteolytic hydrolysis of polyubiquitin by the 26S protein 
hydrolase complex.21 Ubiquitin is a small regulatory protein, contains seven lysine residues and an N-terminal methionine 
residue, each of which can be attached to another ubiquitin with the function of labeling proteins for degradation.22 

Ubiquitination is a post-translational modification that involves the binding of ubiquitin to lysine residues of other proteins. 
This modification is mediated by the sequential action of E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme 
and E3 ubiquitin ligase. First ubiquitin is activated by E1 in the presence of ATP, then it binds to E2, and finally it is linked 
to the lysine residues of the target protein via E3, forming a ubiquitin-protein covalent linkage. The ubiquitin-tagged protein 
is then recognized by the proteasome and transported to the enzyme factory for degradation, and ubiquitin can be recycled 
repeatedly23,24 (as shown in Figure 1). PROTAC is a drug design strategy based on the ubiquitin-proteasome system for 
targeted protein degradation in cancer therapy. Further, CRISPR-Cas9 is a genome editing tool.25 CRISPR screens have 
been used to identify essential genes, genes involved in cancer metastasis and tumor growth, as well as drug targets and 
mechanisms of resistance.26 For example, Kumarasamy et al27 identified CDK2 loss as a mechanism of resistance to CDK2 
inhibitors by CRISPR screens in a breast cancer model. In addition, knockdown of CDK2 by CRISPR-Cas9 confirmed that 
CDK2 deletion reversed CDK2 inhibitor-induced G2/M block and restored cell proliferation. In summary, CRISPR screens 
provide insights into the mechanisms of cancer drug resistance, develops more effective therapeutic strategies, and brings 
new breakthroughs for overcoming cancer drug resistance.

E3 Ubiquitin Ligase Ligands
E3 ligand is an important component of PROTAC, which is responsible for recruiting E3 in the human body thereby 
eliciting ubiquitin molecules, tagging the whole ternary complex for ubiquitin degradation and transporting it to the 
enzyme factory for degradation of the target protein. More than 600 E3s have been identified in the human genome, but 
only a few of them have been used in the design of PROTACs. Currently used to develop E3 ligands are Mouse 
double minute 2 homolog (MDM2), inhibitor of apoptosis proteins (IAPs), von Hippel- Lindau (VHL), cereblon(CRBN), 
and others.28

MDM2-PROTAC
The earliest MDM2-PROTAC utilized a derivative of Nutlin-3a as an E3 ligand to degrade the androgen receptor (AR).29 

MDM2-PROTACs selectively bind to the p53 site on the surface of MDM2, which can stabilize the p53 protein and 
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degrade target proteins at the same time, and exhibit better anticancer activity. However, MDM2-binding ligands are not 
easy to synthesize, which leads to their limited application.

IAP-PROTAC
Early IAP-PROTACs utilized Bestatin derivatives as E3 ligands to degrade cellular retinoic acid binding protein-1/2 
(CRABP-1/2).30 Then later, IAP-PROTACs can also be used to degrade target proteins such as BRD4, AR, and ERα.31,32 

This series of PROTACs is also known as SNIPERs (specific and nongenetic IAP-dependent protein erasers). Because 
certain tumor cells escape apoptosis by directing the upregulation of IAPs, SNIPERs can often degrade both IAPs and 
target proteins, thus exerting stronger anti-tumor effects.

VHL-PROTAC
The VHL gene is a tumor suppressor gene, and its protein product VHL can form the VHL-ElonginB/C-CUL2 (VBC) 
complex with ElonginB, ElonginC, and Cullin2 proteins, which belongs to the E3-ubiquitin protease system and 
mediates the degradation of a variety of proteins in the human body, including BRD4 protein,33 ERRα, RIPK2, and 
ABL, among others.34,35 The main advantage of VHL-PROTACs is their targeting specificity. In addition, the fact that 
the binding affinity of the E3 ligase of VHL to the ligand does not need to be high is also one of its advantages.

CRBN-PROTAC
CRBN is a component of the CRL4 E3 enzyme complex, and a common ligand is a duamine derivative. Since a series of 
imines have been identified as ligands for CRBN, more and more CRBN-PROTACs have been developed. The first 
CRBN-PROTAC molecule used Thalidomide as a CRBN ligand to induce the degradation of BRD2, BRD3, and 

Figure 1 ① Ubiquitin-activating enzyme (E1) activates ubiquitin (ub) in the presence of ATP, and the activated ub is transferred to ubiquitin-conjugating enzyme (E2), and E3 
ubiquitin ligase (E3) transfers the ub from E2 to lysine residues of target proteins to form ubiquitin chains. Eventually, the ubiquitin chain is recognized as a signal by the 26S 
proteasome. The target protein is recognized and unfolded by the 19S regulatory particle of the proteasome. The unfolded protein passes through the proteasome channel 
into the 20S core particle, proteases within the 20S core particle degrade the target protein into short peptides. Ub is then released from the degradation product and 
recycled. ② The target protein ligand of PROTAC binds to the target protein, and the E3 ubiquitin ligase ligand simultaneously binds to E3 ubiquitin ligase to form a ternary 
complex. The E3 ubiquitin ligase transfers the ubiquitin to the target protein, labeling it for degradation. The ubiquitinated target protein is recognized and degraded by the 
26S proteasome.
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BRD4.36 CRBN-PROTACs can also degrade a variety of substrates such as BCL6, CDK8/9, PI3K, BTK, and ALK. 
Since CRBN is widely expressed in tumor cells and normal cells, CRBN-PROTACs have less tissue selectivity.

The two most dominant ligands are VHL and CRBN.37 First, both are very easy to obtain, and they are non-toxic and 
relatively cheap. Secondly, they have good binding sites and can be connected to linkers, which facilitates the synthesis 
of PROTAC molecules. Thirdly, they are very versatile and can be used to degrade multiple targets with a certain degree 
of flexibility. Last but not least, the two E3 enzyme ligands are well recognized by E3 enzymes and can be easily linked 
to E3 enzymes to recruit ubiquitin for degradation of target proteins.38,39 Because CRBN has a larger protein-binding 
surface than VHL, CRBN-PROTACs may degrade a larger range of target proteins with broader target adaptation than 
VHL-PROTACs. The molecular weight of CRBN-PROTACs is also lower compared to VHL-PROTACs, so CRBN- 
PROTACs are in a more suitable chemical space for oral absorption.

Linker Selection
Linker is the part that chemically connects the Protein of Interest (POI, also known as drug targets, they are proteins that 
are directly bound to and affect the function of a drug when it exerts a therapeutic or diagnostic effect in the body) ligand 
to the E3 ligand. Currently, most of the Linkers are composed of polyethylene glycol chains or pure carbon chains, and 
the use of other Linkers such as p-xylene has also been reported in the literature.40 Moreover, different Linker lengths can 
affect the activity of PROTACs.41 In some cases Linkers are not bystanders of the PROTAC ternary complex, they can 
also form connections with the surface of the target protein, which enhances the activity of PROTACs.42 Since different 
PROTACs molecules have different structures, they all have an optimal Linker; in other words, different PROTAC 
molecules do not have exactly the same optimal Linker.

Mechanism of Action of PROTAC
The mechanism of PROTAC is to use the UPS system to ubiquitinate and degrade target proteins to inhibit tumor 
growth.43,44 Firstly, after the PROTAC molecule enters the cell, the E3 ligand recruits E3, and the POI ligand recruits the 
target protein that it wants to degrade, which ultimately binds the target protein to E3 and further ubiquitinates the target 
protein.45 The ubiquitinated target protein is finally transported to the enzyme factory to be recognized and degraded by 
the 26S proteasome. And like ubiquitin, PROTAC molecules are theoretically recyclable29,30 (as shown in Figure 1). 
Therefore, PROTACs require only a small dose to accomplish degradation in tumor cells.

PROTAC Degradation of CDKs for Breast Cancer Treatment
PROTAC Degradation of CDK1 for the Treatment of Breast Cancer
CDK1 was the first CDK family member to be identified.46,47 Different cyclins are required at different stages of the cell 
cycle, and different CDKs regulate the cell cycle by binding to the corresponding cyclin.48,49 In late G2 and early M, 
cyclin A binds to CDK1 to promote M phase. CDK1 is the only CDK that binds to cyclin B, which accumulates in 
M phase, leading to activation of the cyclin B-CDK1 complex.50 Activation of cyclin B-CDK1 signals the onset of 
mitosis51,52 and mitosis requires cyclin A and cyclin B in complex with CDK1 to ensure its successful completion.53,54 

Until cyclin A and cyclin B are disrupted by the ubiquitin-proteasome system,55,56 CDK1 activity is depleted at the 
onset.57,58 In addition to binding to cyclin, full activation of CDK1 is also regulated by phosphorylation of threonine and 
tyrosine residues. Wee1 or Myt kinases phosphorylate CDK1 at the inhibitory sites tyrosine-15 and/or threonine-14 
thereby inhibiting CDK1 activity. Subsequently CDK activating kinase (CAK) phosphorylates CDK1 at the activation 
site threonine-161. Finally phosphorylates the inhibitory site in the presence of the Cdc25 phosphatase allowing full 
activation of CDK1 to drive further progression of the cell cycle.59 These phosphorylations induce conformational 
changes and enhance the binding of cell cycle proteins.60,61 The expression of CDK1 in breast cancer tissues is 
significantly higher than that in normal breast tissues and correlates with histological grading, pathological type and 
lymph node metastasis of breast cancer.

Xue et al62 designed a series of CST-based PROTACs (compounds 6a-6d) with different length junctions using 
celastrol(CST) as the target protein binding ligand and thalidomide as the E3 ubiquitin ligase binding ligand. The 
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antiproliferative activities of compounds (6a-6d) were evaluated in five different cell lines, namely, 4T1, U87MG, A549, 
MDA-MB-231 and HepG2, and it was found that compound 6a showed superior cell growth inhibition. And compound 
6a could inhibit the proliferation and migration of breast cancer cells. Compound 6a can inhibit the growth of 4T1 cells 
by causing 4T1 cell cycle arrest in G0/G1 and G2/M phases. And its induced cell cycle arrest was mainly regulated by 
CDK.63 The ubiquitination level of CDK1 was significantly upregulated in 4T1 cells treated with compound 6a, which 
directly binds to CDK1 to induce protein degradation.64 Compound 6a also showed excellent in vivo antitumor efficacy 
in a 4T1 hormonal Balb/c mouse-based model with an acceptable safety profile and could be used as a potential 
chemotherapeutic agent against triple-negative breast cancer (TNBC). It provides a new strategy for the treatment of 
TNBC and other cancers.

PROTAC Degradation of CDK4/6 for the Treatment of Breast Cancer
CDK4 and CDK6 bind to cyclin D (cyclin D1, cyclin D2, and cyclin D3) when DNA synthesis occurs, and are 
particularly involved in driving the cellular transition from the G1 to the S phase of the cell cycle.65,66 That is why 
CDK4 and CDK6 are usually considered as promoters of G1 progression. The tumor suppressor retinoblastoma (Rb) 
protein controls the critical transition from G1 to S phase. Rb controls early cytokinesis by binding to the E2F 
transcription factor to block the G1/S transition, and inactivation of Rb allows cytokinesis to continue. In G1 phase, 
multiple growth signals can lead to binding of cyclin D to CDK4/6, and the resulting phosphorylation of Rb leads to the 
release of E2F transcription factors, which increase transcription of the E2F target genes cyclin E1 and cyclin E2. Cyclin 
E then binds to CDK2 and activates, leading to hyperphosphorylation of Rb and phosphorylation of many other proteins, 
which completely deprives Rb of its inhibitory effect on E2F transcription factors, collectively driving irreversible 
S phase.67,68 The typical function of hypophosphorylated Rb is to bind E2F transcription factors and consequently to 
sequester E2F transcription factor activity, thereby inhibiting cell entry into S phase.69 In BC, aberrant activation of the 
Cyclin D-CDK4/6-Rb signaling pathway is a key mechanism leading to tumor cell proliferation.70 Indeed, most 
PROTACs targeting CDK4/6 can disrupt both kinases because they share a similar structural fold and common ligands.71

The pivotal role of CDK4/6 in the tumorigenic pathway makes CDK4/6 an attractive and safe target for anticancer 
therapy.72 There are a number of studies designing PROTACs that degrade CDK4/6 to treat cancer. Amarnath Natarajan 
et al73 reported that Palbociclib-based PROTACs selectively degraded CDK6 while retaining CDK4. Niall A. Anderson 
et al74 reported Palbociclib-based PROTAC degraded CDK4/6 with high binding affinity and degradation potency. In 
addition, PROTACs recruiting VHL and cIAP ligases were prepared and they also showed good degradation efficacy for 
CDK4/6. Christian Steinebach et al75 led their team in the design of a Palbociclib-based (palbociclib, a CDK4/6 
inhibitor) PROTAC and recruited different E3 ligases, ie, CRBN and VHL. The VHL-based PROTACs, compounds 
27 and 34, had comparable inhibitory activity to palbociclib against the negative breast cancer cell line MDA-MB-231 
cells, suggesting that this effect is mainly controlled through CDK 4/6 inhibition. CRBN- and VHL-based PROTAC were 
next compared for degradation of CDK4/6 in MDA-MB-231 cells, revealing that CRBN-based PROTAC (BSJ-03-123) 
and 27 were more effective than 34. And VHL-based PROTAC was stronger on CDK6 than on CDK4. Both 34 and 
palbociclib significantly impaired cell migration and 34 was slightly better than palbociclib. Zhao et al76 reported that 
PROTAC: degradant 1 is made by linking pomalidomide (a drug used to treat certain types of cancer such as multiple 
myeloma and Kaposi’s sarcoma) as a ligand for the E3 ligase to palbociclib as a target protein binding ligand. Treatment 
of MDA-MB-231 cells with degradant 1 resulted in efficient degradation of CDK4 and CDK6, which subsequently 
reduced Rb phosphorylation levels in a dose-dependent manner. All of these studies provide new strategies for the 
treatment of cancers such as breast cancer by designing CDK4/6 degraders, making PROTAC a possible new tool for 
cancer therapy in the future.

PROTAC Degradation of CDK9 for the Treatment of Breast Cancer
CDK9 is a key member of the transcriptional CDK subfamily77 and is mainly involved in transcription elongation. 
Transcriptional CDKs are associated with cancer because they contribute to the transcription of genes that are considered 
oncogenic transcription factors (TFs), such as c-MYC.78 CDK9 forms a positive transcription elongation factor 
B (p-TEFb) complex with cyclin T, which promotes transcription elongation and mRNA maturation by phosphorylate 
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the C-terminal structural domain (CTD) of RNA pol II.79,80 In addition, the active p-TEFb/CDK9 complex is recruited by 
bromodomain-containing protein 4 (BRD4) and the super elongation complex (SEC) to enhance c-MYC 
transcription.81,82 Inhibition of CDK9 blocks phosphorylation of RNA polymerase II by p-TEFb, leading to transcrip-
tional repression and apoptosis.12 Dysregulation of CDK9 and its pathway plays an important role in several cancers.83 

Similarly, the key transcriptional regulator CDK9 is frequently dysregulated in BC.84 In addition, the ATP-binding pocket 
of CDK9 is more flexible and can accommodate larger ligands compared to other CDKs, making CDK9 an attractive 
target for anticancer drugs.85

Noblejas-López et al79 used the CDK9 inhibitor SNS-032 as a target protein-binding ligand, ligated SNS-032 to 
a thalidomide derivative, which binds to the E3 ubiquitin ligase CRBN, and designed PROTAC——THAL-SNS-032. 
Using MDA-MB-231, HS578T, BT549, SUM149, and HCC3153 as triple-negative breast cancer cell lines; SKBR3, 
HCC1569, and HCC1954 as HER2-positive cell lines; and MCF7 and T47D as luminal A cell lines. Finally, BT474 
served as a luminal B cell line. CDK9 protein levels were assessed in all cell lines and found to be increased in lumen 
A and lumen B compared to TNBC and HER2-positive isoforms. The use of THAL-SNS-032 showed high inhibitory 
activity in MCF7, T47D and BT474 cells and was able to degrade CDK9 in the cells and induce apoptosis.

Chen et al86 screened four PROTAC utilizing CDK9 inhibitors as ligands for target proteins and CRBN as an E3 
ubiquitin ligase in the PROTAC libraries of triple-negative breast cancer cell lines HCC1806 and HCC1937: L027, L055, 
L062, and L063. Treatment of two ERα-positive cell lines (MCF7 and T47D), two HER2-positive breast cancer cell lines 
(BT474 and SKBR3), and two triple-negative breast cancer cell lines (HCC1806 and HCC1937) with the four 
compounds revealed that L055 exhibited the strongest inhibitory activity. Moreover, L055 significantly inhibited the 
proliferation, cell cycle, colony formation and induced apoptosis of MCF7 and T47D in vitro. Two ERα-positive breast 
cancer organoid models were established, and L055 inhibited organoid and tumor growth. Finally, using a T47D breast 
cancer hormonal nude mouse model revealed that treatment with L055 significantly reduced tumor growth and led to 
CDK9 degradation. Treatment of MCF7 and T47D cells with L055 for 48 h revealed that L055 significantly down- 
regulated CDK9 and reduced the expression of downstream target genes such as c-Myc and Mcl-1, and that it had 
a significant inhibitory effect on the growth of ERα-positive breast cancer cells. L055 represents a potentially novel 
therapeutic agent for ERα-positive breast cancers and potentially other malignancies, offering new insights and potential 
for the treatment of breast cancers through PROTAC breast cancer provides new insights and evidence.

PROTAC Degradation of CDK12/13 for the Treatment of Breast Cancer
CDK12/13 are also transcription-associated CDKs. Among the CDK family members, CDK12 and CDK13 have the 
highest sequence homology and the largest molecular weights. CDK13 has a similar sequence and a similar biological 
function as CDK12, but little research has been done on CDK13.87 Among all CDKs, only CDK12 is located on 
chromosome 17q12, which always contains oncogenic features and genetic alterations of various tumors.88 Cyclin K is 
a cell cycle protein that interacts with CDK12.89 CDK12/13 binds to cyclin K by phosphorylating the C-terminal structural 
domain (CTD) of RNA pol II to regulate gene transcription, which is considered a key step in the transition from 
transcription initiation to elongation.90 CDK12 mutations, amplifications, fusions and deletions can be found in different 
human cancers.91 Therefore, CDK12 can act as a biomarker and therapeutic target in different cancer types.92,93 Recent 
studies have revealed some novel functions of CDK12 in cancer, especially breast cancer, by regulating a variety of 
biological activities including c-MYC expression, Wnt/β-linker protein signaling, ErbB-PI3K-AKT signaling and DNA 
damage response (DDR) signaling.94,95 Therefore, CDK12/13 are potential therapeutic targets for breast cancer.96,97

Yang et al98 designed compound 4 based on previously reported dual CDK12/13 inhibitors, selected thalidomide and 
lenalidomide as E3 ligase ligands, and designed and characterized a series of CDK12/13 PROTACs by varying the length 
and composition of the linker chain. Evaluating the degradation efficiencies of different compounds against CDK12 and 
CDK13 Compound 7f was found to be highly selective for the degradation of CDK12 and CDK13. In vitro evaluation of 
the triple negative breast cancer cell lines MFM223 and MDA-MB-231 further demonstrated that Compound 7f almost 
completely degraded CDK12 and CDK13 proteins in these cells and significantly inhibited the growth and proliferation 
of MFM223 and MDA-MB-436 cells. 7f in combination with DDR inhibitors, such as cisplatin, showed a significant 
synergistic effect in inhibiting the proliferation of MDA-MB-231 cells. In conclusion, compound 7f can be used as 
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a valuable chemical probe to further evaluate the therapeutic potential of targeting CDK12/13 in TNBC. Thus, 
degradation of CDK12/13 through the use of PROTAC technology provides a new targeted therapeutic opportunity 
for triple-negative breast cancer.

The idea of PROTAC first appeared in 1999.99 However, the first PROTAC did not appear until 2001.100 Methionine 
aminopeptidase type 2 (MetAP-2) was the first protein to be degraded by a PROTAC, and opened the chapter of 
PROTACs, but the first PROTACs had low activity in human cells.39,101 It was not until 2008 that the first small- 
molecule PROTAC was reported by Prof. Crews’ team at Yale University, who designed a small-molecule PROTAC 
based on the E3 ligase MDM2 for degradation of the androgen receptor (AR), which was a major milestone in the 
field.102 In 2019, the oral small-molecule targeting the AR developed by Arvinas, ARV-110 became the first PROTAC to 
enter clinical trials, marking an important step in moving PROTAC technology from the laboratory to clinical 
application.103 In recent years, the development of small molecule inhibitors has received great attention in the field 
of drug development.104 However, unlike the “placeholder-driven” mechanism of small-molecule inhibitors, the “event- 
driven” mechanism of PROTAC allows for lower dosage, dosing frequency, and toxicity than that of small-molecule 
inhibitors.105,106 PROTAC’s unique mechanism of action allows it to degrade target proteins without the need to be 
present at high concentrations for a long period of time, ie, a very small concentration of PROTAC is sufficient to 
degrade a target protein. Moreover, since it can be recycled after degrading a target protein, it is not necessary to 
continuously add the drug for a long time to maintain the drug efficacy. It is also possible to maintain the efficacy of the 
drug without the need for long-term local high concentration, the toxic side effects on the human body are much smaller, 
and the resistance of tumor cells to the drug will be greatly weakened. Finally, by inducing protein degradation rather 
than directly inhibiting its activity, the scope of use of the drug has been greatly broadened. It is expected that more drugs 
will enter clinical trials in the future, injecting new energy into the development of PROTAC.107

Conclusion and Outlook
CDKs play critical roles in cell proliferation, gene transcription and control of cell cycle progression, and they form 
a system to regulate the cell cycle. Ongoing research into the role of cell cycle dysregulation in BC has led to their 
emergence as attractive targets for cancer therapy. Similarly, Cyclins and CDKs play crucial roles in development, 
differentiation, and immune cell activation.108 Immunotherapy is harnessing the body’s immune system to recognize, 
target, and eliminate cancer cells.109 Several types of immunotherapy strategies including Immune checkpoint 
inhibitors,110 Monoclonal antibodies,111 Antibody-drug conjugates112 and cancer vaccines113 have shown promising 
results in treating various cancers, but its drug resistance is a major limitation. At the same time, the tumor micro-
environment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, 
such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor 
cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance.114 For example, TAMs, CAFs, NK 
cells, T cells, lymphocytes, and other cells present in the tumor microenvironment modulate each other by secreting 
different cytokines and chemokines. This promotes extracellular matrix remodeling and angiogenesis and causes immune 
suppression in the breast cancer microenvironment.115 The intricate interactions between the cancer cells and the immune 
microenvironment affect immunotherapy and many other anticancer therapies. Accordingly, there is a pressing need to 
ascertain novel targets and biomarkers.116 However, targeting CDK can affect the immune microenvironment and 
promote anti-tumor immunity, which is promising to prevent or counteract drug resistance mechanisms.117

PROTAC utilizes the ubiquitin-proteasome system for targeted protein degradation of intracellular proteins to enhance 
the activity of existing drugs, mitigate drug side effects, and circumvent drug resistance. By designing PROTAC to degrade 
CDKs to better inhibit the growth of human breast cancer cells in vitro and breast cancer xenograft breast tumors, it 
provides a new idea for the treatment of breast cancer. However, the design of PROTAC to degrade CDKs is still in the 
basic research stage, and it has great potential in cancer therapy while facing significant challenges. Further clinical studies 
are urgently needed to validate the therapeutic potential of PROTACs, aiming to achieve precise degradation of target 
proteins and provide innovative therapeutic strategies for breast cancer. And could validate these findings in patient-derived 
xenograft models in future, so as to provide models closer to clinical reality for tumor research, drug development and 
precision medicine, and bring more treatment options and better prognosis for tumor patients.
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