
R E V I E W

The Role of Pattern Recognition Receptors in 
Epigenetic and Metabolic Reprogramming: Insights 
into Trained Immunity
Yanjie Li1,2, Mingzhu Chen1,2, Junxiong Li1,2, Jiangtian Hu 1,2

1Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China; 
2Yunnan Key Laboratory of Stomatology, Kunming, 650106, People’s Republic of China

Correspondence: Jiangtian Hu, Email hujiangtian@kmmu.edu.cn

Abstract: Pattern recognition receptors (PRRs) function as pivotal components of the innate immune system by orchestrating trained 
immunity through dynamic epigenetic and metabolic reprogramming. Recent discoveries demonstrate that PRRs not only detect 
pathogens but also actively regulate immune cell metabolism and transcriptional landscapes, thereby potentiating the speed and 
magnitude of defensive responses upon secondary challenges. These functional adaptations are coordinated through evolutionarily 
conserved signaling cascades that establish persistent immunological modifications at cellular and systemic levels. Nevertheless, 
despite substantial advances in characterizing PRR-driven immune activation, the molecular mechanisms governing their role in innate 
immune memory formation remain incompletely elucidated. This review systematically explores emerging paradigms of PRR- 
mediated epigenetic remodeling and metabolic rewiring, with particular emphasis on their mechanistic integration into trained 
immunity. We critically assess current evidence, identify unresolved questions regarding signal transduction specificity and memory 
maintenance, and propose novel methodological approaches to decipher the multilayered regulatory networks of innate immune 
adaptation. By elucidating these processes, our analysis establishes a conceptual framework for developing immunomodulatory 
therapies and leveraging trained immunity in precision medicine applications. 
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Introduction
Trained immunity (TI) is an evolutionarily conserved mechanism of innate immune memory that enhances 
nonspecific host defense through epigenomic and metabolic reprogramming. Unlike the antigen-specific memory 
conferred by adaptive immunity via T and B lymphocytes, TI predominantly engages myeloid lineage cells, 
including monocytes and macrophages. This functional rewiring is initiated through activation of germline- 
encoded PRRs, particularly Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), which recognize 
conserved pathogen-associated molecular patterns (PAMPs). PRR signaling triggers chromatin remodeling events 
characterized by histone modifications such as H3K4 trimethylation (H3K4me3), coupled with metabolic shifts 
toward aerobic glycolysis. These coordinated changes establish a transcriptionally permissive state for rapid 
cytokine gene activation, including interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α). While adaptive 
immune memory provides lifelong protection, TI generally exhibits a shorter duration spanning weeks to months. 
Notably, dietary metabolites like β-glucans modulate the magnitude and persistence of TI by targeting epigenetic 
modifiers within transcriptional regulatory complexes. Thus, PRRs function as biochemical integrators that 
convert microbial encounters into sustained immune reprogramming. This paradigm shift in innate immune 
plasticity not only challenges traditional immunological frameworks but also offers novel therapeutic strategies 
for infectious diseases, cancer immunotherapy, and inflammation-related pathologies.1,2
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As central architects of immune memory, PRRs detect both PAMPs and damage-associated molecular patterns 
(DAMPs) to execute dual functions: triggering immediate host defense mechanisms3,4 and coordinating sustained 
epigenetic-metabolic reprogramming for innate immune memory.5–7 The activation of PRRs induces two mutually 
reinforcing processes—dynamic metabolic rewiring and stable epigenetic modifications—that synergistically 
enhance immune cell responsiveness to secondary challenges.8,9 These molecular adaptations amplify antimicro-
bial effector functions while promoting cytokine production, creating metabolic-epigenetic imprints essential for 
TI establishment. Experimental models demonstrate that PRR recognition of bacterial components establishes 
persistent antimicrobial memory in myeloid cells, conferring robust protection against reinfection.10–12 Such 
insights hold transformative potential for designing next-generation vaccines and immunotherapies.13

Critical knowledge gaps persist in deciphering PRR-mediated training mechanisms. Existing studies predominantly 
focus on PRR functions in pathogen detection and acute inflammatory signaling, with limited investigation into their 
roles in maintaining and regulating immune adaptation. Furthermore, the tissue-specific expression profiles and func-
tional diversification of PRR subsets remain poorly characterized, particularly in pathological contexts such as chronic 
inflammation, autoimmunity, and tumor microenvironments.

Classification and Function of Pattern Recognition Receptors
Toll-Like Receptors (TLRs)
TLRs, recognized as the prototypical and evolutionarily conserved family of transmembrane PRRs, are classified 
into 13 functional subtypes in mice (TLR1-TLR13) and 10 in humans (TLR1-TLR10), based on their ligand 
specificity and subcellular localization. Cell membrane-resident TLRs—specifically TLR1, TLR2, TLR4, TLR5, 
and TLR6—primarily detect microbial membrane components such as bacterial lipoproteins (TLR1/2/6), lipopo-
lysaccharide (LPS, sensed by TLR4), and flagellin (TLR5). In contrast, intracellular TLRs localized to endosomal 
compartments (TLR3, TLR7, TLR8, and TLR9) recognize viral nucleic acids including double-stranded RNA 
(TLR3), single-stranded RNA (TLR7/8), and unmethylated CpG DNA (TLR9).14–16 Upon LPS binding, TLR4 
undergoes dimerization and recruits the adaptor protein Myeloid Differentiation Primary Response 88 (MyD88) 
via Toll/Interleukin-1 Receptor (TIR) domain interactions, initiating a multi-step signaling cascade. MyD88 
mediates the assembly of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4), which subsequently phosphor-
ylates and activates Interleukin-1 Receptor-Associated Kinase 1 (IRAK1). This kinase activation leads to nuclear 
translocation of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB). These coordinated 
events drive the transcriptional upregulation of pro-inflammatory cytokines such as TNF-α and IL-6, along 
with chemokines critical for immune cell recruitment.17,18

Expanding beyond microbial defense, emerging evidence reveals context-dependent roles of TLRs in tumor immu-
nobiology. TLR agonists demonstrate dual functionality in oncological settings: they potentiate γδ T cell-mediated 
antitumor activity either directly or via dendritic cell activation, and synergize with tumor-associated antigens to enhance 
cytotoxic T lymphocyte (CTL) responses. Preclinical studies illustrate this therapeutic potential, as combined adminis-
tration of TLR9 agonist CpG oligodeoxynucleotides (CpG ODN) with rlipo-E7m effectively amplifies CTL activity and 
achieves regression of established tumors.19–21

Nucleotide-Binding Oligomerization Domain-Like Receptors (NLRs)
NLRs are critical cytosolic PRRs orchestrating innate immune responses and inflammatory regulation. The NLR 
family is structurally classified into five subfamilies: (1) NLRA (characterized by an acidic transactivation 
domain, exemplified by class II transactivator, CIITA), (2) NLRB (bearing baculovirus inhibitor of apoptosis 
protein repeat, BIR, domains, as observed in neuronal apoptosis inhibitory protein, NAIP), (3) NLRC (containing 
caspase activation and recruitment domains, CARD, including nucleotide-binding oligomerization domain- 
containing proteins 1 and 2, NOD1 and NOD2, that activate NF-κB, and Mitogen-Activated Protein Kinase, 
MAPK, pathways through receptor-interacting serine/threonine-protein kinase 2, RIPK2, and transforming growth 
factor beta-activated kinase 1, TAK1, signaling complexes), (4) NLRP (defined by pyrin domain-containing 
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members such as NLRP1 and NLRP3), and (5) NLRX (localized to mitochondrial membranes).22,23 Functioning 
as intracellular surveillance systems, NLRs detect PAMPs from invading microbes and DAMPs released by 
stressed or necrotic cells, serving as central hubs for cytosolic danger signal integration.24–27 Mechanistically, 
specific NLR subfamilies – particularly NLRP3 – nucleate inflammasome complexes that catalyze caspase- 
1-dependent proteolytic maturation of interleukin-1 beta (IL-1β) and interleukin-18 (IL-18), key pro- 
inflammatory cytokines essential for driving leukocyte infiltration and tissue remodeling during microbial 
challenges.28–30 Beyond antimicrobial defense, NLRs maintain tissue homeostasis through strict governance of 
inflammatory responses. Pathological NLR activation disrupts this equilibrium, as demonstrated by inflammasome 
hyperactivity in autoimmune disorders including rheumatoid arthritis and inflammatory bowel disease, where IL- 
1β/IL-18 overproduction directly correlates with disease progression.31–33 Emerging evidence implicates NLRP3 
inflammasome dysregulation in chronic disease pathogenesis. In cardiovascular pathologies, persistent NLRP3 
activation induces endothelial dysfunction and plaque instability, while in neurodegenerative conditions such as 
Alzheimer’s disease, it potentiates neuroinflammatory cascades and amyloid-beta deposition.34,35 These mechan-
istic insights establish NLR-mediated signaling pathways as promising therapeutic targets for chronic inflamma-
tory diseases, either through direct inflammasome inhibition or downstream cytokine neutralization strategies.

C-Type Lectin Receptors (CLRs)
CLRs, as specialized PRRs, utilize conserved carbohydrate-recognition domains (CRDs) to detect pathogenic glycans 
(microbial-associated molecular patterns) and host damage signals. These receptors exist in membrane-bound (including 
CLEC7A and CLEC4E) and soluble forms (mannose-binding lectin), performing dual surveillance of exogenous 
microbial components (fungal β-glucans, mycobacterial glycolipids, viral glycoproteins) and endogenous glycocalyx 
integrity. Functionally, CLRs bridge innate and adaptive immunity through two distinct mechanisms: (1) Signal 
transduction via Syk-coupled CLRs: Specific members such as CLEC7A activate NF-κB/MAPK/IRF-mediated proin-
flammatory and antiviral pathways through β-glucan-induced signal transduction. This process initiates SYK kinase 
recruitment, followed by assembly of the caspase recruitment domain-containing protein 9 (CARD9)/B-cell lymphoma 
10 (BCL10)/mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) ternary complex, ultimately 
driving TGF-β-activated kinase 1 (TAK1)-dependent downstream cascades. (2) Antigen presentation via endocytic 
CLRs: Receptors like DEC-205 facilitate dendritic cell-dependent antigen processing and presentation, thereby priming 
T-cell adaptive responses.36,37

Crucial for antifungal immunity, CLRs mediate recognition of clinically significant pathogens including Candida 
albicans and Aspergillus species through binding of surface carbohydrates, subsequently activating macrophages and 
dendritic cells to initiate pathogen clearance.38–40 This interaction induces proinflammatory cytokine/chemokine produc-
tion essential for leukocyte recruitment and coordinates dendritic cell maturation, thereby establishing innate-to-adaptive 
immune crosstalk.41,42

Emerging evidence expands CLR functionality in tumor immunology. Acting as multimodal regulators, CLRs 
modulate the tumor microenvironment by recognizing tumor-associated glycosylation patterns (mannose structures, 
Lewis antigens, GalNAc). These receptors exhibit dualistic roles in carcinogenesis: (a) tumor-suppressive through 
antigen-presenting cell-mediated immune activation, and (b) tumor-promoting via metastatic facilitation of malignant 
cells.43,44 Furthermore, CLRs mediate endocytic antigen processing and directly regulate T-cell activation thresholds. 
Therapeutic strategies targeting CLRs are under investigation, including Clec4e/Dectin-1 blocking antibodies that 
attenuate neutrophil-mediated tumor cytotoxicity in murine models.45,46

RIG-I-Like Receptors (RLRs)
The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), constituting a specialized subclass of cytosolic 
RNA-sensing PRRs, detect viral nucleic acids via conserved helicase and C-terminal regulatory domains. This 
receptor family comprises three structurally defined members: RIG-I (specific for short 5′-triphosphate RNA/ 
dsRNA), MDA5 (selective for long dsRNA), and the regulatory co-factor LGP2, collectively executing viral 
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RNA surveillance through discrimination of pathogen signatures (eg, unshielded 5′-triphosphates) from host RNA 
degradation products.47,48

Mechanistically, RLR activation requires CARD domain-mediated oligomerization with the mitochondrial antiviral- 
signaling protein (MAVS). Recent structural insights demonstrate that the CARD:CARD interface between RLRs (speci-
fically RIG-I and MDA5) and MAVS adopts a helical filamentous architecture, which serves as a supramolecular signaling 
platform (MAVS signalosome) by nucleating prion-like aggregates. This receptor-proximal interaction topology (RLR 
CARD helices engaging MAVS CARD surface grooves) enables tightly regulated signal amplification, where dynamic 
ubiquitination switches (TRIM25-mediated K63-ubiquitin chain deposition on RIG-I CARDs versus CYLD-mediated 
deubiquitination) and competitive inhibition (eg, NLRX1 C-terminal domain sterically blocking MAVS CARD accessi-
bility) synergistically control antiviral response thresholds.49,50 Activation of the MAVS signalosome recruits the TAK1 
kinase complex, which bridges RLR-induced mitochondrial signaling to downstream NF-κB and MAPK pathways48,51 

(Figure 1).

Epigenetic Regulatory Mechanisms
DNA Methylation
DNA methylation, a fundamental epigenetic modification, involves the enzymatic transfer of methyl groups (-CH₃) to 
cytosine residues within cytosine-phosphate-guanine (CpG) islands—genomic regions enriched in cytosine-guanine 

Figure 1 PRRs regulate intracellular immune responses and trigger the release of pro-inflammatory cytokines and interferons. LPS activates TLR4 to recruit TIRAP and 
MyD88, forming a complex that phosphorylates IRAK4 and IRAK1, leading to activation of the NF-κB pathway for pro-inflammatory gene transcription. NOD1/2 recognize 
bacterial ligands (iE-DAP/MDP) and engage RIP2, which orchestrates TAK1 complex-dependent activation of NF-κB and MAPK pathways to amplify cytokine responses. 
CLRs detect β-glucans and trigger assembly of the CARD9/BCL10/MALT1 signaling complex, which activates TAK1-mediated NF-κB and MAPK pathways. RLRs bind viral 
RNA to induce MAVS aggregation, activating TAK1 for NF-κB/MAPK signaling and recruiting TBK1/IKKε kinases to phosphorylate IRF3/IRF7, thereby promoting interferon 
synthesis. (Created with Figdraw).
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dinucleotide repeats. This covalent modification induces transcriptional silencing through dual mechanisms: chromatin 
condensation and steric hindrance of transcription factor binding.52,53 Unlike transient transcriptional fluctuations, 
persistent methylation anomalies demonstrate causal involvement in diverse pathologies ranging from neoplastic 
progression (including breast and cervical carcinomas) to cardiovascular diseases and metabolic dysregulation.54–56

Pathological epigenetic reprogramming predominantly operates through two molecular axes: (1) promoter 
hypermethylation-mediated inactivation of tumor suppressor genes (exemplified by MRVI1 and NTRK3 silencing 
during cervical carcinogenesis), and (2) DNA methyltransferase (DNMT)-dependent dysregulation of non-coding 
RNAs. The latter mechanism is typified by hypermethylation-induced suppression of tumor-suppressive 
microRNAs (miR-29c, miR-200c, and miR-200a) that confers chemoresistance in breast adenocarcinoma.57,58 

Beyond transcriptional control, methylation dynamics orchestrate cellular differentiation, developmental morpho-
genesis, and environmental adaptation through spatiotemporal methylome remodeling.59–61 Advanced methylome 
profiling technologies—bisulfite sequencing, single-cell methylomics, and nanopore-based detection—now enable 
high-resolution mapping of disease-associated epimutations. These methodologies systematically identify func-
tionally relevant methylation signatures at loci such as CDKN2A/p16 (cell cycle regulation) and MLH1 (DNA 
repair).62,63 Such epigenomic insights facilitate two therapeutic strategies: pharmacological DNMT inhibition 
(decitabine and azacitidine) and precision epigenetic editing using CRISPR-dCas9 systems targeting aberrantly 
methylated promoters.

Histone Modification
Histone modification serves as a crucial epigenetic regulatory mechanism through chemical modifications such as 
methylation, acetylation, and phosphorylation, which influence chromatin structure and regulate gene accessibility and 
expression.64,65 Distinct histone modifications exert specific regulatory effects. For example, histone H3 acetylation 
generally activates gene transcription, whereas H3 methylation predominantly represses transcriptional activity. As 
a key metabolic byproduct, lactate enhances histone H3K27 acetylation, thereby activating nuclear receptor subfamily 
4 group A member 1 (Nr4a1) and suppressing pro-inflammatory pathways in macrophages. This lactate-induced 
acetylation mediates sustained “trained immunosuppression” by establishing long-term chromatin remodeling. 
Furthermore, nucleosomes physically block DNMTs from accessing DNA, thereby limiting DNMT-mediated tran-
scriptional repression.66,67

Dynamically regulated histone modifications coordinate essential biological processes, including cell cycle pro-
gression and DNA damage repair, through chromatin state transitions.68,69 These modifications precisely govern 
cellular functions such as proliferation, differentiation, and apoptosis. In cancer biology, aberrant histone modification 
landscapes drive tumorigenesis by silencing tumor suppressor genes and activating oncogenic pathways.70,71 

Consequently, therapies targeting these dysregulated mechanisms—notably histone deacetylase (HDAC) inhibitors— 
are emerging as effective anticancer strategies through epigenetic reprogramming and synergistic interactions with 
immunotherapy.72

Role of Non-Coding RNAs
Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular 
RNAs (circRNAs), play crucial roles in epigenetic regulation through diverse mechanisms such as direct mRNA 
interactions and transcription factor modulation.73–75 Specific subtypes exert distinct regulatory functions: 
miRNAs primarily post-transcriptionally regulate gene expression through mRNA degradation or translational 
inhibition, profoundly influencing immunometabolic reprogramming processes including glycolysis and oxidative 
phosphorylation.76–78 Conversely, lncRNAs coordinate epigenetic regulation through chromatin remodeling 
mechanisms by altering histone modification patterns and DNA methylation status, thereby directly controlling 
immune cell metabolism and trained immunity programs. For example, lncRNA-SNHG29 orchestrates genome- 
wide binding of EP300 (a histone acetyltransferase critical for metabolic reprogramming) to drive glycolytic 
activation in myeloid cells during innate immune responses, while lncRNA-GTL2 mediates DNA methylation- 
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dependent silencing of fatty acid oxidation genes in macrophages, illustrating the metabolic-epigenetic crosstalk 
in trained immunity.79,80

Notably, ncRNA dysregulation contributes significantly to tumorigenesis and cancer progression, frequently inter-
secting with immune cell metabolic pathways such as the Warburg effect.81,82 These molecules demonstrate promising 
potential as diagnostic biomarkers due to their tissue-specific expression profiles, with emerging applications in cancer 
screening and prognostic assessment.83,84 With increasing mechanistic understanding, ncRNA-targeted therapeutic 
strategies are under active exploration, particularly approaches modulating lncRNAs to normalize dysregulated immu-
nometabolic pathways for precise disease intervention.85–87

PRRs Mediate Epigenetic Reprogramming of Immune Cells
PRR activation triggers profound chromatin reorganization and transcriptional remodeling in immune cells, establishing 
a primed state that enhances responsiveness to secondary challenges through amplified immune reactions. 
Mechanistically, PRR-mediated signaling orchestrates multi-layered epigenetic regulation via transcription factor mod-
ulation and chromatin modifications, including histone acetylation, methylation, and nucleosome repositioning.88,89 The 
evolutionarily conserved TIR domain present in TLRs and related PRRs functions as a molecular scaffold for down-
stream adaptor recruitment (eg, MyD88, TRIF), initiating signal transduction. During LPS stimulation, TLR4 TIR 
domain acetylation facilitates oligomerization-enhanced adaptor binding, dramatically amplifying NF-κB signaling 
through IRAK4 activation and accelerated Inhibitor of Nuclear Factor kappa-B alpha (IκBα) degradation, reinforcing 
M1 macrophage polarization.90

TLR activation by LPS induces not only pro-inflammatory mediators but also persistent epigenetic signatures. 
IL-4-polarized macrophages subjected to LPS develop epigenetically encoded hyper-inflammatory programs, with 
sustained H3K27ac-driven transcriptional memory exacerbating pulmonary inflammation upon TLR rechallenge.91 

This TIR signaling-epigenetic crosstalk mechanistically links innate immune activation to metabolic-epigenetic 
memory. Primary inflammatory stimuli imprint microglial immune memory via H3K27ac, while pharmacological 
inhibition of this mark prevents secondary inflammatory amplification.92 Tet methylcytosine dioxygenase 2 
(TET2) exerts epigenetic control in atherogenesis, where TET2 deficiency enables cholesterol-loaded macro-
phages to activate NLRP3 via c-Jun N-terminal kinase 1(JNK1) signaling and BRCA1-Associated Protein 1 
(BRCC3)-mediated deubiquitination.93

Recent studies demonstrate that PRR activation by microbial components can synergize with exogenous thera-
peutic interventions. For example, β-glucan-induced Dectin-1 signaling primes H3K27 acetylation at glycolytic gene 
loci,94 a process that may amplify the metabolic effects of vitamin D adjuvants, which are known to enhance TLR2- 
mediated H3K4me3 deposition.95,96 In oncological contexts, TLR3-activated IRF3 directly remodels antiviral 
response elements through interactions with oncolytic virus-derived RNA,97 while CpG/TLR9 agonists have demon-
strated clinical efficacy in eradicating cancer stem cells when combined with epigenetic checkpoint inhibitors.98,99 

These findings position PRR signaling as a highly tunable epigenetic scaffold for developing combination 
immunotherapies.

Metabolic Reprogramming
Metabolic reprogramming refers to the adaptive rewiring of cellular metabolic pathways to meet biosynthetic and 
bioenergetic demands under specific environmental or pathological conditions. This phenomenon has been systemically 
characterized across oncology, immunology, and metabolic disorders.100–102 Through coordinated regulation of nutrient 
utilization and energy flux, cells dynamically reconfigure metabolic networks to sustain proliferation, survival, and 
effector functions. A hallmark example is the “Warburg effect” in malignancies, where tumor cells preferentially 
upregulate aerobic glycolysis despite functional mitochondria, concurrently suppressing oxidative phosphorylation to 
fuel anabolic growth and metastatic dissemination.103–105

In immunometabolic contexts, immune-responsive gene 1 (IRG1)-derived itaconic acid, synthesized by macrophages 
under pro-inflammatory stimuli (eg, LPS or IFN-γ), modulates T cell plasticity through dual mechanisms: (1) direct 
suppression of glycolysis and (2) epigenetic regulation, collectively ameliorating autoimmune pathologies. Furthermore, 
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IgG FcγR-mediated macrophage metabolic reprogramming, marked by mTOR- and HIF-1α-driven glycolytic upregula-
tion, has emerged as a targetable axis in lupus nephritis. Within breast cancer microenvironments, hypoxia and nutrient 
competition drive tumor-associated macrophages (TAMs) to impede CD8+ T cell function via collagen accumulation and 
lactate-mediated metabolic interference (eg, disruption of oxidative phosphorylation), illustrating how spatial metabolic 
coupling dictates immune evasion.106–108 These adaptive mechanisms not only underpin disease progression and immune 
dysregulation but also reveal novel therapeutic vulnerabilities. Key targets include the IRG1-itaconic acid signaling axis, 
rate-limiting glycolytic enzymes (eg, hexokinase 2, HK2), and lactate transport systems, offering multimodal intervention 
strategies across pathological states.

The Role of PRR in Metabolic Reprogramming
The activation of PRRs serves dual biological roles: modulating immune cell functions and orchestrating context- 
dependent metabolic reprogramming.109,110 For instance, the TLR4 agonist LPS and other TLR ligands rapidly 
enhance the enzymatic activity of class IIa histone deacetylases (HDAC4, HDAC5, HDAC7, and HDAC9). This 
activity suppresses glycolysis and amplifies inflammatory responses by deacetylating key glycolytic enzymes such 
as 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3).111 Additionally, TLR4 activation may 
inhibit AMP-activated protein kinase (AMPK) function by altering intracellular metabolic states. Given 
AMPK’s anti-inflammatory role in suppressing pro-inflammatory mediators like NF-κB, this inhibition helps 
mitigate inflammation triggered by TLR signaling.112 TLR signaling also modulates oxidative phosphorylation 
(OXPHOS) through the Phosphoinositide 3-kinase (PI3K)- Protein kinase B (AKT) and Janus kinase (JAK)- 
Signal Transducer and Activator of Transcription (STAT) pathways, which are mechanistically linked to reactive 
oxygen species (ROS) generation. Such regulation augments OXPHOS and ROS production, ultimately enhancing 
antitumor immunity.113 Beyond TLRs, other PRRs—including CLRs and RLRs—regulate immune cell metabo-
lism via distinct mechanisms involving OXPHOS, amino acid metabolism, and mitochondrial dynamics. These 
findings underscore PRR-driven metabolic reprogramming as a source of therapeutic potential.114 Targeting 
specific pathways, such as glycolysis, OXPHOS, or amino acid metabolism, could enable precise immunomodu-
lation, exemplified by small-molecule inhibitors of HDACs or AMPK modulators, offering novel avenues for 
therapeutic intervention.115,116

Association of Metabolic Pathways with the Immune Response
Metabolic pathways are intricately intertwined with immune responses, as immune cells undergo metabolic reprogram-
ming upon activation to sustain functional demands. This reprogramming not only fulfills the bioenergetic requirements 
of immune cells but also critically governs cytokine production and secretion by modulating signaling cascades, thereby 
enabling effective immune effector functions.117–119 For example, macrophage phenotypic transitions are profoundly 
shaped by metabolic adaptation. Lactate enhances Pyruvate Kinase M2 (PKM2) lactylation, which inhibits its structural 
shift from tetrameric to dimeric states. This increases pyruvate kinase enzymatic activity while reducing PKM2 nuclear 
translocation, thereby driving pro-inflammatory macrophages toward a reparative phenotype.120 Similarly, CH25H 
(cholesterol-25-hydroxylase)-mediated accumulation of 25-hydroxycholesterol (25HC) activates AMPKα and repro-
grams macrophage metabolism, which augments STAT6 activity to induce the immunosuppressive factor ARG1 
(arginase 1).121 In tolerogenic dendritic cells, Mammalian Target of Rapamycin (mTOR):AMPK phosphorylation balance 
shifts and increased OXPHOS, glycolysis, and fatty acid oxidation collectively establish an immunosuppressive 
phenotype characterized by PD-L1 and IL-10 upregulation to suppress T cell activation.122

The tumor microenvironment (TME) exemplifies the bidirectional crosstalk between metabolism and immune 
function. Tumor cells subvert immune surveillance by reshaping metabolic landscapes through mechanisms such 
as lactate accumulation and nutrient depletion, which directly impair immune cell efficacy.123–125 Such metabolic 
rewiring constitutes a pivotal axis of tumor immune evasion and a persistent barrier to successful 
immunotherapy.126,127 Therapeutic targeting of immune cell metabolism has emerged as a promising strategy. 
For instance, tumor-infiltrating T cells (TILs) are metabolically compromised in the TME due to metabolites like 
fatty acids that chronically activate acetyl-CoA carboxylase (ACC). ACC hyperactivity disrupts mitochondrial 
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energy synthesis required for antitumor activity. Pharmacological ACC inhibition reverses these defects, restores 
TIL functionality, and enhances tumor control.128,129 Similarly, TAMs exhibit metabolic heterogeneity, with 
elevated purine metabolism being a hallmark of their pro-tumorigenic phenotype, positioning this pathway as 
a therapeutic vulnerability.130

Dietary factors further modulate TI plasticity. Short-chain fatty acids (SCFAs) from dietary fiber fermentation 
enhance β-glucan-induced TI by stabilizing HIF-1α-dependent histone acetylation in monocytes.131 Conversely, high- 
fat diets suppress TI by disrupting TLR4-driven enhancer-promoter looping via PPARγ activation.132 These insights 
collectively underscore TI as a dynamic interface between environmental cues and immune memory, where PRRs act as 
epigenetic sensors to transduce nutrient signals into functional immune adaptations.

Effects of PRRs on Trained Immunity
Primary Infection and Activation of Immune Cells
The initial infection represents a pivotal phase in the establishment of TI. During this stage, pathogens breach host 
barriers via the skin or mucosal surfaces, initiating a cascade of immune reactions. Macrophages and dendritic cells 
detect these pathogens through PRRs, triggering their activation.133–135 Beyond immediate pathogen clearance through 
phagocytosis and neutralization, these cells amplify immune responses by recruiting additional effectors via cytokine 
secretion.136 A hallmark of TI is the persistent metabolic and epigenetic remodeling of immune cells post-infection, 
which establishes an immune “memory”. This programming enables heightened responsiveness to subsequent encounters 
with homologous or heterologous pathogens.137,138 For example, Drosophila primed with low-pathogenicity bacteria 
exhibit markedly improved survival upon secondary challenge with virulent strains, illustrating conserved cross- 
protective mechanisms.139 Immunostimulatory adjuvants targeting TLRs or other PRRs amplify Antigen-Presenting 
Cell (APC) activation and maturation, thereby enhancing antigen presentation and co-stimulatory signal generation to 
fortify innate immune efficacy140,141 (Figure 2).

PRRs Regulate Trained Immunity Through the Interplay Between Metabolic 
Reprogramming and Epigenetics
PRRs are indispensable for immune cell activation and functional modulation. Emerging evidence demonstrates 
that PRRs not only drive classical immune signaling but also mediate trained immunity (TI) through crosstalk 
with metabolic and epigenetic networks.142–144 TI is characterized by heightened immune responsiveness to 
secondary pathogenic challenges, driven by persistent metabolic and epigenetic adaptations following initial 
stimulatory events.145,146 PRR signaling activates RNA polymerase II (RNPII) and Polycomb repressive complex 
2 (PRC2), driving epigenetic modifications such as histone methylation (eg, H3K27me3) and acetylation to 
regulate the accessibility of pro-inflammatory and antiviral genes.147,148 These processes are finely modulated by 
key metabolites including S-adenosylmethionine (SAM), acetyl-CoA, Nicotinamide Adenine Dinucleotide 
(NAD⁺), and pyruvate. For instance, glucose and acetate-derived acetyl-CoA fuel the TCA cycle, altering 
metabolic flux dynamics to influence the NAD⁺/ Nicotinamide Adenine Dinucleotide + Hydrogen (NADH) 
ratio, which activates deacetylases like Sirt1 to balance histone acetylation during inflammation 
resolution.149,150 PRR activation induces metabolic rewiring in immune cells, reconfiguring energy utilization 
pathways. For example, macrophages undergo a metabolic switch from OXPHOS to aerobic glycolysis, rapidly 
generating ATP to sustain effector functions while modulating inflammatory polarization.151,152 This glycolytic 
shift not only meets bioenergetic demands but also fuels epigenetic remodeling via metabolites such as acetyl- 
CoA and SAM.153–155 Acetyl-CoA serves as a critical substrate for histone acetylation, amplifying acetylation 
levels to derepress cytokine genes (eg, IL-6, TNF-α, IL-1β), thereby potentiating pathogen-responsive capacity.156 

Beyond metabolic regulation, acetyl-CoA orchestrates inflammatory gene expression via a metabolic-epigenetic 
axis. TLR4 activation, for instance, upregulates glycolysis and tricarboxylic acid (TCA) cycle activity in 
macrophages, converting glucose-derived carbons into acetyl-CoA. This metabolite enhances histone acetylation 

https://doi.org/10.2147/JIR.S513325                                                                                                                                                                                                                                                                                                                                                                                                                                                           Journal of Inflammation Research 2025:18 7802

Li et al                                                                                                                                                                                

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



at loci encoding LPS-induced pro-inflammatory mediators (eg, TNF-α, IL-6, NLRP3), fine-tuning transcriptional 
outputs.157

Moreover, PRR signaling reprograms the epigenetic landscape of immune cells to synchronize metabolic plasticity 
with immunological memory. The SET domain-containing protein 7 (SET7) methyltransferase catalyzes monomethyla-
tion of H3K4me1, regulating both immune gene transcription and OXPHOS-associated metabolic pathways. Crucially, 
metabolic intermediates (eg, pyruvate) cooperate with epigenetic regulators (eg, AP-1, NF-κB) to amplify the expression 
of pro-inflammatory cytokines (eg, TNF-α, IL-6) and type I interferons (IFN-α/β), establishing a multi-layered immune 
response network.158 Sustained OXPHOS-linked metabolic adjustments establish a “metabolic memory”, enabling rapid 
reactivation of immune cells upon secondary pathogen encounters and reinforcing memory-driven protection.159 The 
synergistic interplay between metabolic remodeling and epigenetic regulation underpins immediate immune effector 
functions and long-term adaptive priming. PRR-triggered metabolic-epigenetic integration thus emerges as a central 
mechanism for enhancing immune memory and shaping the pathogenesis of immune-mediated diseases (Figure 3).

Figure 2 Comparison of trained immunity and adaptive immunity in immune responses. (a) Trained immunity: First exposure of innate immune cells to PAMPs induces 
a moderate initial response (first peak). Secondary challenge with heterologous stimuli triggers an amplified response (second peak), mediated by epigenetic modifications 
and metabolic shifts (enhanced glycolysis/TCA cycle activity). (b) Adaptive immunity: Antigen-specific recognition by T/B cells via TCR/BCR activates clonal expansion. Upon 
re-exposure to the same antigen, memory T/B cells rapidly proliferate and produce high-affinity antibodies (B cells) or cytokine/cytolytic responses (T cells). This memory 
relies on genetic recombination (V(D)J diversification in antigen receptors) and MHC-mediated antigen presentation to ensure specificity. (Created with Figdraw).
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Conclusion
TI, an adaptive memory-like response of innate immune cells, exhibits dualistic roles in host defense and pathological 
processes. This adaptive process proceeds through a hierarchical cascade: initial pathogen exposure triggers metabolic 
reprogramming (eg, glycolytic upregulation), yielding metabolites such as acetyl-CoA and α-ketoglutarate (α-KG), which 
serve as enzymatic cofactors for epigenetic remodeling, including histone acetylation and H3K4me1 deposition. These 
changes collectively prime immune cells for heightened responsiveness to secondary stimuli. Studies highlight TI’s 
protective capacity; for example, dimethyl itaconate administration post-Staphylococcus aureus infection reprograms 
glycolytic and mitochondrial metabolism in murine models, enhancing microbial ligand sensitivity and survival 
outcomes.160 Similarly, β-glucan-trained lung macrophages inhibit metastatic dissemination in preclinical tumor 
models.161 However, emerging evidence cautions against unregulated TI activation, as maladaptive epigenetic repro-
gramming may fuel inflammatory pathology. Monocytes primed with LPS exhibit elevated H3K4me1 levels linked to 
exacerbated post-stroke inflammation, a process mitigated by mesenchymal stem cell therapy.162 Furthermore, the gut 
microbiota-derived metabolite trimethylamine N-oxide (TMAO) enhances glycolytic flux via endoplasmic reticulum 
(ER) stress and ROS) signaling, exacerbating systemic inflammation.163 TI dysregulation further contributes to chronic 
inflammatory diseases; in periodontitis and arthritis models, epigenetically driven myeloid cell differentiation sustains 
tissue destruction.164 These findings underscore TI’s context-dependent duality, wherein balanced activation enhances 
defense, whereas excessive engagement fuels pathogenesis.

Figure 3 PRRs regulate trained immunity via epigenetic and metabolic reprogramming. Pathogen recognition via PRRs activates transcription machinery (eg, RNA 
polymerase II) and epigenetic modifiers (eg, Polycomb Repressive Complex 2, PRC2), inducing histone acetylation and methylation to prime immune gene loci. Key 
metabolites such as acetyl-CoA (generated from glucose and acetate), NAD+, and pyruvate fuel the TCA cycle, regulating the NAD+/NADH ratio and modulating sirtuin 
deacetylases (eg, Sirt1). These metabolic shifts synergize with chromatin remodeling to enhance transcriptional activation of pro-inflammatory cytokines (eg, IL-6, TNF-α) and 
type I interferons (IFN-α/β). Transcription factors (AP-1, NF-κB) further amplify immune gene expression, establishing a prolonged antimicrobial state. (Created with 
Figdraw).
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Mechanistically, TI is categorized into central and peripheral subtypes. Central TI arises from epigenetic reprogram-
ming of hematopoietic progenitors in the bone marrow or thymus, conferring enduring immune memory lasting months 
to years. Peripheral TI involves transient metabolic-epigenetic adaptations (weeks to months) in tissue-resident immune 
cells at sites of infection or injury.165,166 Current TI inducers under investigation include LPS, β-glucan, and vaccines like 
Bacillus Calmette-Guérin (BCG).167,168 LPS, a prototypical TLR4 agonist, is a widely studied TI inducer but risks 
immune tolerance or chronic inflammation due to hyperactivation.169–171 Conversely, β-glucan enhances antifungal 
immunity by modulating dendritic cell (DC) function, though its capacity to maintain memory across heterogeneous 
microenvironments remains unclear.172,173 BCG exemplifies a “training vaccine” with clinical promise, yet its mechan-
istic balance between protective priming and pathological immune hyperreactivity demands resolution.174–176

The regulatory centrality of PRRs in metabolic-epigenetic crosstalk is increasingly evident. PRR activation acts as 
a master regulator of immune cell plasticity, coordinating metabolic sensors (eg, mTOR, AMPK) and epigenetic 
modifiers (eg, HDACs, BET proteins) to establish cellular memory. To translate these insights into therapies, four 
research imperatives emerge: (1) Elucidating spatiotemporal dynamics of PRR-coupled signaling hubs linking pathogen 
sensing to chromatin accessibility and metabolic shifts; (2) Systematically defining tissue- and disease-specific modifiers 
(eg, hypoxia, microbiota metabolites) dictating TI outcomes; (3) Designing context-sensitive PRR modulators to balance 
glycolysis-TCA cycle flux without inducing metabolic exhaustion; (4) Longitudinal profiling of PRR-driven TI in 
chronic inflammation and aging to resolve its dual roles as protector and disease accelerator. In conclusion, TI redefines 
immune memory paradigms, transcending classical adaptive immunity frameworks. While PRR-targeted metabolic- 
epigenetic modulation offers therapeutic promise, maintaining long-term immune homeostasis remains paramount. 
Future research must prioritize precision platforms that reconcile the pleiotropic effects of PRR signaling across diverse 
pathological landscapes.
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