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Abstract: Ocular diseases present unique therapeutic challenges due to the complex anatomical and physiological barriers of the eye. 
Conventional drug delivery systems often suffer from poor bioavailability, rapid clearance, and inadequate targeting, limiting their 
clinical efficacy. Recent advances in smart nano-in-micro (NIM) platforms have emerged as a transformative strategy, combining the 
precision of nanoscale drug carriers with the stability and sustained-release capabilities of microscale matrices. These hierarchical 
systems enable enhanced drug penetration, prolonged retention, and targeted delivery to both anterior and posterior ocular segments. 
This review highlights the latest developments in NIM platforms, focusing on material innovations that optimize drug loading, release 
kinetics, and biocompatibility. The shared physicochemical properties of nano-micro particles that influence their performance across 
different administration routes (topical, intravitreal, subconjunctival), supported by mechanistic insights into their interactions with 
ocular tissues are discussed. By bridging nanoscale engineering with clinical ophthalmology, NIM platforms represent a paradigm shift 
in ocular therapeutics, offering the potential to revolutionize treatment for previously intractable eye diseases. 
Keywords: nano-in-micro, nanoparticles, ocular diseases, ocular drug delivery

Introduction
The global burden of visual impairment remains a critical public health challenge. According to data from the Global 
Burden of Disease (GBD) database, disability-adjusted life years (DALYs) attributable to blindness and vision loss have 
exhibited a progressive increase from 1990 to 2021 (https://vizhub.healthdata.org/gbd-compare/).1,2 Despite advances in 
pharmacotherapy, this concerning trend persists, primarily due to the unique anatomical barriers of the eye—including 
the blood-retinal barrier (BRB) and rapid tear turnover—which severely restrict the bioavailability of topical formula-
tions and the therapeutic half-life of intravitreal injections.3,4 Conventional nanotechnologies (eg, liposomes, polymeric 
nanoparticles) have only partially addressed these challenges,5,6 as their single-scale design necessitates a trade-off 
between barrier penetration and therapeutic retention.

The nano-in-micro (NIM) platform represents a hierarchically structured drug delivery system that strategically 
integrates functional nanoscale components (eg, nanoparticles (NPs), nucleic acid nanostructures) into microscale 
carriers (eg, polymeric microparticles, liposomes)7–9 (Figure 1). This architecture synergizes the advantages of both 
scales: nanoscale modules enable precise targeting and controlled release, while microscale carriers provide structural 
stability and enhanced payload capacity. By leveraging size-dependent interactions (<100 nm for barrier penetration and 
>1 μm for sustained retention), the NIM system uniquely addresses the dual challenges of ocular bioavailability and 
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localized biodistribution.10,11 Through sophisticated surface functionalization and hierarchical structural design, the NIM 
platform integrates diverse material properties, thereby synergistically enhancing biointerfacial interactions (eg, 
improved cellular uptake efficiency) and physicochemical characteristics (eg, hydrophilicity-tuned ζ-potential).11–13 

The resulting hybrid system demonstrates superior performance in overcoming multi-layered ocular barriers, achieving 
spatiotemporally controlled drug release, and maintaining targeted delivery precision.14–16 This comprehensive optimiza-
tion paradigm stands in stark contrast to conventional single-material systems, which rely predominantly on passive 
diffusion mechanisms (eg, the low corneal bioavailability of standard eye drops).

Traditional NPs face inherent limitations in ocular drug delivery, including rapid clearance, passive diffusion- 
dependent targeting (resulting in poor retinal bioavailability), and payload instability. The NIM platform innovatively 
overcomes these barriers through its hierarchical design.8,17,18 Unlike single-scale systems, NIM exploits a dual-scale 
synergy: 1 nanoscale precision (for instance, surface-functionalized liposomes enable receptor-mediated BRB delivery;19 

2 microscale stability (for instance, encapsulation within poly(lactic-co-glycolic acid) (PLGA) microspheres prolongs 
intraocular retention and shields payloads from enzymatic degradation20); 3 synergistic control (the microcarrier acts as a 
reservoir for sustained nanocarrier release, achieving spatiotemporal precision unattainable with conventional NPs).21,22 

This structural innovation resolves the “targeting-retention paradox” in ocular therapy: NPs small enough to penetrate 
barriers are rapidly cleared, whereas larger particles with better retention lack penetration capacity. NIM addresses this by 
decoupling penetration (nanoscale) and retention (microscale) functions—a critical advancement supported by extensive 

Figure 1 Graphical representation of the various delivery routes for ocular administration. It displays the conventional routes of drug administration for ophthalmic 
diseases, emphasizing both internal and external methods. Alongside these traditional pathways, the figure also introduces a graphical representation of various 
nanomaterials with distinct structural characteristics that can be utilized for ocular administration. These nanomaterials, with their unique properties such as enhanced 
penetration, controlled release, and biocompatibility, offer promising alternatives to conventional drug delivery systems. Created using BioRender.
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research.22–24 Compared to standard NPs, the NIM platform exhibits a higher therapeutic index while utilizing lower 
drug concentrations, thereby mitigating systemic toxicity.25 Emerging NIM technologies enable efficient delivery of 
therapeutics or gene-editing systems to specific target cells, demonstrating translational potential through prolonged drug 
half-life, enhanced bioavailability, and reduced adverse effects.26,27 However, clinical translation of NIM systems faces 
regulatory challenges, particularly in addressing the complexity of hybrid NIM constructs.28 Recent breakthroughs in 
microfluidic manufacturing and biodegradable matrices have paved the way for scalable production.29–32

This review critically evaluates the application potential of cutting-edge technologies—including nucleic acid 
nanomaterials and stimulus-responsive nano-micelles—in ophthalmic therapy. We aim to elucidate the key determinants 
and future trajectories of nanotechnology-driven innovation in ophthalmology. By bridging nanoscale innovation with 
microscale engineering, the NIM platform is redefining the frontier of ocular medicine, offering transformative solutions 
for previously intractable conditions such as geographic atrophy and diabetic macular edema.

Common Ophthalmology Diseases and Therapy Approaches
A variety of ocular diseases have been explored through extensive research in nanomedicine, with NIM technology 
demonstrating remarkable efficacy.18 Research has primarily focused on developing multifunctional nano-systems, which 
include nucleic acid nanomaterials, inorganic NPs, and other nano-carriers.

Novel drug delivery nano-systems offer new strategies for treating dry eye, showing significant advantages over 
traditional eye drops.33 Several ocular nanocarriers are currently in clinical trials or various stages of development, with 
some already approved by the FDA for market release.34 However, the treatment of posterior segment diseases still faces 
challenges due to complex pathophysiological mechanisms and biological barriers, such as the blood-retinal barrier, 
which are difficult to penetrate. The retinal pigment epithelium serves as a rate-limiting factor for posterior delivery 
routes.35,36

Vascular-related diseases, such as retinopathy of prematurity, diabetic retinopathy, and age-related macular degenera-
tion (AMD), are common conditions affecting the posterior segment of the eye. Anti-VEGF drugs represent a promising 
approach to treat these diseases, but intravitreal injection therapies have limitations, including short drug half-lives, the 
need for repeated injections, and potential systemic adverse events.37 Retinal degeneration, as a complication of AMD 
and diabetic retinopathy, is also characteristic of various hereditary diseases, presenting limited treatment options due to 
the complexity of the pathophysiological processes involved.38 Regarding retinal tumors, although several treatment 
options exist, there remains a lack of minimally invasive drug delivery alternatives.39,40

Challenges in the Current Ocular Drug Delivery Systems
Currently, traditional drug delivery methods for ocular diseases include systemic administration, topical application, 
periocular delivery, and intravitreal injections. However, due to the delicate structure of the eye, rapid tear drainage, drug 
metabolism and degradation, and the presence of multiple ocular barriers (Figure 2), challenges such as difficulty in 
controlling local drug concentrations, low bioavailability, and adverse reactions remain urgent issues to address (Table 1). 
While extensive research has focused on overcoming the limitations of ocular drug delivery, further efforts are still 
needed. Although nanotechnology holds promise for overcoming these challenges, it must still navigate multiple 
physiological barriers, including the tear film, cornea, conjunctiva, sclera, and blood-retinal barrier.41

Diverse NIM Platform from Different Materials
The NIM platform leverages its nanoscale dimensions and surface characteristics to effectively overcome ocular barriers 
and achieve targeted drug delivery (Figure 1). While conventional NPs (eg, liposomes, polymeric NPs) demonstrate some 
ocular delivery capability, they inherently struggle with the “penetration-retention paradox” - smaller NPs can penetrate 
ocular barriers but are rapidly cleared, while larger particles with better retention capacity lack penetration ability.42–45 

The NIM platform ingeniously addresses this limitation through hierarchical engineering that decouples these functions 
into two cooperative scales.46

The NIM platform incorporates several groundbreaking innovations that collectively address the challenges of ocular 
drug delivery. One key advancement is its Dual-Ligand Engineering system, which strategically combines microscale 
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carriers enhanced with mucoadhesive polymers (eg, chitosan) for improved precorneal retention47,48 with nanoscale 
modules designed for cell-specific targeting, such as the AS1411 aptamer for retinoblastoma therapy.49–51 Another 
significant innovation is the platform’s Stimuli-Responsive release capability, where drug delivery can be precisely 
activated by specific biological conditions including pH, ROS levels, or glucose concentrations. This is exemplified by 
glucose-responsive carboxyphenylboronic acid (CPBA)-functionalized mesoporous silica NPs (MSNs) that enable 
controlled delivery of 1,25-dihydroxyvitamin D3 for diabetic retinopathy treatment.52 Furthermore, the platform’s 
Scalable Manufacturing process, utilizing microfluidic production techniques, demonstrates markedly superior batch- 
to-batch consistency compared to conventional methods, effectively overcoming critical translational challenges in 
pharmaceutical development.53,54 These integrated innovations position the NIM platform as a transformative approach 
in ocular therapeutics.

Inorganic Nanomaterials for Ophthalmic Applications (Table 2)
Inorganic NPs (eg, gold, silver, silica, quantum dots) possess controllable dimensions, structures, and unique optoelec-
tromagnetic properties that make them promising candidates for drug delivery and therapeutic applications. However, 
they face several challenges including susceptibility to degradation, poor biocompatibility, and insufficient stability/ 
dispersibility, which limit their clinical utility.55,56 Surface functionalization with organic/inorganic coatings can sig-
nificantly improve their dispersion and stability in biological systems.57 These materials have been strategically 

Figure 2 Multiple barriers of the eye. It exhibits various physiological barriers and factors that may influence drug distribution in ophthalmic therapy, encompassing the tear 
film, the blood-retina barrier, and other critical components. It highlights the complex interplay of these barriers, which can significantly impact the delivery and efficacy of 
therapeutic agents targeting ocular diseases. Understanding these barriers is crucial for the development of effective drug delivery systems that can navigate these challenges, 
ensuring optimal treatment outcomes in ophthalmic care. Drawn with Procreate.
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incorporated into NIM platforms to overcome the limitations of single-component systems58,59 (Figure 3), demonstrating 
unique advantages in ophthalmic therapies.

Nanozymes exhibit enzyme-mimicking catalytic activities with remarkable antioxidant and anti-inflammatory effects. 
Their nanoscale dimensions and ease of modification enable effective ocular barrier penetration, making them ideal for 
targeted treatment of multifactorial eye diseases like dry eye syndrome and AMD.107 A recent study108 developed a novel 
nanozyme-incorporated hydrogel coating (NHC) through Schiff base reaction between polyaldehyde oligomers (PAO) 
and amino-functionalized hyaluronic acid (AHA). This system co-loaded voriconazole and copper procyanidin (CuPC) 
nanozymes for fungal keratitis treatment, where the combined catalase-like and superoxide dismutase-like activities 
synergistically promoted corneal wound healing, with enhanced efficacy through prolonged retention and improved 
corneal permeability.

Quantum dots (QDs), particularly carbon-based quantum dots (CDs), have emerged as attractive nanomaterials due to 
their exceptional fluorescence properties, ultra-small size for cellular/tissue penetration, facile synthesis and surface 
modification, low cytotoxicity and superior aqueous dispersibility. These characteristics make CDs excellent candidates 
for ocular imaging, drug delivery, and disease diagnosis.109–112 Notably, spermidine-derived carbon QDs (CQDSpds) 
synthesized via a one-step dry-heat method demonstrated antibacterial properties and enhanced corneal epithelial 
permeability through their ultrahigh positive charge-induced tight junction opening.73

Mesoporous silica NPs (MSNs) offer tremendous potential for drug delivery owing to their high stability, large 
surface area and pore volume, tunable pore sizes and ease of production and functionalization. Hydrophilic MSNs serve 
as stable, biocompatible carriers that prolong blood circulation, making them a research hotspot.113,114 Surface-functio-
nalized MSNs with NH2 and PEG modifications, combined with nanomolding technology for drug conjugation, have 
shown improved bioavailability and prolonged therapeutic effects in treating retinal pathological neovascularization.115

Innovative metal nanomaterial designs have demonstrated significant therapeutic enhancements. PEG-coated nano-
ceria (P/CeO2) developed by Haijie Han’s team exhibited improved biocompatibility, hydrophilicity, and remarkable 
ocular tolerance while prolonging precorneal retention.116 Urchin-like gold nanostructures with optimized branch length 
showed 150-fold greater corneal retention compared to smooth gold NPs. In dry eye rabbit models, quercetin-loaded 
nano-urchins (NU-Q(H)) demonstrated: 30-fold increase in tear production, 49-fold suppression of IL-6 expression, 32- 
fold reduction in pathological angiogenesis, as well as 18-fold enhancement in nerve regeneration.117 Ion-responsive 
alginate-capped nanoceria (Ce-ALG) for β-1,3-glucan delivery in corneal abrasion treatment: Alginate coating improved 
mucoadhesion via hydrogen bonding, Ca2+-mediated “egg-box” structure enhanced drug loading and sustained release, 

Table 1 Overview of Advantages and Limitations of Conventional Drug Delivery Methods for Ophthalmic Disorders41

Strategies Indications Drawbacks

Systemic administration Oral administration, 
intramuscular injections, 
intravenous injections

Involvement of multiple body 
systems with severe systemic 
symptoms

Drug toxicity at high doses; ocular barriers reduce biocompatibility; 
systemic side effects

Topical administration Eye drops (solutions, 
suspensions and emulsions)

Anterior segment diseases Poor bioavailability due to tear drainage; physicochemical properties 
affect drugs; uncontrolled drug release; frequent dosing required

Ointments Anterior segment diseases Patients’ discomfort, eg, blurred vision; uncontrolled release of drugs

Periocular administration Scleral route Posterior segment diseases Minimally invasive; limited by ocular barriers (RPE, choroid and sclera)

Sub-conjunctival injection, 
sub-tenon injection

Anterior and posterior 
segment diseases

Puncture-related pain, infection, bleeding; high drug concentration; 
optic nerve damage risk; reduced bioavailability via blood, tears; 
worsens cataracts, ocular hypertension

Supra-choroidal injection, 
sub-retinal injection

Posterior segment diseases Puncture causes pain, toxicity, infection, bleeding; risks of choroidal 
detachment, optic nerve damage; invasive, complex

Intraocular administration Intravitreal injection Posterior segment and whole 
eye diseases

Puncture leads to pain, infection, bleeding; heightened risks of retinal 
detachment, lens damage
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Table 2 Representative Applications of Inorganic NPs in Drug Delivery Systems

Inorganic nanomaterials Drug/Modification Application Model Function Ref.

Iron oxide NPs Mesenchymal stem cells Intravenous injection Rat Cell delivery to outer retina for macular degeneration and retinitis pigmentosa [60]

Magnetic hyperthermia Cells Utilizing magnetic hyperthermia for targeted cell ablation in retinoblastoma [61]

Avastin None None Minimize the dosage of Avastin administered for AMD to mitigate systemic adverse effects [62]

Diclofenac sodium Transscleral drug delivery Human cadaver eyes Utilize magnetic field to enhance drug delivery across the sclera. [63]

VEGF Intravitreal injection Zebrafish Specifically target the choroid [64]

None Intravenous injection Rabbit Measuring blood volume and contrast agent uptake facilitates tumor diagnosis and viability 

assessment

[65,66]

Neurotrophins Intravitreal injection Zebrafish Autonomously localize in the retina, exerting neuroprotective function [67]

None Intravitreal injection Xenopus embryos Specific targeting of RPE [68]

Guanabenz and valproic acid Topical Mice Invasive drug delivery to the mouse photoreceptors [69]

Cobalt ferrite NPs as core inside a 

cubic iron oxide NPs shell

None None Bovine cornea endothelial cells Photothermal therapy agents for eye diseases and could be a target in an ocular system 

using MRI

[70]

Silica iron-oxide NPs X-tremeGENE-HP None Human corneal epithelial cells and 
explanted human corneas

Magnetofection with anti-apoptotic P35 gene effectively blocked apoptosis [71]

Dexamethasone Intravitreal injection Rabbit Targeted drug delivery to the retina [72]
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Quantum dots Biogenic polyamines Topical Rabbit As eye drop formulation for topical treatment of bacterial keratitis [73]

Nitrogen doped, Arg-Gly-Asp-Ser 

(RGDS) peptides modified

Topical Mice Neutralize ROS and modulate intracellular antioxidant pathways [74]

Inject into the anterior chamber of 

the eyes; intravitreal injection

Mice; human vitreous Trace lymphatic drainage; prevent the fibrillation of type I collagen and destroy collagen 

fibers to treat vitreous opacities

[75,76]

Nanozyme loaded in hydrogel Topical Mice Enhanced retention time on the ocular surface and increased bioavailability, resulting in a 

satisfactory therapeutic outcome for dry eye

[77]

Imidazole-modified, dissolve in 

microneedle patches

Topical Rabbit Antibacterial activity and effective drug delivery to treat bacterial keratitis [78]

Carboxylated CuInS/ZnS quantum dots Generate localized heat and prevent posterior capsule opacification [79]

Nitrogen-doped Electrocatalytic treatment of choroidal melanoma [80]

Non-oxidized MXene-Ti(3)C(2)Tx Intraocular injection Mice Inhibits the proliferation, invasion, and migration of uveal melanoma cells and exerts 

robust antitumor activity in vivo

[81]

Lipid-NPs-based co-delivery, melphalan Intravitreal injection Mice Inhibit cell proliferation and reduce retinoblastoma [82]

Polymeric curcumin to arginine-derived 

carbon quantum dots

Topical Rat Antioxidative, anti-inflammatory, and pro-proliferative to treat ocular infection [83]

Graphitic carbon nitride Topical Rabbit Increase the oxygen concentration within the corneal stroma for corneal ectasias and 

other corneal diseases

[84]

Anti-VEGF-aptamer modified Topical Rat Inhibit VEGF-stimulated angiogenesis treat AMD and diabetic retinopathy [85]

Pyrolysis of lysine hydrochloride Topical Mice Free radical scavenging, anti-inflammatory activity, high biocompatibility, and a remarkable 

ocular bio-adhesive property to treat dry eye

[86]

Dextran/aliphatic diamines carbonized 

nanogels

Intravitreal injection Rat Possess efficient suppression of ocular microbial infection and inflammation in 

endophthalmitis

[87]

Peptide-functionalized silicon NPs Intravenous injection Mice Antiangiogenic ability [88]

Sodium alginate and 1,8-diaminooctane Intravitreal injection Chicken embryos and rabbit eyes To treat various angiogenesis-related ocular diseases [89]

Mesoporous silica NPs Bevacizumab with zinc ion Topical Rat Inhibiting corneal neovascularization [90]

Pilocarpine Intracameral administration Rabbit Extended drug release profiles in progressively glaucomatous eyes [91]

AuNPs Doxorubicin -loaded fucoidan Intraocular injection Rabbit Selective light absorption treating and diagnosing the eye tumors [92]

Ascorbic acid onto the exosomal 

phospholipid membrane of exosomes

Topical Mice Improves corneal epithelium recovery and anti-inflammation capacity, decreases corneal 

reactive oxygen species, and restores tear secretion in dry eye

[93]

siRNA None Human melanoma cell lines Therapeutic gene regulatory [94]

(Continued)
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Table 2 (Continued). 

Inorganic nanomaterials Drug/Modification Application Model Function Ref.

AgNPs Camellia sinensis Topical Dunkin-Hartley guinea pigs Result in allergic conjunctivitis low clinical score [95]

Poly(sulfobetaine methacrylate-co- 

dopamine methacrylamide)

Topical Rabbit Antibacterial to treat bacterial keratitis [96]

Abelmoschus esculentus Intraperitoneally injection Rat Manages the diabetic retinopathy [97]

Ketoconazole and amphotericin B Fugal Enhance the activities of ketoconazole and amphotericin B [98]

Curcumin Human Pterygium-Derived 

Keratinocytes

Representing an alternative and a more sophisticated strategy for the treatment of human 

pterygium

[99]

Cosmopolitan amoebae from 

Acanthamoeba genus

Prevent against Acanthamoeba keratitis infection. [100]

Electrospun Poly(lactic Acid) Fibrous 

Scaffold

Conjunctival repair Rabbit Kill the infectious pathogens [101]

Cerium oxide NPs Topical Mice Antioxidant and neuroprotective treatment for both dry and wet forms of AMD disease. [102]

Negative surface charge Genotoxic effects at higher exposures in the treatment of cataract [103]

Curcumin Intravenous injection Rat ROS scavenging activity and also providing anti-glycation for the treatment of diabetic 

cataract

[104]

Coated with PEG-PLGA Subconjunctival administration Rat Antioxidant and glycation inhibitor for palliation of diabetic cataracts [105]

Yttrium oxide NPs Intravitreal injection Mice Prevent photoreceptor death in a light-damage model of retinal degeneration [106]
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single-dose treatment reduced epithelial defects by 99%. It Showed 45–53 times greater efficacy than conventional 
treatments.118

Carbon nanomaterials derive their antioxidant, radical-scavenging, and anti-inflammatory properties from: heteroatom 
doping, sp2 domains, edge structures, and functional groups Notably, sodium alginate/1,8-diaminooctane-derived carbon 
nanodots (SA/DAO-CNDs) demonstrated >10-fold stronger binding affinity to VEGF-A165 than clinically used inhibi-
tors (aflibercept and ranibizumab).89

Polymeric-Based Materials for the Treatment of Ocular Diseases
Polymers (Table 3) can be categorized into natural and synthetic types, offering high stability and drug-loading capacity. 
Their mucoadhesive properties make them ideal carriers for ocular drug delivery, prolonging drug retention and reducing 
clearance.41,119 Some polymers exhibit stimuli responsiveness, allowing smart polymers to function as in situ gelling 
systems. Biodegradability is a significant advantage, facilitating sustained drug release.120,121 Recent advancements in 
precisely controlling the molecular weight and sequence of synthetic polymers have enabled effective mucoadhesion and 
physiological barrier penetration. Controlled radical polymerization techniques allow for the preparation of complex 
polymer ligands, with homogeneous monomer sequence polymers supporting precise delivery.8,121

Polysaccharide-based biomaterials have emerged as a highly promising class of ocular drug delivery vehicles, 
demonstrating superior tissue compatibility and outperforming synthetic materials in both drug retention and ocular 
permeability. Natural polysaccharides like chitosan and hyaluronic acid have been successfully engineered into nano-
carriers that combine excellent biocompatibility with enhanced drug bioavailability and favorable safety profiles. 
Through strategic chemical modifications, researchers have further optimized these systems to improve ocular residence 
time and drug solubility.123 The therapeutic potential of polysaccharide-based nanocarriers has been extensively 

Figure 3 Schematic model of a magnetic nanoparticle for drug delivery. It presents a schematic model of a magnetic nanoparticle specifically designed for drug delivery 
applications. This illustrative example showcases the intricate structure and functionality of such particles, which leverage magnetic properties to enable precise targeting and 
controlled release of therapeutic agents. By incorporating magnetic cores encapsulated within biodegradable and biocompatible materials, these nanoparticles facilitate 
enhanced drug delivery efficacy and reduced side effects, marking a significant advancement in the field of targeted therapies.
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Table 3 Condensed Overview of Polymers in Ophthalmic Applications.122

Polymer Name Generally 
Recognized as 

Safe

Experimental/Clinical/FDA 
Approved Biomaterial 

Forms

FDA Approved Indications Approved 
For Use In 

Eye

Characterization

Pros Cons

Synthetic 
polymers

Poly(amidoamine) 
(PAMAM)

× NPs, hydrogels ✔ topicals, drug delivery × Easily customizable with numerous reactive groups 
for functionalization

Lacks FDA approval for ocular applications

Poly(vinyl alcohol) 
(PVA)

✔ Implants, hydrogels, NPs ✔ coatings, food additives, food 
packaging

✔ Offer a slow and controlled degradation rate Synthesis process involves the use of harsh solvents

Poly(methacrylates) 

and derivatives 

(PMMA)

✔ (mostly) Hydrogels, contact lenses ✔ coatings, ocular lens, dental 

fillers, bone cement

✔ Well established ocular polymer, inexpensive Non-biodegradable nature

Poly(lactic acid) 

(PLA)

✔ All types ✔ absorbable sutures, medical 

devices, food packaging

✔ Derived from natural sources, facilitating 

straightforward processing

Characterized by a slow degradation rate

Poly(caprolactone) 

(PCL)

× Hydrogels, films, NPs ✔ implants, delivery devices × Versatile and cost-effective, allowing for easy 

modification

Not FDA-approved for use in ocular applications

Poly(ethylene glycol) 

(PEG)

✔ Implants, hydrogels, NPs ✔ injectables, topicals, rectal and 

nasal

✔ Demonstrates water solubility and excellent 

biocompatibility

Experiences faster degradation compared to other 

synthetic polymers

Poly(acrylic acid) 

PAA

× Hydrogels, eye drops, ✔ topicals ✔ Excellent water solubility and mucoadhesive 

propertiesCons:

Biodegradation may result in acidic byproducts

Poly(glycolic acid-co- 
lactic acid) (PLGA)

✔ All types ✔ implants, drug delivery, medical 
devices

✔ Versatile with adjustable degradation rate, water 
solubility, and prevalent in ocular drug delivery

Degradation may lead to acidic byproducts

Biopolymers Cellulose ✔ Hydrogels, films, NPs, inserts ✔ food additive, topicals × Biocompatible, non-toxic, with high molecular 
loading capacity, enabling feasible nanomaterial 

fabrication

Low solubility

Hyaluronic acid ×(classified as 

medical device 

currently)

Hydrogels, NPs, films, tissue 

scaffolds

✔ cosmetic fillers, injectable for 

osteoarthritis, topicals

✔ Biocompatible, mucoadhesive, excellent 

viscoelasticity, naturally sourced

Complex functionalization, challenging drug 

conjugation, unclear molecular weight impact

Gelatin ✔ Hydrogels, NPs, films, tissue 

engineering

✔ medical devices, food additive × Easily sourced, biocompatible, abundant ECM 

protein, low immunogenicity, transparent, cost- 
effective

Variable strength based on source and processing, 

residual immunogenicity, crosslinking safety 
concerns

Carboxymethyl 
cellulose

✔ Hydrogels, eye drops, NPs ✔ disintegrant, dental devices ✔ Biodegradable, biocompatible, featuring sustained 
release and pH-sensitivity

Difficulty in formulating suitable viscous solutions

Dextran ✔ Hydrogels, films, NPs ✔ shock and other blood related 

indications, inhalant

✔ Unparalleled biocompatibility Functionalization challenges persist

Polydopamine Not evaluated NPs, Intraocular Lenses × Dopamine HCl indicated for 

correction of hemodynamic 

imbalances

× Biocompatible, biodegradable, low toxicity, superior 

adhesion

Complex, poorly understood synthesis; toxicology, 

degradation, elimination require further 

investigation

Pullulan ✔ Hydrogels, NPs, eye drops, 

fibers

✔ food additives, tablet coatings, 

stabilizer, and thickener

× Readily sourced, stable, excellent film-forming, 

biodegradable, non-toxic

Unexpectedly sluggish diffusion, necessitates 

functionalization for drug loading

https://doi.org/10.2147/IJN
.S518643                                                                                                                                                                                                                                                                                                                                                                                                                                                 

International Journal of N
anom

edicine 2025:20 
7588

H
uang et al                                                                                                                                                                          

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



documented across various ocular diseases, with numerous studies highlighting their clinical translation potential.124 

However, despite these advances, significant knowledge gaps remain regarding their long-term ocular safety, as 
comprehensive monitoring data are still lacking. Additionally, while polysaccharides are generally biodegradable, their 
degradation kinetics within the unique ocular microenvironment require further refinement to achieve optimal 
performance.125 Recent innovations in this field include two particularly noteworthy developments: First, a sophisticated 
resveratrol-loaded polycaprolactone nanoparticle system (R@PCL NP) that was functionalized with cell-penetrating 
peptide and metformin through amide bond formation. This design achieved an impressive 15-fold enhancement in 
retinal permeability following single intravitreal injection.126 Second, an advanced surface-engineered ceria nanocage 
platform (SRCN) incorporating poly(L-histidine) coatings that enabled multiple therapeutic functions, including 
enhanced corneal penetration and lesion-specific dual-drug release. This innovative formulation demonstrated remarkable 
efficacy, showing a 19-fold greater wound reduction than commercial eye drops, 93% suppression of pathological 
angiogenesis, and nearly complete corneal clarity restoration within just four days.127 These cutting-edge systems 
exemplify how engineered polysaccharide-based nanocarriers are pushing the boundaries of ocular therapeutics through 
enhanced delivery efficiency and superior treatment outcomes.

Lipid-Based Materials for the Treatment of Ocular Diseases
Solid lipid NPs (SLNs) and liposomes represent two distinct types of lipid-based drug carriers with different structural 
and functional characteristics. SLNs are composed of solid lipids (such as glyceryl palmitate) that form a crystalline 
matrix, enabling high encapsulation efficiency and sustained release of hydrophobic drugs. In contrast, liposomes feature 
phospholipid bilayers surrounding an aqueous core, making them particularly suitable for hydrophilic payloads and rapid 
drug release.128–130

Solid lipid NPs (10–1000 nm) offer multiple advantages as ocular delivery vehicles, including enhanced permeability, 
prolonged retention, improved solubility, reduced toxicity, and targeted delivery capabilities.131 Their self-assembly 
properties, arising from lipid-aqueous phase interactions, have shown therapeutic potential for various ocular conditions 
including conjunctivitis, glaucoma, and retinal diseases (Table 4). The therapeutic efficacy of SLNs largely depends on 
formulation strategies that maximize drug concentration in target tissues. Co-loading of multiple drugs in SLNs enables 
sophisticated delivery paradigms, significantly increasing therapeutic payloads to specific ocular sites.132,133

Currently, both unilamellar and multilayer vesicular liposomes have been developed to carry hydrophilic and 
lipophilic substances, quickly absorbed by the reticuloendothelial system. However, SLNs face non-specific uptake by 
the mononuclear phagocytic system. By attaching different ligands to the surface of SLNs, circulation time and targeted 
drug delivery to specific sites can be enhanced, thereby overcoming these limitations.177 Selecting surface biomarkers 
can improve targeting specificity.130 Additionally, widespread clinical application faces challenges related to the 
reproducibility and reliability of methods. Production requires a multi-component processing line involving centrifuga-
tion, filtration, freeze-drying, emulsification, crosslinking, ultrasonication, solvent evaporation, homogenization, and 
milling, making it difficult to optimize process parameters for stable key quality attributes at a commercial scale, even 
though small-scale prototypes are relatively easy to obtain.178

Extracellular Vesicles for Ophthalmic Applications
Extracellular vesicles (EVs), including exosomes (50–150 nm), microvesicles, and apoptotic bodies, originate from 
cellular membrane structures and play roles in biological metabolism, immune responses, cell communication, and 
disease progression.179 Exosomes, in particular, possess therapeutic potential and value as disease biomarkers due to their 
low immunogenicity, low toxicity, and membrane marker characteristics.180 However, the high complexity and hetero-
geneity of EVs, including variations in size, content, function, and source, can significantly influence their effects on 
recipient cells. Moreover, the super-physiological injection doses and administration frequencies of EVs in different 
studies contribute to uncertainties regarding their safety. As our understanding of EVs, their cargo, and functional 
heterogeneity continues to evolve, the demand for precise and accurate characterization of EVs in the context of ocular 
disease mechanisms and therapies will persist and flourish (Table 5).
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Table 4 Representative Lipid-Based Materials for Ophthalmic Application

Indication Modification Application Model Function Ref.

Dry eye diseases Drugs (eg, atorvastatin, 

dexamethasone…)

Topical Rat, ex vivo Improved mucus-penetrating capacity [134–136]

Drugs(Loteprednol etabonate) Topical Bovine eye and rabbit eye Enhanced bioavailability and decreased side effects. [137]

Baricitinib Topical In vitro, ex vivo Higher flux and permeation in the cornea. [138]

Sebocyte membranes, Drugs (e.g, 

dexamethasone…)

Topical Ex vivo human and in vivo 

mouse studies

Prolonged retention time [139]

Lactoferrin Topical New Zealand rabbits Reverse dry eye symptoms and possess anti-inflammatory efficacy [140]

Drug(Apigenin) Topical Mice Reversed DED by reducing ocular surface cellular damage and increasing tear volume. [141]

Ocular infection Cyclodextrin complexation, 

thermosenstive in situ gel

Topical Candida albicans Enhanced antifungal activity and prolonged action in Fungal keratitis and endopthalmitis. [142]

Luliconazole (LCZ) Topical New Zealand white rabbits Improved bioavailability in whole eye tissues [143]

mRNA Topical Mice Obtaining of a higher transfection efficiency than naked mRNA [144]

Ciprofloxacin (CIP), Natamycin (NT) Topical In vitro release, and ex vivo With better performance than commercial CIP and NT ophthalmic eye drops [145,146]

Ganciclovir Topical ARPE-19 cells Targeted GCV delivery to the retina in the treatment of CMV retinitis [147]

Keratoconus Lactoferrin Topical In vivo Rat, ex vivo(eg HET- 

CAM, BCOP)

A controlled release could delay the drug release and prolonged adherension. [148,149]

Corneal damage Dual-drug(curcumin, vancomycinloaded) Topical Rabbit corneal cells Anti-inflammatory and anti-bacterial agents for the treatment of corneal alkali burn injuries [150]

Allergy/Immune Drugs(Mizolastine, tacrolimus) Topical Invitro,Rabbits eye model Stable sustained-release and effective antiallergy ocular delivery systems [151,152]

Corneal 

neovascularization

Drug(Sunitinib) Topical Rabbit, mice Suppressed alkali burn-induced CNV in mice [153]

Sorafenib Topical In-vitro, Rabbit Possess equal ability in suppressing neovascularization to dexamethasone [154]
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Glaucoma and optic 

nerve in-jury

Ferrostatin-1 Topical C57BL/6 mice Suppression of ferroptosis, inflammation, and neovascularization. [155]

Bimatoprost Topical In-vitro and ex-vivo Drug release for a prolonged period of time. [156]

Betaxolol hydrochloride (BH) Topical In vitro Prolonged the retention time at the ocular surface and improved bioavailability [157,158]

Brinzolamide- and latanoprost Topical Rabbit Effectively reduced IOP in glaucoma patients [159]

Annexin V-conjugated encapsulated 

LM22A-4

Topical New Zealand white rabbit, 

mouse

Targetly delivering neurotrophic factors to the injured retinal ganglion cells (RGCs) could promote the 

survival of RGCs in glaucoma

[160]

Betaxolol hydrochloride Topical Mice Efficiently decreased the IOP in glaucoma and prolonged maximum reduction. [161]

Agomelatine Topical Rabbits Remained over three months, improved ocular delivery and the bioavailability of agomelatine. [162]

Deferoxamine Intravitreal Rat Effective delivery of DFO, iron chelator, to the RGCs might rescue RGC ferroptosis from TON-induced 
injury

[163]

Uveitis Triamcinolone acetonide Topical Wistar rats, Rabbits Increased corticosteroid penetration after topical application [164,165]

Uveal melanoma Sorafenib Topical Statens Seruminstitut Rabbit 
Cornea cells

Sorafenib encapsulation allowed obtaining a sustained and prolonged drug release [166]

Gallic acid-Fe (III) and paclitaxel Topical Rat Internalized into tumor cells, leading to mitochondrial damage, lipid per-oxidation, and apoptosis. [167]

Drugs, eg, (S)-(-)-MRJF22, Melatonin Topical New Zealand albino rabbits Be able to reach the posterior segment of the eye, antiangiogenic capability and preventive 
antiinflammatory

[168,169]

Retinal 
neovascularization

Astragaloside-IV Topical NaIO3 induced dAMD mice Possessed the ability to reach the fundus, and decreases ROS production and reduces the apoptosis [170]

siRNA, 2N12H Intravitreal Injection Mouse Therapeutic effect was comparable to that of the clinical drug ranibizumab [171]

Retinal delivery mRNA Topical Ai9 reporter mouse model Delivering mRNA and gene editors’ to the retinal pigment epithelium and photoreceptors [172]

DNA Intravitreal Injection/ 

subconjunctival injections

Ex Vivo Pig Eyes Reach and penetrate the retina Safe and long-term carrier systems for small molecules or nucleotide- 

based therapies

[173]

mRNA Subretinal injection Mice Provided applications that are directed towards retinal reprogramming or genome editing [174]

Inherited retinal 

degenerations

cGMP analogues Topical/periocular and intravitreal Porcine eyes Suitable for intraocular administration and drug delivery to both the retina and the ciliary body. [175]

Stargardt Disease plasmid DNA (pGRK1-ABCA4-S/MAR) Intravitreal injections Pigmented Abca4-/- knockout 

mice

ABCA4 expressed at both mRNA level and protein level 6 months after 2 intravitreal injections [176]
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Table 5 Representative Exosomes-Associated Nanomaterial Therapeutics

Indication Modification/Target Source Application Model Function Ref.

Dry eye disease Mouse macrophage 
RAW264.7

Topical Benzalkonium chloride (BAC) mice model Improved dry eye syndrome, decreased [181]

miR-21-5p Bone marrow mesenchymal 
stem cell

Intravenous 
injection

BAC induced dry eye mouse model Modulate the Treg/Th17 balance, and ameliorate DED progression [182]

miR-125b inhibitors Induced pluripotent stem cell 

derived MSCs

Intravenous 

injection

NOD.B10.H2b mice model of Sjögren’s Syndrome Repress sialadenitis onset and regulate immunomodulatory splenocytes [183]

PKH26 labeled Bone-marrow-derived MSCs Subconjunctival 

injection

Rat model of corneal allograft 

Wistar rats to Lewis rats

Prolong corneal allograft survival [184]

miR-204 Bone-marrow-derived MSCs Topical Mouse model of dry eye induced by benzalkonium chloride and 

NCG-GVHD mouse model

Restore ocular surface immune homeostasis and ameliorate inflammatory 

injuries

[185]

miR-100-5p inhibitor Human umbilical cord MSCs Subconjunctival 

injection

Rabbit model of autoimmune dacryoadenitis Alleviate the development of rabbit Autoimmune dacryoadenitis [186]

miRNAs Human umbilical cord derived 

MSCs

Topical Mouse model of dry eye induced by desiccating environment 

combined with scopolamine administration

Alleviate dry eye signs, suppress inflammation, and restore homeostasis of 

the corneal surface

[187]

Glaucoma and 

optic nerve injury

miR-29b-3p Embryonic stem cell Intravitreal 

injection

Chronic ocular hypertension (COH) mice. Delivery of miR-29b-3p by engineered sEVs protected retinal ganglion cells [188]

Anti-neuroinflammatory effect 

of human adipose tissue

Mesenchymal stem cell Intravitreal 

injection

Microbead-induced ocular hypertension rat model Promoted RGC survival and function, reduced neuroinflammatory response [189]

Uveitis CD73 Mesenchymal stem cell Tail vein 

injection

Mice with interphotoreceptor retinoid-binding protein (IRBP)- 

induced experimental autoimmune uveitis (EAU)

Decreased proportion of Th1 cells in the spleen, draining lymph nodes, and 

eyes

[190]

IL-10 Mesenchymal stem cell Tail vein 
injection

Mouse model of EAU Decreased the percentage of Th17 cells, regulatory T cells in the eye, and 
draining lymph nodes.

[191]

MicroRNA-410-3p Plasma-Derived From VKH 
Patients

Co-incubation In vitro, CD4+ T cells Inhibited the proliferation of autol-ogous CD4+ T cells. [192]

Rapamycin Mesenchymal Stem Cells Subconjunctival 

injection

EAU mice Penetrate to the retina, and reduce ocular inflammatory cell infiltration [193]

Age-related 

macular 

degeneration

PEDF Mesenchymal Stem Cells Intravitreal 

injection

Oxygen induced retinopathy (OIR) mouse model, Better anti-Inflammation, and neuronal degeneration compared with the 

VEGF drug

[194]

ML385 (Nrf2 inhibitor) Mesenchymal Stem Cells Intravitreal 

injection

ARPE-19 cellsNaIO3-induced damage in male Sprague-Dawley 

(SD)

Protect RPE cells from oxidative damage by regulating Nrf2/Kepa1 signaling 

pathway

[195]

Dental stem cells (DSCs) 

from apical papilla (SCAP).

Subretinal 

injection

Royal College of Surgeons (RCS) rat model Preserved visual function, reduced retinal cell apoptosis, and prevented 

thinning of the outer nuclear layer.

[196]

Diabetic Retin- 

opathy

miR-143-3p Mesenchymal Stem Cells Intravitreal 

injection

Streptozotocin (STZ) along with a high-fat diet Induced inflammation and reducing vascular leakage [197]

miR-5068 and miR-10228 Mesenchymal Stem Cells Intravitreal 

injection

db/db mice and streptozotocin-induced diabetic rats Enhance retinal repair efficiency [198]

Bevacizumab Mesenchymal Stem Cells Intravitreal 

injection

STZ induced DR rat model Maintain more than two months in the eye, and the retinal cell death was 

consistently lower in this period than only bevacizumab

[199]
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Nanofibers
Electrospun nanofibers (100–500 nm in diameter) have emerged as a transformative platform for ocular drug delivery by 
biomimetically replicating key features of the extracellular matrix.200 These advanced systems offer three major 
therapeutic advantages: First, their sustained release capability has been demonstrated through innovative coaxial 
electrospun constructs, such as the corn-derived core (zein)-shell (PLA) nanofibers dual-loaded with rutin and celastrol 
for conjunctival repair.201 This design enables sequential drug release - an initial anti-inflammatory phase from the PLA 
shell followed by prolonged antifibrotic activity from the zein core. Second, their therapeutic versatility extends to 
oxidative stress management, as shown by Juan Ye team’s ROS-scavenging dual-network system comprising a poly 
(PEGMA-co-GMA) hydrogel integrated with electrospun polyurethane membranes for corneal burn treatment.202

The exceptional performance of electrospun nanofibers in ocular applications stems from their unique structural 
characteristics produced via this established biomedical technique.101,203,204 Their high surface area-to-volume ratio and 
optimal porosity enable: (1) precise spatiotemporal control of drug release profiles, (2) enhanced biocompatibility and 
biodegradability matching ocular tissues, (3) significant reduction of administration side effects, and (4) marked 
improvement in therapeutic outcomes compared to conventional formulations.123,205 These advantages, combined with 
the ability to incorporate multiple active compounds and functional components in a single system, position electrospun 
nanofibers as a next-generation platform capable of addressing complex ocular disease pathophysiology through 
sophisticated, biomimetic drug delivery approaches.

Nucleic Acid-Based Nanomaterials for Ophthalmic Applications
Nucleic acid-based nanomaterials (Table 6) are assembled through hybridization and self-folding processes, encompass-
ing DNA nanomaterials, RNA nanomaterials, RNA-based motifs, and DNA/RNA origami structures. Their notable 
advantages include high biocompatibility and low immunogenicity. Additionally, these materials can be structurally and 
functionally programmed for highly selective target binding via aptamers, demonstrating immense potential in biome-
dical applications such as biosensing, bioimaging, cell reprogramming, gene expression, and targeted delivery.206,207 

DNA nanostructures, particularly the tetrahedral framework pioneered by Turberfield in 2005, show promise due to their 
structural stability and capabilities in scavenging reactive oxygen species, enhancing membrane permeability, and 
programmable stimuli responsiveness.208 Furthermore, by embedding stimulus-sensitive sequences—such as lysosome- 
activated, nucleotide-sensitive, or pH-sensitive sequences—dynamic targeting and precise release of cargo are achieved.-
209 RNA nanostructures also display unique advantages in in vivo isothermal transcription. However, challenges such as 
susceptibility to degradation, off-target effects, and cross-reactivity still need to be addressed.

The strategic selection of materials for NIM platforms plays a pivotal role in determining both drug-loading capacity 
and biocompatibility, necessitating meticulous optimization to achieve optimal therapeutic outcomes. Different material 
classes offer distinct advantages and challenges: polymeric matrices (eg, PLGA, chitosan) achieve high drug encapsula-
tion efficiency through their porous architectures and adjustable degradation kinetics,226,227 though their inherent 
immunogenicity can be effectively addressed through innovative erythrocyte membrane coatings that substantially reduce 
reticuloendothelial system recognition and clearance.228 Inorganic carriers such as mesoporous silica and gold NPs 
provide exceptionally large surface areas for small molecule loading,229 yet require biocompatible surface modifications 
to mitigate potential oxidative stress effects. Lipid-based systems demonstrate superior biocompatibility through their 
endogenous components that minimize immune clearance, but require stabilization with agents like trehalose to prevent 
lipid leakage.230–232

The true innovation of NIM platforms lies in their ability to synergistically combine these materials through 
hierarchical engineering. A prime example is the encapsulation of silica NPs within phosphatidylserine (PS)-modified 
liposomes, which creates an advanced hybrid system that simultaneously achieves: (1) targeted drug delivery, (2) 
enhanced cellular uptake, (3) controlled release profiles, (4) excellent biocompatibility, and (5) preserved cell viability. 
This materials integration approach represents a paradigm shift in ocular therapeutics, as it enables precise balancing of 
drug payload capacity with biological safety parameters. The modular design philosophy underlying NIM technology 
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Table 6 Representative Nucleic Acid-Associated Nanomaterial Therapeutics

Vector/Forms of Nucleic Acids Nucleic Acid Delivery Route Disease Ref.

Liposome DSPE-PEG, DOPE/DOPC/Cholesterol 
PEGylated cationic liposomes

siRNA Eye drop Dry eye 
Acanthamoeba keratitis

[210,211]

miRNA Intravitreal injection Retinoblastoma, AMD [212]

Messenger RNA (mRNA) Intravitreal injection 

Subretinal injection

Uveal melanoma 

Genetic abnormalities resulting in retinal 
degeneration

[174,213]

shRNA Intravitreal injection Glaucoma [214,215]

Plasmid DNA Intravitreal injection Retinal neovascularization 

Blinding diseases

[216,217]

Polymeric NPs PLGA 

Chitosan/Hyaluronic acid…

miRNA Choroidal neovascularization [218]

siRNA Intravitreal injection Choroidal neovascularization [219]

Dendrimers Oligonucleotide Intravitreal injection Choroidal neovascularization [220]

Polyplexes polysiRNA Intravitreal injection Choroidal Neovascularization [221]

Polymeric 

micelles

plasmid Eye drop Anterior diseases [222]

RNA pRNA Three-way junction/ four-way X-shape 

extension

Subconjunctival 

injection

Posterior diseases [223]

DNA Tetrahedral framework nucleic acids Nanoassembly Eye drop Dry eye [224]

Solid-phase synthesis of amphiphilic DNA 
strands

Nanoassembly Eye drop Glaucoma [225]
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allows for rational combination of material advantages while systematically addressing their individual limitations, 
thereby creating optimized delivery systems that transcend the capabilities of single-component platforms.

Commonality of the Properties of Nano-Micro Particles for Different 
Administration Approaches (Figure 4)
Nanoparticle interactions and biological behavior in the eye largely depend on their diverse characteristics, particularly 
size, surface charge, shape, and other physicochemical properties that determine the nano-bio interface interactions in 
various biological systems.233 For instance, positively charged NPs tend to have longer retention times in the cornea and 
facilitate penetration through phospholipid membranes.121 Thus, when designing nanoparticle platforms for ocular 
applications, balancing physicochemical properties (eg, size, surface charge) with biological compatibility is critical to 
ensure optimal performance.

While various types of nanomaterials exist, they often share common properties under specific delivery routes. In 
vitreous injections, the nano-biointerface between NPs and the vitreous cavity plays a key role in cellular uptake, 
particularly regarding targeting.234 The vitreous is mainly composed of 98–99% water, glycosaminoglycans, salts, and 
various matrix proteins, all of which influence nanoparticle behavior.235 Research indicates that smaller NPs (approxi-
mately 100 nm) move more easily within the vitreous matrix, while larger particles encounter significant obstacles. 

Figure 4 The application of drug delivery systems in the treatment of various ocular diseases. It illustrates the diverse applications of drug carriers in various ocular diseases. 
It showcases how these innovative delivery systems are tailored to address a spectrum of eye conditions, each demanding unique therapeutic strategy. It underscores the 
versatility and significance of drug carriers in ophthalmology, demonstrating how they are pivotal in advancing the treatment of a wide range of eye diseases, ultimately aiming 
to enhance patient quality of life and visual health. Created in BioRender. Lin, E. (2025) https://BioRender.com/tgyfyi1.
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Anionic NPs are observed to penetrate the vitreous more effectively than cationic ones,236 and the shape of NPs also 
impacts their mobility.237

Topical eye drops are a non-invasive and convenient method for delivering drugs to the anterior eye tissues, widely 
used for conditions like dry eye, glaucoma, and infections.238 Given that the ocular surface carries a negative charge, 
positively charged drug carriers generally exhibit better permeability.239 Beyond charge and size, factors like lubricity, 
muco-adhesiveness, viscosity, and biocompatibility are critical in eye drop formulations. Recent studies have explored 
novel nanoparticle platforms for local delivery, such as hydrogels, fluid gels, and lipid NPs, significantly enhancing 
corneal retention time and drug bioavailability in anterior tissues.240 A notable example is the development of rosmarinic 
acid-conjugated gelatin nanogels co-loaded with diquafosol sodium, which has demonstrated remarkable improvements 
in ocular surface retention time and therapeutic efficacy for dry eye treatment.241 This dual-functional system combines 
the anti-inflammatory properties of rosmarinic acid with the mucin secretagogue action of diquafosol, exemplifying the 
potential of multifunctional nanocarriers in optimizing ocular drug delivery.

Systemic injections face challenges in effectively reaching the retina due to the tight junctions of the blood-retinal 
barrier (BRB). In this route, NPs may circulate to non-target organs with the bloodstream, necessitating careful 
evaluation of their biosafety, including biodistribution, excretion, tissue clearance, and potential side effects or toxicity. 
Insights from blood-brain barrier (BBB) or cancer therapy research suggest that the ideal size for NPs suitable for 
systemic injection ranges between 2 to 200 nm, providing valuable reference for BRB-related studies.242 For example, 20 
nm gold NPs (AuNPs) can successfully penetrate the BRB, while those larger than 100 nm cannot.243 Although smaller 
NPs facilitate retinal penetration, unmodified conventional NPs struggle to accurately target pathological cells or 
accumulate at lesions.

Recent advancements in ocular drug delivery have led to the development of sophisticated smart nanoparticle 
platforms engineered with precision-targeting ligands and aptamers to address the challenges of ocular therapy.244 

These next-generation systems employ innovative ligand engineering strategies to overcome existing limitations in 
drug delivery. A prime example is the PLGA@AST/AXI nanoparticle system,226 which utilizes FDA-approved poly 
(lactic-co-glycolic acid) to co-encapsulate astaxanthin (a multifunctional carotenoid with antioxidant, anti-inflammatory, 
and anti-apoptotic properties) and axitinib (a selective VEGF receptor tyrosine kinase inhibitor). This dual-drug platform 
demonstrates four key advantages: (1) multi-targeted action against wet AMD pathogenesis, (2) sustained release kinetics 
from a single subconjunctival administration, (3) excellent ocular biocompatibility without tissue damage, and (4) 
significant therapeutic potential for posterior segment diseases.

The field has further expanded to include several breakthrough platforms: the bioadhesive nanoparticle network 
system (BNP/CA-PEG) combining cefuroxime axetil with 8-arm polyethylene glycol for enhanced antibiotic delivery,245 

and the chondroitin sulfate-cysteine modified nanostructured lipid carriers (Dex-cNLC) that specifically target ocular 
mucin substructures for efficient dry eye treatment.246 These systems exemplify the growing sophistication in ocular 
nanomedicine through their targeted delivery mechanisms and improved therapeutic profiles.

However, the translation of these technologies faces substantial challenges, particularly in optimizing ligand-receptor 
interactions and addressing interspecies variability in ocular biology. Future progress requires a concerted effort to:

1. Standardize ligand density and binding parameters
2. Elucidate species-specific differences in ocular receptor expression
3. Develop scalable, reproducible manufacturing processes
4. Establish comprehensive biocompatibility assessment protocols

The integration of these considerations with continued nanoplatform innovation will be crucial for advancing precision 
ocular therapeutics from laboratory concepts to clinically viable treatments, ultimately enabling more effective manage-
ment of complex ocular diseases while minimizing systemic side effects. This holistic approach represents the next 
frontier in ophthalmic drug delivery, combining cutting-edge nanotechnology with rigorous translational science.
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Biosafety and Toxicity Profiles of Ocular Nanomaterials: Mechanistic 
Insights and Interspecies Variability
The NIM platform represents a paradigm shift in ocular drug delivery biosafety, offering transformative advantages over 
conventional nanocarriers through its innovative hierarchical architecture. This sophisticated design fundamentally 
addresses the longstanding “toxicity-efficacy paradox” in ocular therapeutics by simultaneously enhancing treatment 
precision while reducing systemic and local toxicity (Figure 5). The platform’s success stems from three synergistic 
safety mechanisms: (1) Barrier-shielded delivery exemplified by the PVA/PDA-PBA@MT eye drop system, which 
combines polydopamine NPs’ exceptional radical scavenging capacity with prolonged ocular retention and controlled 
melatonin release for dry eye management;247 (2) Spatiotemporal release control demonstrated by pH-responsive 
hydrogels and transformable microneedle patches that precisely target pathological microenvironments while minimizing 
off-target effects - particularly the remarkable soft MN patch that delivers antimicrobial NPs to infected corneas before 
converting to a sustained-release contact lens for wound healing;248 and (3) Enhanced immune evasion through 
PEGylated microcarriers that significantly reduce dendritic cell activation and promote immune tolerance compared to 
bare NPs.249

These technological breakthroughs are supported by the platform’s unique ability to decouple and optimize two 
critical safety parameters: microscale components control systemic exposure through regulated retention, while nanoscale 

Figure 5 Potential toxicity of nanomaterials. It depicts potential drug toxicities that may arise from the administration of nanomedicines. These toxicities encompass a wide 
spectrum of adverse effects, including disruptions to the cell cycle, which can lead to abnormal cell proliferation or arrest, as well as DNA damage, a critical concern given its 
potential to induce mutations and genomic instability. It underscores the importance of rigorous toxicity assessments and the development of safer nanocarriers to minimize these 
risks, ensuring the safe and effective application of nanomedicines in therapeutic interventions. Created in BioRender. Lin, E. (2025) https://BioRender.com/wcw3s1r.
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elements modulate local cytotoxicity via precision engineering. However, comprehensive safety assessment requires 
addressing several key challenges: nanoparticle-specific toxicity mechanisms including oxidative stress and DNA 
damage,35 size- and surface charge-dependent biological interactions,250 species variability in ocular physiology, long- 
term exposure effects, and dynamic nanoparticle-protein corona formation in ocular fluids. Moving forward, the field 
must prioritize standardized safety evaluation protocols that bridge preclinical and clinical studies, with particular 
emphasis on surface engineering strategies to mitigate risks while maintaining therapeutic efficacy. The NIM platform’s 
success in harmonizing these complex parameters positions it as a groundbreaking approach in ocular therapeutics, 
offering new hope for treating challenging eye diseases while setting a new standard for drug delivery biosafety.

Factors Affecting the Bio-Performance of Nano/Micro Delivery Systems
The biological performance of nano- and microparticle delivery systems, including biodistribution and bioavailability, is 
influenced by multiple factors including size, surface charge, solubility, and biodegradability.251 To enhance these 
performances, researchers aim to prolong bioavailability, broaden biodistribution, and reduce toxicity. The loading 
capacity of the delivery system is crucial for in vivo performance and primarily depends on the manufacturing process. 
For chronic disease treatment, matrices with good biodegradability or intelligent responsiveness are more suitable, as 
they can prevent preloaded drugs from directly interacting with specific tissues, which is essential for intracellular 
applications like genome editing.252

Release kinetics is another important indicator for assessing the performance of delivery systems.253 Particulate and 
hydrogel formulations excel in improving drug release profiles. Additionally, enhanced cellular uptake is particularly 
critical for intracellular applications. While small-sized NPs have advantages, their size must be optimized to avoid rapid 
clearance or ocular irritation.

The surface charge of NPs affects cellular uptake and intracellular transport.254 Positively charged NPs may disrupt 
cell membranes or exhibit toxicity, while anionic NPs are internalized via specific endocytic pathways. Therefore, 
selecting NPs requires a balance between size and charge to maximize cellular uptake and minimize toxicity.

Beyond surface charge, the stiffness, hydrophobicity, and topology of nano/microsystems also influence cell adhesion, 
thereby affecting biocompatibility and uptake mechanisms.255 To enhance biocompatibility, researchers have explored 
various coating materials to modify the nanoparticle interface.

In summary, optimizing nano/microparticle delivery systems necessitates a comprehensive consideration of factors 
such as size, surface charge, solubility, biodegradability, and other surface characteristics. Through meticulous design and 
appropriate surface modifications, more efficient and safe drug delivery can be achieved, with the introduction of smart 
release capabilities further enhancing system performance (Figure 6).

FDA Approved and Under Clinical Trial Nanomedicine for Ocular Diseases
Nanocarriers, due to their nanoscale size and surface characteristics, hold great promise for penetrating ocular barriers 
and delivering drugs precisely to target sites. Extensive research on nanoformulations for anterior and posterior segment 
diseases has yielded positive results in clinical trials (Table 7). Commercially available products like Restasis256 and 
Durezol257 are used for treating dry eye syndrome and ocular inflammation, respectively. Other marketed nanostructured 
products include Cequa®258 and Cyclokat®259 (both cyclosporine A nanoemulsions), Lacrisek®260 (liposomal vitamin), 
and Artelac Rebalance®261 (lubricant). Visudyne262 is indicated for conditions like choroidal neovascularization. InSite 
Vision’s Durasite® is a novel drug delivery system, with its besifloxacin formulation approved by the FDA.263 Several 
nanoformulations, such as Ozurdex,264 Iluvien265 and Trivaris266 are used for treating macular edema and uveitis. 
Currently, various nanoformulations, including TLC399 (ProDex),267 latanoprost-coated liposomes (POLAT-001),268 

and SYSTANE®,269 are undergoing clinical trials for conditions like ocular hypertension, glaucoma, AMD, diabetic 
macular edema, and ocular infections.

The rapid development of nanotechnology and microsystems has integrated NPs with micro-matrices (such as 
hydrogels, microspheres, and liposomes), combining the advantages of both to provide a larger drug-loading surface 
area. However, the biocompatibility of inorganic NPs is relatively poor, which can lead to side effects or cytotoxicity. To 
address this, researchers have combined inorganic NPs with biocompatible polymers to shield encapsulated components 
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from in vivo clearance, thereby enhancing biocompatibility and optimizing drug release profiles.287 In ophthalmic 
applications, this system demonstrates significant potential for sustained drug delivery, cell encapsulation, and trans-
plantation. Additionally, cell encapsulation technology is being used to create novel therapeutic platforms by encapsulat-
ing genetically engineered cells to produce therapeutic factors. Given their longevity, immune privilege characteristics, 
and ease of gene editing, human retinal pigment epithelial cell lines (ARPE-19) and mesenchymal stem cells are 
preferred choices. A notable ARPE-19-based delivery system is Neurotech Inc.’s NT-501 device,288 which has been 
used clinically for the controlled release of ciliary neurotrophic factor.

A number of FDA-approved drugs have completed or are undergoing clinical trials for further validation. 
Dexamethasone, a cornerstone anti-inflammatory agent, is increasingly delivered via sustained-release implants to 
address clinical challenges associated with frequent dosing and poor patient compliance. Ozurdex® and DEXTENZA® 

are exemplary models of sustained-release systems for dexamethasone delivery, with their applications significantly 
enhancing patient compliance and clinical outcomes. The Ozurdex® system encapsulates dexamethasone within biode-
gradable poly(lactic-co-glycolic acid) (PLGA) microspheres, enabling prolonged drug release at the target site. In the 
DME trial (NCT05372562), patients treated with Ozurdex® demonstrated superior outcomes: 22–28% achieved ≥15- 
letter visual acuity improvement (vs 12% in controls), alongside central macular thickness reductions of 100–150 μm (vs 
30 μm in controls). A multicenter Chinese trial (NCT06548568) is currently underway to further validate these findings. 
The system’s efficacy, lasting up to six months, underscores its potential to reduce treatment burden and improve quality 
of life. DEXTENZA®, on the other hand, is an FDA-approved intracanalicular insert, employs a polyethylene glycol 
(PEG)-based plug to deliver dexamethasone nanocrystals for postoperative inflammation/pain management following 
cataract or glaucoma surgeries. Phase III trial data (NCT02525036) demonstrated significant resolution of inflammation 

Figure 6 The basic parameters involved in the process of drug delivery. It illustrates the fundamental parameters that are integral to the process of drug delivery. Looking 
ahead, the trajectory of advancement lies in the continued pursuit of smart drug development, which encompasses the realm of nanomedicines engineered to respond to 
various physiological factors such as pH levels in bodily fluids and blood glucose concentrations. This evolution toward smarter therapeutic solutions aims to enhance the 
precision and efficacy of drug administration, tailoring. Created in BioRender. Lin, E. (2025) https://BioRender.com/wcw3s1r.
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Table 7 FDA Approved and Under Clinical Trial Nanomedicine for Ocular Diseases

Target Indication Route Target Tissue Product Nano Formulation Drug/Bioactive FDA Approval 
Status

Refs

Dry eye Eye drop Cornea and Tear film Restasis Nanoemulsion Cyclosporine ophthalmic emulsion Approved [256]

Ikervis Nanoemulsion Ciclosporin ophthalmic emulsion 0.1% Approved [270]

Cationorm Nanoemulsion Cationic emulsion Approved [271]

Cequa Micelle Cyclosporine ophthalmic solution 0.09% Approved [258]

Cyclokat Cationic 
nanoemulsion

Cationic emulsion 0.1% Approved [259]

Lacrisek Liposomal spray Vitamin A palmitate, vitamin E Approved [260]

Artelac 
Rebalance

Liposomal eyedrops Lubricant Approved [261]

SYSTANE Nanoemulsion Propylene glycol-based nanoemulsion Phase IV [269]

AMD Intravitreal injection Retina, Choroid Visudyne Liposome Verteporfin Approved [272]

GB-102 NPs Sunitinib malate Phase I [273]

AMD and diabetic macular edema Intravitreal injection Retina, Choroid AR-13503 Intravitreal implants AR-13503 implant alone and in combination with 

aflibercept

Phase I [274]

AR-1105 Intravitreal implants Dexamethasone intravitreal implant Phase II [275]

Wet AMD Intravitreal injection Retina, Choroid Macugen Aptamer-polymer 

nanoparticle

Pegaptanib Approved [276]

Glaucoma Subconjunctival injection Anterior segment POLAT-001 Liposome Latanoprost-coated liposome Phase II [268]

Macular edema Intravitreal injection Vitreous, Retina, Choroid ProDex Lipid-based 

nanoparticle

ProDex Phase II [277]

Intravitreal injection, 

Suprachoroidal injection

Kenalog Microparticle Triamcinolone acetonide suspension Approved [278]

Intravitreal injection Triesence Microparticle Triamcinolone acetonide suspension Approved [266]

Macular edema, noninfectious 

uveitis

Intravitreal injection Vitreous, Retina, Choroid Ozurdex Implant Dexamethasone biodegradable implant Approved [279]

Diabetic macular edema Intravenous Vitreous, Retina, Choroid Iluvien Implant Fluocinolone acetonide nonbiodegradable implant Approved [265]

Intraocular melanoma Intravenous injection Retina, Choroid Taxol NPs Paclitaxel albumin-stabilized nanoparticle formulation Phase II [280]
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Pain and inflammation in ocular 

surgery

Eye drop Anterior segment KPI-121 Mucus penetrating 

particles

1 and 0.25% loteprednol etabonate Approved [281]

Subconjunctival implant Anterior segment Dextenza Implant Dexamethasone Phase III [282]

Eye drop Anterior segment GPN00833 

(APP13007)

Nanoemulsion Clobetasol propionate Approved

Control of Inflammation, Diabetic 
Macular Edema

Eye drop Anterior segment, Retina OCS-01 Nanoparticle Dexamethasone Cylcodextrin Nanoparticle Ophthalmic 
Suspension 1.5% mg/mL

Phase II [283]

Eye inflammation Eye drop Mainly anterior segment of the eye, anterior chamber, 
cornea, conjunctiva

Durezol Nanoemulsion Difluprednate ophthalmic emulsion 0.05% Approved [257]

Uveitis Intravitreal injection Vitreous, Retina, Choroid Trivaris Microparticle Triamcinolone acetonide suspension Approved [284]

Non-infectious uveitis Intravitreal injection Vitreous, Retina, Choroid Retisert Implant Fluocinolone acetonide nonbiodegradable implant Approved [285]

Ocular infection Eye drop Conjunctiva, cornea AzaSite Micelle Azithromycin Ophthalmic 1% Solution Approved [286]
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and pain reduction, highlighting its clinical viability. Another example based on biodegradable PLGA microsphere-based 
platform, is OTX-TIC system, incorporating travoprost nanocrystals for glaucoma management. Clinical trials evaluating 
its efficacy and safety in patients with open-angle glaucoma (OAG) or ocular hypertension (OHT) aim to validate its 
potential as a single-application alternative to daily topical therapies.

The NIM platform demonstrates significant translational potential, with emerging clinical adoption in ophthalmic 
therapeutics. Clinical evaluations have demonstrated superior therapeutic efficacy compared to traditional drug delivery 
approaches, particularly in targeting chronic ocular pathologies. Nevertheless, the full clinical translation of NIM 
formulations continues to face persistent challenges.

Challenges in the Clinical Translation
Nanomaterial drug delivery systems face multiple challenges in ophthalmic applications, leading to slow progress and 
high costs. The primary obstacles involve safety, regulatory approval, scalability, and cost-effectiveness.289 The complex-
ity of new nanotherapeutic products makes the approval process time-consuming and challenging. Although the FDA has 
released draft guidance documents, final guidelines are still pending, and current regulatory requirements remain aligned 
with small molecules. These testing standards may not be suitable for nanoproducts, potentially resulting in biased 
outcomes.

The transition to clinical applications hinges on reproducibility and large-scale production; yet the structural and 
physicochemical complexity of nanomaterials often leads to poor reproducibility. Issues such as inconsistency, inade-
quate quality control, low yield, and high manufacturing costs are prevalent in nanodrug production, complicating quality 
assurance and control. Lastly, patient safety is paramount. An ideal nanoplatform should exhibit good biocompatibility 
and safety, minimizing adverse effects or ocular accumulation. Although extensive research has explored the toxicity of 
NPs on ocular tissues, most data are based on animal models, which may not accurately reflect human conditions due to 
significant differences in retinal immune composition.290 Additionally, the biocompatibility and toxicity of NPs are 
closely tied to their physicochemical properties, and there remains insufficient evidence to confirm their biocompatibility 
and toxicity in the human eye.

Conclusion and Prospects
The NIM platform combines nanoscale precision with micron-scale stability to address the ongoing challenges of drug 
retention, penetration, and biocompatibility in ocular drug delivery, representing a transformative approach in the field of 
ocular therapy. This innovative technology has shown significant potential, especially in the treatment of genetic retinal 
diseases. The CRISPR-Cas9 lipid NPs delivered through the NIM platform achieved high gene correction efficiency in a 
model of retinitis pigmentosa.291–293 However, there are still some key obstacles hindering its clinical translation. The 
challenges of materials science, especially at the interface of inorganic polymers, require innovative solutions to ensure 
optimal performance of the system, while regulatory ambiguity significantly limits the progress of NIM preclinical 
research towards clinical trials. Clinical translation has shown that only a few ocular nanotherapeutic drugs have entered 
Phase 3 trials, mainly hindered by inconsistent manufacturing and scalability limitations of microfluidic production 
systems.294,295 Safety considerations remain paramount, as evidenced by the heterogeneity of diseases and the large 
number of mutations in genes such as RPE65, which directly affect the toxicity threshold of nanomaterials.296,297 These 
challenges underscore the urgent need to balance efficacy and biocompatibility, especially for long-term treatment 
regimens. Looking ahead, several key research directions must be prioritized in this field: (1) the development of 
advanced delivery systems that combine artificial intelligence-guided drug release and sustainable biodegradable 
matrices; (2) creating enhanced formulations with improved stability and pharmacokinetic characteristics for small 
molecules and biologics; (3) Expand translational research through comprehensive in vivo studies and optimization of 
non-invasive delivery methods. When developing solutions for diseases, multidisciplinary collaboration is crucial to 
addressing these challenges. By successfully overcoming these obstacles, NIM technology has the potential to move 
beyond incremental improvements and become the foundational platform for the next generation of ophthalmology, 
effectively bridging the gap between nanoscale innovations and meaningful clinical impact in ophthalmic treatments.
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