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Purpose: Klebsiella pneumoniae harbors a gene cluster, polyketide synthase island (PKS), which is responsible for colibactin 
synthesis which induces double-stranded DNA breaks and associated with increased pathogenicity and cancer development. 
However, there is limited information on pks-positive K. pneumoniae in cancer patients in China. This study aimed to investigate 
the prevalence and molecular characteristics of K. pneumoniae harboring the pks island in patients with cancer in China and to explore 
its potential pathogenicity and clinical significance.
Methods: Among 279 nonrepetitive K. pneumoniae isolated from all cancer patients in China, the presence of pks genes were 
determined by PCR and the molecular characteristics were detected by whole-genome sequencing. Clinical characteristics and 
antimicrobial susceptibility were also investigated.
Results: The pks gene cluster was detected in 35 (12.54%) of the 279 isolates. All isolates were less resistant to most antimicrobial 
agents, and there were no significant differences in the rates of susceptibility between pks-positive and pks-negative isolates to most 
antibiotics, except for sulfonamides. Among pks-positive isolates, ST23 (19, 54.29%) and K1 (17, 48.57%) were the dominant 
sequence types and serotypes, respectively, and the majority harbored multiple virulence genes, including aerobactin, enterobactin, 
salmochelin, and yersiniabactin.
Conclusion: The distribution of pks-positive K. pneumoniae in different types of cancer combined with its hypervirulent determinants 
highlighted the potential pathogenicity of genotoxins, which requires close clinical attention and epidemic tracking.
Keywords: PKS island, colibactin, Klebsiella pneumoniae, cancer, hypervirulent Klebsiella pneumoniae

Introduction
Klebsiella pneumoniae is not only a common pathogen causing nosocomial infections but also an important cause of 
community-acquired infections, that colonizes human mucosal surfaces such as the nasopharynx and the gastrointestinal 
tract.1 In recent years, with the prevalence of multidrug-resistant and hypervirulent K. pneumoniae in the world, the 
incidence rate of K. pneumoniae infections has risen dramatically, such as urinary tract infection, pneumonia, liver 
abscess, and so on.1 Compared with the classical K. pneumoniae (cKp), hypervirulent K. pneumoniae (hvKp) possesses 
higher toxicity, which can cause severe infection in immunocompromised people, with high pathogenicity and mortality.2 

Although many factors contribute to the high virulence of the hvKp, virulence factors, including capsule, siderophores, 
lipopolysaccharide, and fimbriae, play an essential role in the pathogenesis of several diseases.3–6 Numerous reports have 
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shown that K1 and K2 serotypes are strongly associated with hvKp among 79 serotypes of K. pneumoniae.7,8 

Additionally, some genes, rmpA, iutC, and ybtA, which are responsible for the production of high viscosity, iron- 
acquiring factors, aerobactin and yersinia actin, respectively, have been associated with the hypervirulence of 
K. pneumoniae.5,9 Recently, the pks (polyketide synthase) gene cluster, as a new virulence factor, has aroused great 
public concern.10

The pks gene cluster is a genetic locus that was first described in some Escherichia coli strains from the B2 
phylogroup by Nougayrede in 2006.11 It contains 19 genes (clbA to clbS) with 54 kb and encodes a multi-enzyme 
complex capable of producing a genotoxin called colibactin. Previous studies have shown that colibactin can cleave host 
DNA double strands, resulting in cell cycle arrest, DNA damage, and mutations.12,13 Moreover, it increases the 
likelihood of serious complications of bacterial infections. For instance, production of colibactin by pks+ E. coli 
exacerbates lymphopenia associated with septicemia and increases the morbidity and mortality of urosepsis and 
meningitis in immunocompromised mice.14,15 Additionally, pks-positive E. coli has been associated with mutations in 
colorectal cancer.13,16,17 Subsequently, the pks island has also been found in several other members of the 
Enterobacteriaceae family, such as Citrobacter koseri, K. pneumoniae, and Enterobacter aerogenes, but was found to 
be relatively infrequent.18–20 A study in Europe showed that the prevalence of the pks gene cluster was 34% in E. coli 
strains of phylogenic lineage B2, but only 3.5% in K. pneumoniae clinical isolates.18 While the predominance of pks 
genes in bloodstream-sourced K. pneumoniae is approximately 25.6% and 26.8% in Taiwan and Changsha, 
respectively,21,22 little is known about its epidemiology in clinical isolates from cancer patients in China.

Given the potential role of the pks gene cluster in cancer and its association with hypervirulence, it is crucial to 
investigate the prevalence and molecular characteristics of pks-positive K. pneumoniae in patients with cancer. This study 
aimed to address this gap by examining the presence of the pks gene cluster and analyzing the clinical and molecular 
features of pks-positive K. pneumoniae isolates from patients with cancer in China. Understanding the distribution and 
characteristics of these isolates will provide valuable insights into their pathogenic potential, and inform clinical practice 
and epidemic surveillance.

Materials and Methods
Bacterial Isolates Collection
A total of 279 non-repetitive clinical K. pneumoniae isolates were obtained from all cancer patients in China at Cancer 
Hospital Chinese Academy of Medical Sciences, Shenzhen Center between January 2022 and June 2024. All cases were 
diagnosed according to the International Classification of Diseases, 10th Revision (ICD-10) and presented with clinical 
evidence of infection (including clinical symptoms, laboratory indicators, and microbiological evidence). These strains 
were isolated from diverse specimens, including sputum, blood, urine, drainage fluid, bile, catheter, gastric juice, vaginal 
secretion, and wound secretion. The collection, isolation, and culture of all clinical specimens must be performed under 
aseptic conditions and comply with the standards of CLSI (Clinical and Laboratory Standards Institute) guidelines and 
WHO Laboratory Biosafety Manual. After being isolated and purified, these strains were preserved at −80 °C in a tube 
containing 20% glycerol for a long time. The full 10 μL loop of colonies after balancing to room temperature were spread 
onto the Columbia blood agar (Oxoid, Brno, Czech Republic) and incubated at 37 °C for 24 h in 5% CO2 atmosphere. At 
the same time, the information of these patients was also collected. This study was approved by the hospital ethics 
committee (Approval No: JS2024-18-1).

Identification and Antimicrobial Susceptibility Testing
Isolates were identified by by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF 
MS; bioMerieux SA, Lyons, France) according to the manufacturer’s protocol. Antimicrobial susceptibility testing was 
performed using automatic microbial identification and the antibiotic sensitivity analysis system, Vitek 2 Compact 
(bioMerieux SA, Lyons, France). The results of the antibiotic sensitivity test were determined based on the breakpoints 
recommended in the guidelines of the 2023 Clinical and Laboratory Standards Institute (CLSI).
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Identification of the Pks Gene Cluster in Clinical K. pneumoniae Isolates
Genomic DNA was extracted from 279 clinical isolates using a bacterial DNA extraction kit (Tiangen Biochemical 
Technology, Beijing, China) and quantified using Qubit 4.0 according to the manufacturer’s instructions. PCR was used 
to detect pks genes (clbA, clbB, clbN, and clbQ). The primers and amplification conditions used in the present study for 
pks detection are listed in Table 1.11 The PCR products were visualized using 2% agarose gel electrophoresis.

The positive of pks gene clusters were verified by blasting whole genomic coding ORFs against E. coli clb reference 
genes (GenBank accession: AM229678.1)11 with both identity and coverage threshold greater than 80%.

Whole-Genome Sequencing and Analysis
A total amount of 0.2 μg of DNA per sample was used as input material for DNA library preparations using the Rapid 
Plus DNA Lib Prep Kit (RK20208) (Beijing Baiao Innovation Technology, China). Subsequently, the library quality was 
assessed on the Agilent 5400 system (AATI) and quantified by real-time PCR (1.5 nM). The qualified libraries were 
pooled and sequenced on Illumina platforms (Illumina, San Diego, CA, USA). Sequencing reads were assembled using 
Shovill (1.1.0) (https://github.com/tseemann/shovill), and the contamination and completeness of the assembled genome 
were assessed using CheckM (v1.2.2).23 Whole-genome annotation was performed using the Prokka software (1.14.6).24

SNP distance and phylogenetic tree construction were performed for pks-positive strains. Phylogenetic analysis was 
conducted using IQ-TREE software (version 2.3.5) and visualized with the ggtree package in R (version 4.4.2). The 
K159 strain was used as the reference genome, and core genomic SNPs (cgSNPs) were identified using Snippy (v4.6.0) 
(https://github.com/tseemann/snippy).

Sequence types (ST) and serotypes were determined from whole-genome data using Kleborate (2.2.0)25 against 
pubMLST database26 and Kaptive database.27

Virulence genes and antibiotic resistance genes were identified using the ABRicate (1.0.1)28 and AMRFinderPlus 
(3.11.14)29 from genome assembly, respectively.

Statistical Analysis
All analyses were performed with the Statistical Package for the Social Sciences version 28.0 (SPSS, Chicago, IL, USA). 
Significance of differences in frequencies and proportions was tested by the χ2 test or Fisher’s exact test. A P-value <0.05 
was considered statistically significant.

Results
Clinical Characteristics of Pks-Positive K. pneumoniae
Among 279 K. pneumoniae isolates, 35 (12.54%) pks gene cluster positive representatives were identified, which were mainly 
isolated from the sputum (20, 57.14%). The clinical characteristics of the patients who isolated K. pneumoniae isolates are 
presented in Tables S1 and S2. The average age of patients with pks-positive K. pneumoniae was 59, and most of them were 
male (27, 77.14%). And the diagnosis of lung cancer (15, 42.86%) was predominant in patients harbouring pks-positive 
isolates, followed by gastric cancer (3, 8.57%). But comparing with patients infected by pks-negative K. pneumoniae, there 

Table 1 Primers Used for Amplification of the Tested Pks Genes

Target Gene Primers Nucleotide Sequence (5’-3’) Temperature (°C) PCR product size (bp)

clbA clbAF CTAGATTATCCGTGGCGATTC 48 1311

clbAR CAGATACACAGATACCATTCA

clbB clbBF GATTTGGATACTGGCGATAACCG 52 579
clbBR CCATTTCCCGTTTGAGCACAC

clbN clbNF GTTTTGCTCGCCAGATAGTCATTC 54 733

clbNR CAGTTCGGGTATGTGTGGAAGG
clbQ clbQF CTTGTATAGTTACACAACTATTTC 48 821

clbQR TTATCCTGTTAGCTTTCGTTC
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was no significant difference in age, specimen source, infections position, and sexes in patients harbouring pks-positive 
isolates (P > 0.05) (Table 2).

Antimicrobial Susceptibility of Pks-Positive Isolates
There was no significant difference in rates of susceptibility between the pks-positive and pks-negative K. pneumoniae 
isolates to most antibiotics, including β-lactam/β-lactamase inhibitors, fluoroquinolones, cephamycin, aminoglycosides, 
and carbapenems, except for sulfonamides (Tables S3 and S4). For example, the susceptibility rates of cefoperazone 
sulbactam, piperacillin tazobactam, cefuroxime, ceftazidime, ceftriaxone, cefepime, amikacin were 100%, 85.71%, 
74.29%, 91.43%, 85.71%, 88.57%, and 100% in the pks-positive K. pneumoniae, and compared with the pks-negative 
K. pneumoniae, where the respective rates for these antibiotics were 95.90%, 88.52%, 72.95%, 84.02%, 77.05%, 84.02%, 
and 98.36% (Table 3). Although there was a tendency that the pks+ K. pneumoniae isolates were less resistant to 
carbapenem agents tested versus pks-isolates (100% vs 98.36%), the difference was insignificant. Sulfamethoxazole was 
the only agent to which pks-positive isolates were significantly more susceptible than pks-negative isolates (100% vs 
75.82%, P<0.001) (Table 3).

Molecular Characteristics of Pks-Positive K. pneumoniae
In this study, whole-genome sequencing of 35 pks+ K. pneumoniae isolates was performed, and the detailed quality 
assessment results are shown in Table S5. The average genome size of 35 pks+ K. pneumoniae isolates was 6.02 Mbp, 

Table 2 Clinical Data of Patients Infected with Pks-Positive and Pks- 
Negative K. pneumoniae

Characteristics N (%) of  
pks-Positive

N (%) of  
pks-Negative

P value

Total (279) 35 244
Age (median, IQR) 63 (53–69) 63 (51–69.25) 0.875

Male (n, %) 27 (77.14%) 149 (61.06%) 0.065

Specimen source
Respiratory 20 (57.14%) 112 (45.90%) 0.213

Urine 4 (11.43%) 42 (17.21%) 0.388

Gastric juice 1 (2.86%) 6 (2.46%) >0.999
Vaginal secretion 1 (2.86%) 3 (1.23%) >0.999

Wound secretion 2 (5.71%) 23 (9.42%) 0.687

Drainage 4 (11.43%) 25 (10.25%) >0.999
Blood 3 (8.57%) 25 (10.25%) 0.994

Infections position

Lung infection 21 (60%) 108 (44.26%) 0.081
Urinary tract 4 (11.43%) 43 (17.62%) 0.500

Bloodstream infection 3 (8.57%) 25 (10.25%) 0.994

Hepatophyma liver abscess 2 (5.71%) 2 (0.82%) 0.129
Abdominal infection 1 (2.86%) 9 (3.69%) >0.999

Diagnosis

Lung cancer 15 (42.86%) 57 (23.36%) 0.014
Gastric cancer 3 (8.57%) 13 (5.33%) 0.702

Liver cancer 2 (5.71%) 10 (4.10%) >0.999

Nasopharynx cancer 2 (5.71%) 7 (2.87%) 0.704
Ovarian cancer 2 (5.71%) 7 (2.87%) 0.704

Breast cancer 1 (2.86%) 13 (5.33%) 0.832

Colorectal cancer 1 (2.86%) 16 (6.56%) 0.633
Esophagus cancer 1 (2.86%) 18 (7.38%) 0.526

Pancreatic cancer 1 (2.86%) 14 (5.74%) 0.760
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and the average GC content was 57.38%. The average largest were 0.72 Mbp, and N50 scaffolds were 0.29 Mbp in 
length, indicating the high assembling quality. The result of genome sequencing showed that virulence associated 
serotype K1 (17, 48.57%) was the predominant serotype, and K2 accounted for 25.71% in pks-positive K. pneumoniae 
(Figure 1). Six other K serotypes (K116 (3), K113 (2), K20 (1), K25 (1), K57 (1), and K62 (1)) accounted for 25.72% of 
isolates.

Among the 35 pks-positive K. pneumoniae, the multilocus sequence typing showed that the predominant sequence 
types were ST23 (19, 54.29%) and ST65 (8, 22.86%), while another six STs each had no more than 3 strains, ST133 (3, 
8.57%), ST268 (1, 2.86%), ST348 (1, 2.86%), ST380 (1, 2.86%), ST592 (1, 2.86%), and ST792 (1, 2.86%) (Figure 1). 
The whole genomic phylogeny and SNP distance were inferred, and we found that there is no direct and recent 
transmission (cgSNP differences less than 20) among ST23 and ST65 isolates (Figure 1).

Virulence genes were prevalent in pks-positive isolates, particularly the siderophore systems (aerobactin, enterobactin, 
salmochelin, and yersiniabactin) which played different roles in infection within the host. In 35 pks-positive isolates, 

Table 3 Susceptibility of Pks-Positive and Pks-Negative K. pneumoniae to Antimicrobials

Antibiotics N (%) of pks-Positive  
(n=35)

N (%) of pks-Negative  
(n=244)

P value

Sulfamethoxazole 35 (100%) 185 (75.82%) <0.001

Levofloxacin 30 (85.71%) 178 (72.95%) 0.105

Piperacillin tazobactam 30 (85.71%) 216 (88.52%) 0.630
Cefoperazone sulbactam 35 (100%) 234 (95.90%) 0.619

Cefuroxime 26 (74.29%) 178 (72.95%) 0.868

Ceftazidime 32 (91.43%) 205 (84.02%) 0.371
Ceftriaxone 30 (85.71%) 188 (77.05%) 0.246

Cefepime 31 (88.57%) 205 (84.02%) 0.654
Imipenem 35 (100%) 240 (98.36%) >0.999

Ertapenem 35 (100%) 240 (98.36%) >0.999

Meropenem 35 (100%) 240 (98.36%) >0.999
Amikacin 35 (100%) 240 (98.36%) >0.999
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Figure 1 Phylogenetic tree based on SNP sites in core genes of 35 pks-positive strains.
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Enterobactin synthase genes (entAB, fepC) and yersiniabactin siderophore system genes (ybtA/E/P/Q/S/T/U/X, irp1, 
irp2) were at least 97.14%, meanwhile the aerobactin siderophore synthesis system genes (iucA/B/C/, iutA) and 
salmochelin genes (iroB/C/D/N) were at least 85.71% (Table 4). Furthermore, rmpA genes, which were the positive 
regulator of the mucoid phenotype, and peg-344, which could encode an intracellular transporter protein, were, 
respectively, found in 62.86% and 54.29% of pks-positive isolates (Table 4).

As for antibiotic resistance genes, pks-positive isolates harbored some β-lactamase genes, including blaCTX-M, blaTEM, 
and blaSHV. Only four isolates proved positive for CTX-M-1 group, and two isolates proved positive for CTX-M-9 group. 
Additionally, the screen of SHV β-lactamase genes showed that the frequencies of SHV-11, SHV-75, SHV-26, and SHV-207 
were 30 (85.71%), 3 (8.57%), 1 (2.86%), and 1 (2.86%), respectively. And only two isolates were blaTEM-1 positive. 
However, no pks-positive isolates proved positive for the genes that confer resistance towards carbapenems.

Table 4 Virulence Genes and Drug Resistance Genes of Pks-Positive 
K. pneumoniae

Characteristics N of  
pks-Positive 

Isolates

% of  
pks-Positive 

Isolates

Virulence genes

RmpA 22 62.86%
RmpA2 4 11.43%

peg-344 19 54.29%

entA 35 100%
entB 35 100%

fepC 35 100%

ybtA 35 100%
ybtE 35 100%

ybtP 35 100%

ybtQ 35 100%
ybtS 34 97.14%

ybtT 35 100%

ybtU 35 100%
ybtX 35 100%

irp1 35 100%

irp2 34 97.14%
iroB 30 85.71%

iroC 30 85.71%

iroD 30 85.71%
iroN 30 85.71%

iucA 30 85.71%

iucB 30 85.71%
iucC 30 85.71%

iutA 31 88.57%

Drug resistance genes (β-lactamase genes)
CTX-M-3 2 5.71%

CTX-M-14 2 5.71%

CTX-M-15 2 5.71%
SHV-11 30 85.71%

SHV-75 3 8.57%

SHV-26 1 2.86%
SHV-207 1 2.86%

TEM-1 2 5.71%
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Discussion
The pks gene island, encoding the genotoxin colibactin, has garnered significant attention due to its ability to induce 
DNA double-strand breaks and transient G2-M cell cycle arrest in host cells.12 This genotoxic activity suggests that 
colibactin may contribute to various disease entities, including newborn meningitis, urinary tract infections, bloodstream 
infections, and potentially cancer development.15,22,30 In addition, some studies reported that the pks-positive E. coli was 
more highly represented in CRC patients and could promote human CRC development.17,31 Our study is the first to 
investigate the prevalence and molecular characteristics of K. pneumoniae harboring the pks island in Chinese cancer 
patients, providing valuable insights into its epidemiology and clinical significance in this specific population.

Up to now, there have been few epidemic reports on emerging pks-positive K. pneumoniae. In Europe and Iraq, the 
occurrence of pks-positive K. pneumoniae was 3.5%18 and 7.14%,20 respectively. In this study, the prevalence of the pks gene 
cluster among K. pneumoniae isolates was 12.54%, which was higher than those reported in the literature. But in two previous 
studies conducted in Taiwan and Changsha, the positive rates of pks-positive K. pneumoniae isolated from blood was 16.8%32 

and 26.8%,22 respectively. And some studies revealed that the prevalence of pks gene in E. coli was high, ranging from 29.2% 
to 72.7%.31,33,34 Therefore, we found that the epidemiological distribution of pks-positive strains exhibits regional and 
interspecies differences, which may be associated with environmental, host, and pathogen factors.

Colibactin encoded by the pks gene cluster has been shown to induce host DNA damage, thus may contribute to 
higher mutation rates that drive the occurrence of tumors. By analyzing 3668 Dutch samples of different cancer types, 
a study found that the colibactin was present in a variety of tumors.35 Our findings backed up the above results, which 
documented pks-positive K. pneumoniae had been isolated from different types of cancer patients. Jens Puschhof et al 
proved that the pks gene cluster was present at a higher frequency in colorectal cancer compared to other types of 
cancer.35 And the presence of pks-positive K. pneumoniae has been found in 4–27% colon cancer patients.18,21,32,36 

However, our findings revealed that pks-positive K. pneumoniae isolates were predominantly associated with lung cancer 
patients (42.86%), followed by gastric cancer, which was different from the above researches that reported higher 
prevalence in colorectal cancer patients. This may be due to the specific patient population and sampling bias, as only 
parenteral specimens were collected. However, this highlights the potential role of pks-positive K. pneumoniae in various 
types of cancer, not limited to colorectal cancer. Further studies are needed to elucidate the specific mechanisms by which 
pks-positive K. pneumoniae contributes to cancer development and progression.

There are many similarities between pks-positive K. pneumoniae and hvKp. Firstly, previous studies have revealed 
that hvKp were almost exclusively of serotype K1 or K2, and ST23 and ST65 were predominant sequence types.5,7 On 
the other hand, the hvKp K1 strains were strongly associated with ST23, while the hvKp K2 strains belong to different 
STs (ST65, ST86, and others).5,8 In our study, the great majority (74.28%) of pks-positive isolates belonged to K1 or K2 
serotype. And all K1 strains belong to ST23, whereas K2 strains were divided into two major clades, ST65 and ST380. 
To investigate whether there is transmission or possible outbreaks among single ST isolates, whole-genomic phylogeny 
and SNP distance were inferred, and we found that there is no direct and recent transmission (cgSNP differences less than 
20) among ST23 and ST65 isolates, suggesting the patients get these infections from different sources. Two ST133 
isolates, k130 and k131, showed almost no cgSNP differences (Figure 1), suggesting direct transmission among their host 
patients. However, the mechanism of transmission still needs further study. Secondly, another study suggested that hvKp 
were positive for several virulence factors, such as iucA, iroB, peg-344, rmpA, and so on.5,7 Our study found that pks- 
positive isolates generally carried several virulence genes. Additionally, the high prevalence of rmpA and peg-344 genes 
indicates that these isolates may exhibit a mucoid phenotype, which is associated with increased resistance to phagocy
tosis and host immune responses.5 Therefore we assumed that the emerging pks genotoxic trait is associated with the 
virulence genes of hvKp. We also found that the pks-positive strains in this study showed high sensitivity to most 
antibiotics, which is likely due to the fact that most of these isolates belong to K1 and K2 serotype to protect bacteria 
from phagocytosis and inhibit the host immune response. And compared with pks-negative strains, pks-positive strains 
showed higher sensitivity to sulfamethoxazole (P<0.05), which provided an important reference for antibiotic treatment. 
Although the rate of MDR in pks-positive isolates is low at present, the presence of β-lactamase genes, such as blaCTX- 
M, blaTEM, and blaSHV, indicates that these isolates have the potential to develop multidrug resistance. Therefore, 
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continued surveillance of antimicrobial resistance patterns in pks-positive K. pneumoniae is essential to guide appropriate 
treatment strategies and prevent the emergence of multidrug-resistant strains.

While our study provides important insights into the prevalence and molecular characteristics of pks-positive 
K. pneumoniae in cancer patients, several limitations should be acknowledged. The sample size was relatively small, and 
only parenteral specimens were included, which may limit the generalizability of our findings. Additionally, the study was 
conducted in a single center, and further multicenter studies with larger sample sizes are needed to confirm our results.

Recently, it was described that the exposure to pks-positive E. coli is responsible for mutational signature in colorectal 
cancer, so it seems that pks-positive bacteria can induce mutation of CRC driver genes and, therefore, pks may become 
a marker of CRC carcinogenesis and therapy.31 Future research should focus on elucidating the specific mechanisms by which 
pks-positive K. pneumoniae contributes to cancer development and progression. Additionally, longitudinal studies are needed 
to monitor the evolution of antimicrobial resistance in these isolates and to develop targeted therapeutic strategies.

Conclusion
Our study highlights the potential pathogenicity of pks-positive K. pneumoniae in cancer patients in China, emphasizing 
the need for close clinical attention and epidemic tracking. The findings underscore the importance of continued 
surveillance and research to better understand the role of this genotoxic pathogen in cancer-associated infections.
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