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Abstract: Hepatocellular carcinoma (HCC) poses significant clinical challenges, including difficulties in early diagnosis and the 
complexity of treatment options. Artificial intelligence (AI) technologies are emerging as powerful tools to address these issues 
through a unified AI pipeline. This pipeline begins with data ingestion and preprocessing, integrating multimodal data such as imaging, 
genomic and clinical records. Machine learning and deep learning techniques are then applied to analyze these data, improving tumor 
detection, characterization, and early diagnosis. The pipeline extends to personalized treatment planning, where AI integrates diverse 
data types to predict patient responses to various therapies. In drug development, AI accelerates the discovery of new treatments 
through virtual screening and molecular modeling, while also identifying potential new uses for existing drugs. AI further enhances 
patient management through remote monitoring and intelligent support systems, enabling real-time data analysis and personalized 
care. In research, AI improves big data analysis and clinical trial design, uncovering new biomarkers and optimizing patient 
recruitment and outcome prediction. However, challenges such as data quality, standardization, and privacy remain. Future develop-
ments in multimodal data integration and edge computing promise to further enhance AI’s impact on HCC diagnosis, treatment, and 
research, leading to improved patient outcomes and more effective management strategies. 
Keywords: hepatocellular carcinoma, artificial intelligence, machine learning, deep learning, personalized treatment

Introduction
Liver cancer ranks as the sixth most commonly diagnosed cancer and the third leading cause of cancer-related deaths 
worldwide, with hepatocellular carcinoma (HCC) accounting for approximately 90% of all liver cancer cases.1 According 
to the Global Burden of Disease Study 2021, there were over 529,000 new cases and 483,000 deaths attributed to liver 
cancer in 2021 alone.2 Over the past two decades, the incidence of liver cancer has increased by 53.7%, while mortality 
rates have risen by 48.0%, reflecting a growing global health challenge.3 The clinical management of HCC is fraught 
with challenges, particularly due to difficulties in early diagnosis and the complexity of treatment options.4 Early-stage 
HCC often remains asymptomatic, leading to late detection when the disease has already progressed to an advanced 
stage, limiting therapeutic options and worsening the prognosis.5 Moreover, the heterogeneity of liver cancer—both at 
the molecular and clinical levels—complicates treatment decisions, which may include surgical resection, liver trans-
plantation, locoregional therapies, and systemic treatments.6 These complexities underscore the need for advanced tools 
to aid in the diagnosis and treatment of this disease.

In recent years, artificial intelligence (AI) has emerged as a transformative technology in medicine, offering new 
solutions to these challenges.7 AI, which encompasses machine learning, deep learning, natural language processing, and 
computer vision, has shown significant potential in addressing the complexities of HCC. For example, deep learning 
models have been trained on vast datasets of imaging studies to identify liver tumors with a level of accuracy that rivals, 
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and in some cases surpasses, human radiologists.8,9 These AI models can detect subtle changes in imaging data that may 
be indicative of early-stage HCC, thereby enabling earlier interventions that could be life-saving.

Additionally, AI is being leveraged to personalize treatment strategies for HCC patients.10 By integrating and 
analyzing data from various sources, including genetic profiles, imaging studies, and clinical histories, AI can help 
predict how individual patients will respond to different treatments.11 This allows for the design of personalized 
treatment plans that maximize efficacy while minimizing side effects. For instance, machine learning algorithms can 
analyze patient genetic and molecular data to predict their response to targeted therapies or immunotherapies, thus 
guiding oncologists in selecting the most appropriate treatment course.12,13

In research, AI is accelerating the discovery of novel biomarkers and therapeutic targets. Natural language processing 
tools are being used to sift through vast amounts of biomedical literature and electronic health records, extracting 
relevant data that can lead to new insights into the mechanisms of HCC.14 Furthermore, AI-driven drug discovery 
platforms are being employed to predict the efficacy of new compounds in treating HCC, significantly reducing the time 
and cost associated with traditional drug development processes.15

This review aims to explore the current applications of AI in the diagnosis, treatment, and research of HCC. By 
examining how AI is being used to enhance diagnostic accuracy, optimize treatment strategies, and drive research advance-
ments, this paper seeks to highlight the transformative potential of AI in improving outcomes for HCC patients. Additionally, 
the review will discuss the challenges associated with integrating AI into clinical practice, including issues related to data 
quality, model interpretability, and the ethical implications of AI in healthcare. By addressing these challenges and exploring 
future directions, this review hopes to provide a comprehensive understanding of AI’s role in the ongoing fight against HCC.

Overview of Artificial Intelligence Technologies in Hepatocellular 
Carcinoma Management
AI encompasses a range of technologies that are revolutionizing various aspects of medicine, including the diagnosis and 
treatment of complex diseases such as HCC.16 Core AI technologies, including machine learning, deep learning, 
computer vision, and natural language processing, play crucial roles in advancing medical practice.17

Machine Learning and Deep Learning
Machine learning and deep learning are foundational to AI’s capability in data analysis and pattern recognition. Machine 
learning algorithms, which learn from data and make predictions or decisions, are extensively used to identify patterns in 
large datasets. In the context of HCC, machine learning models can analyze clinical and imaging data to detect early 
signs of HCC, predict patient outcomes, and assist in tailoring individualized treatment plans. Deep learning, a subset of 
machine learning, employs neural networks with multiple layers to model complex patterns in data. This technology 
excels in tasks requiring high-level abstraction, such as classifying images of liver scans. For instance, deep learning 
algorithms can enhance the accuracy of tumor detection and characterization in CT and MRI scans, potentially surpassing 
traditional methods in sensitivity and specificity.18,19

Computer Vision
Computer vision, another key AI technology, focuses on enabling machines to interpret and process visual information.20 

In medical imaging, computer vision algorithms are applied to analyze and interpret data from imaging modalities like 
ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI). By automating the detection of tumors 
and other abnormalities, computer vision can significantly improve diagnostic accuracy and efficiency.21 For example, 
computer vision systems can automatically segment liver tumors from surrounding tissues in imaging studies, facilitating 
more precise assessment and treatment planning.22

Natural Language Processing
Natural language processing is used to process and analyze human language data, which is particularly useful in handling 
unstructured information in healthcare.23 Natural language processing tools can extract relevant information from 
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medical literature, electronic health records (EHRs), and clinical notes, transforming this data into actionable insights. In 
HCC management, natural language processing can be employed to identify key clinical findings from EHRs, mine 
research articles for emerging biomarkers, and aggregate patient data to support decision-making and personalized 
treatment approaches.24,25

Together, these AI technologies are driving significant advancements in the management of hepatocellular carcinoma. 
By enhancing data analysis, improving imaging interpretation, and facilitating the extraction of actionable insights from 
diverse data sources, AI holds the potential to transform the landscape of HCC diagnosis, treatment, and research 
(Figure 1).

Applications of Artificial Intelligence in Hepatocellular Carcinoma 
Diagnosis
Imaging Analysis
AI, particularly deep learning, has revolutionized the image analysis for HCC diagnosis, significantly enhancing tumor 
detection, characterization, and segmentation.26,27 Convolutional neural networks (CNNs) are pivotal in this domain, 
designed to automatically learn and extract features from medical images through layered convolutional operations.28 

Trained on large datasets of CT, MRI, and ultrasound images, CNNs demonstrate high precision in identifying liver 
tumors. For instance, a study by Said et al29 evaluated CNNs for semiautomated HCC segmentation on MRI in 292 
patients. The CNNs excelled in single-slice segmentation, particularly on diffusion-weighted imaging (DWI) and pre- 
contrast T1-weighted imaging (T1WI pre) sequences, with accuracy correlating with tumor size. While single-slice 
segmentation showed strong results, volumetric segmentation requires further refinement. Beyond segmentation, CNN- 
based systems significantly improve tumor localization, characterization (distinguishing benign from malignant lesions), 
and assessment of stage and grade,30,31 automating detection to enhance diagnostic accuracy and speed, enabling earlier 
intervention and improved outcomes.32

The U-Net architecture, proposed by Ronneberger et al in 2015,33 is a deep learning model specifically designed for 
medical image segmentation, offering unique advantages over traditional CNNs in the diagnosis and treatment planning 
of HCC.34 In HCC diagnosis, U-Net excels at accurately segmenting the liver and associated tumors from imaging 
modalities such as CT and MRI, which is critical for optimizing treatment strategies like surgical resection, radiotherapy, 
and transplantation. For example, a U-Net variant with residual connections demonstrated robust performance across 
diverse patient populations and imaging conditions, achieving segmentation accuracy ranging from 0.81 to 0.93 on 
annotated CT datasets.35 Beyond U-Net, innovative approaches like the Successive encoder-decoder (SED) framework 

Figure 1 Taxonomy of Artificial Intelligence Technologies in Hepatocellular Carcinoma Management. Created in BioRender. Yuan, X. (2025) https://BioRender.com/q0gvbv2.

International Journal of General Medicine 2025:18                                                                             https://doi.org/10.2147/IJGM.S529322                                                                                                                                                                                                                                                                                                                                                                                                   3583

Zhang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://BioRender.com/q0gvbv2


further enhance segmentation capabilities. The SED framework, consisting of two encoder-decoder networks connected 
in series, first removes irrelevant voxels and organs to extract liver locations from CT images and then segments the 
lesions. This staged processing achieves a Dice score of 0.92 for liver segmentation and 0.75 for tumor prediction, while 
its ability to reconstruct 3D images from individual CT scans provides a practical solution for improving clinical 
diagnosis and therapeutic procedures in HCC.36 Together, these advancements underscore U-Net’s pivotal role in 
automating and improving HCC diagnosis, enabling earlier intervention and better patient outcomes.

Significant progress in segmentation and prognostic assessment is also demonstrated by DeepLab V3+.37 This deep 
learning model excels in semantic image segmentation and has been effectively applied to automate HCC segmentation 
on MRI. In a study of 209 patients with HCC, DeepLab V3+ model achieved high segmentation accuracy and reliable 
feature extraction. Integrating these features into a decision fusion model improved microvascular invasion (MVI) 
prediction, while combining it with a nomogram enhanced early recurrence prediction post-surgery, aiding clinical 
decision-making and improving patient outcomes.38

The AI models discussed herein, including CNNs, U-Net, and DeepLab V3+, each offer distinct capabilities for HCC 
imaging analysis. CNNs provide versatile foundational architectures for tumor detection and characterization, while 
U-Net variants excel in generalizable organ and lesion segmentation. The SED framework addresses complex multi-stage 
segmentation tasks through its successive refinement approach, and DeepLab V3+ demonstrates superior precision in 
prognostic marker identification such as MVI. Selection of an optimal model depends on the clinical objective: U-Net 
and SED are prioritized for treatment planning requiring anatomical delineation, whereas DeepLab V3+ is ideal for 
outcome prediction tasks. Future work should focus on harmonizing these architectures into unified pipelines to leverage 
their complementary strengths (Table 1).

Table 1 Comparative Analysis of AI Models in HCC Imaging Diagnosis

Architecture Specific Model Application Performance 
Highlights

Key Advantages Major Limitations Ref.

CNN Variants DCNN-US Ultrasound a. Acc: 84.7%
b. Sen: 86.5%
c. Spec: 85.5%

d. AUC: 0.924

Cost-effective alternative to 

contrast-enhanced CT

Inferior to contrast- 

enhanced MRI

[39]

DCCA-MKL CEUS a. Acc: 90.4%
b. Sen: 93.6%

c. Spec: 86.9%

d. AUC: 0.953

Superior multi-phase image 

analysis

Requires three-phase 

CEUS imaging

[40]

CNN (Two- 

Input)

CT a. Acc: 61.0%
b. Sen: 75.0%

c. Spec: 88.0%
d. AUC: 0.870

Integrates tumor marker data Suboptimal overall 

accuracy

[41]

Extremely 
Randomized 

Trees

MRI a. Acc: 88%
b. Sen: 75.0%
c. Spec: 56.0%

d. AUC: 0.910

Differentiates 5 lesion types Limited HCC specificity [42]

U-Net 

Variants

U-Net (Residual) CT a. Acc: 81–93% High anatomical detail capture Needs robustness 

validation

[35]

SED CT a. Dice: 0.92 (Liver), 
0.75 (Tumor)

Automated 3D segmentation 

pipeline

Moderate tumor 

segmentation 

performance

[36]

(Continued)
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Early Screening
AI is transforming early HCC screening by addressing the limitations of traditional guideline-recommended methods 
which include ultrasound with suboptimal sensitivity and serum alpha-fetoprotein (AFP) that remains negative in nearly 
two-thirds of early-stage HCC patients.43,44 AI overcomes these challenges by integrating diverse data sources, including 
demographic information, medical history, and laboratory results, to identify high-risk individuals. For instance, 
a randomized trial by Kristina et al demonstrated that AI-supported mammography screening detected a similar number 
of cancers as radiologists while reducing workload by 44.3%, highlighting AI’s potential to enhance efficiency without 
compromising accuracy.45 Similarly, machine learning models can prioritize patients for further diagnostic testing, 
enabling timely interventions and improving outcomes.46

Beyond improving screening efficiency, recent advancements in deep learning have further elevated AI’s role in HCC 
screening. A proposed deep learning model based on B-mode ultrasound images, Xception, achieved an AUC of 93.68% 
in identifying AFP-negative HCC in hepatitis B virus-infected patients, outperforming other models like MobileNet and 
Resnet50.47 With high sensitivity (96.08%) and specificity (76.92%), this model offers a robust tool for early detection. 
Additionally, a gradient-boosting machine algorithm developed for chronic hepatitis B patients demonstrated superior 
predictive performance (c-index 0.79) compared to traditional risk scores like PAGE-B and REACH-B.48 It identified 
a minimal-risk group with less than 0.5% HCC risk over 8 years, suggesting potential for less intensive surveillance. 
These AI-driven approaches not only improve diagnostic accuracy but also reduce workload and enable personalized risk 
stratification, paving the way for more effective HCC screening strategies.

Biomarker Analysis
In addition to imaging, AI is increasingly being used to analyze genetic and proteomic data to identify novel 
biomarkers.49 High-dimensional data from gene expression profiles and proteomic studies can be challenging to interpret 
using traditional methods. AI algorithms, such as machine learning models and neural networks, can process these 
complex datasets to uncover patterns associated with liver cancer.50 For example, Haoran et al studied MVI in HCC 
using multi-transcriptomics data. They identified a malignant cell subtype linked to MVI, enriched in the MYC pathway 
and interacting via the MIF signaling pathway.51 Their newly developed prognostic model, based on MVI-related genes, 
showed superior accuracy compared to existing models, providing valuable insights and support for HCC management.51 

Similarly, AI can be used to analyze protein expression data to identify proteins that are differentially expressed in liver 
cancer, which may serve as diagnostic or prognostic markers. These AI-driven approaches can facilitate the development 
of more accurate and reliable biomarkers for early detection and personalized treatment of HCC.

While tissue biopsy remains the gold standard for mutational profiling in HCC, AI-enabled liquid biopsy approaches 
show promise as alternatives, including circulating tumor cells (CTC) and circulating tumor DNA (ctDNA).52,53 As 
ctDNA represents the tumor’s total genomic landscape, its role in determining clinical outcomes is gaining significant 
attention, particularly in advanced and unresectable HCC.54 In a larger cohort study of 121 advanced HCC patients, 
mutational analysis of ctDNA revealed alterations in the most common HCC-associated driver oncogenes and tumor 
suppressor genes, including TERT promoter, TP53, PTEN, ARID2, KMT2D, and TSC2.55 This technique enabled the 
identification of predictive mutational signatures associated with response to systemic therapy with tyrosine kinase 
inhibitors. Despite the proven value of ctDNA as a tumor biomarker, its limitations in early detection sensitivity, lack of 

Table 1 (Continued). 

Architecture Specific Model Application Performance 
Highlights

Key Advantages Major Limitations Ref.

DeepLab DeepLab V3+ + 
Fusion

MRI a. AUC-MVI: 0.968,
b. AUC-ER: 0.69 

(Val)

Accurate microvascular 
invasion detection

Retrospective validation 
only

[38]

Abbreviations: Acc, Accuracy; Sen, Sensitivity; Spec, Specificity; AUC, Area Under Curve; CEUS, Contrast-Enhanced Ultrasound; ER, Early Recurrence; Val, Validation set 
performance.
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standardized protocols, and inability to capture tumor spatial heterogeneity suggest that multiparametric approaches are 
needed to enhance its utility for HCC diagnosis.56 Consequently, AI-based profiling currently serves as a complementary 
tool for unresectable cases, not a biopsy replacement, pending validation through large-scale prospective trials (Table 2).

Applications of Artificial Intelligence in Hepatocellular Carcinoma 
Treatment
Personalized Treatment Planning
AI has become a pivotal tool in developing personalized treatment plans for HCC. Traditional treatment strategies often 
rely on general protocols that may not be optimal for every patient due to the heterogeneous nature of liver cancer. AI 
addresses this by integrating various data sources—genomic, imaging, and clinical—to predict how individual patients 
will respond to different therapies.57

One key application is the prediction of treatment responses based on genomic data. Machine learning algorithms 
analyze patients’ genetic profiles, including mutations and gene expression patterns, to identify biomarkers that indicate 
how a tumor might respond to specific therapies. For example, AI models can process data from next-generation 
sequencing to identify mutations associated with sensitivity or resistance to targeted therapies. This allows for more 
precise selection of treatments such as tyrosine kinase inhibitors or immune checkpoint inhibitors, tailored to the genetic 
makeup of each patient’s tumor.58,59

Additionally, AI can enhance decision-making by integrating imaging data with genetic and clinical information.60 

For instance, deep learning algorithms analyze pre-treatment imaging scans to assess tumor characteristics such as size, 
shape, and texture.61 By combining these insights with genomic data, AI models can predict which treatment options are 
likely to be most effective. This personalized approach helps to avoid fewer effective treatments and reduces the 
likelihood of adverse side effects, thereby improving patient outcomes and quality of life.62

Table 2 Applications of Artificial Intelligence in Hepatocellular Carcinoma Diagnosis

Application Area Description AI Contribution

Imaging 

Analysis

CNNs for 

Tumor 

Detection

CNNs are used to analyze CT, MRI, and ultrasound 

images for liver tumors.

CNNs improve tumor detection and segmentation, 

enhancing accuracy and speed, and identifying subtle 

patterns missed by radiologists.

Segmentation 

Performance

Evaluation of CNNs on MRI data for HCC showed high 

precision in single-slice segmentation, especially on 
DWI and T1WI pre sequences.

CNNs demonstrated strong results in segmentation, 

though volumetric segmentation needs further 
refinement.

Early 
Screening

AI-supported 
Screening

AI integrates various data sources to identify high-risk 
individuals for HCC early screening.

AI can reduce workload in screening while maintaining 
detection rates, as shown in mammography 

comparisons.

Example Tool: 

LiverColor

“LiverColor” uses image analysis and machine learning 

to assess hepatic steatosis.

Achieved 85% accuracy and an ROC curve of 0.82, 

outperforming traditional methods and improving 

liver assessment.

Biomarker 

Analysis

Genetic and 

Proteomic 
Data

AI analyzes high-dimensional genetic and proteomic 

data to identify biomarkers associated with liver cancer.

AI uncovers patterns in gene expression and protein 

data, aiding in the development of accurate and 
reliable biomarkers.

Prognostic 
Models

AI-based models analyze multi-transcriptomics data to 
identify malignant cell subtypes and prognostic markers.

Provided superior accuracy in prognostic modeling 
compared to existing methods, offering valuable 

insights for HCC management.
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Optimizing Radiation Therapy
In radiation therapy for HCC, optimizing treatment plans is crucial for targeting tumors while protecting healthy tissues. 
Deep learning algorithms analyze 3D imaging data from CT or MRI scans to create detailed anatomical models of the 
liver and tumor. These models help simulate and optimize radiation dose distribution, predicting effective doses and 
angles based on the tumor’s size, shape, and location, as well as the surrounding healthy tissues. To address the 
challenges in liver tumor segmentation, recent advancements have introduced an auto-segmentation method that 
combines a Gaussian filter with the nnU-Net architecture. This approach aims to enhance accuracy in distinguishing 
between tumors and cysts. Utilizing 130 cases from the LiTS2017 dataset for training and validation, and testing on 
additional 14 cases from the 3D-IRCADb and 25 clinical cases, the nnU-Net model achieved average dice similarity 
coefficients (DSC) of 0.86 and 0.82 for validation and public testing sets, respectively. In clinical testing, the DSC 
improved from 0.75 to 0.81 after applying the Gaussian filter, demonstrating its effectiveness in refining segmentation 
accuracy.63

Furthermore, treatment plans can be adjusted dynamically as therapy progresses. This is particularly beneficial when 
tumors shrink or change shape during treatment. By continuously updating imaging data, the system ensures that 
radiation remains accurately targeted throughout the treatment, reducing side effects and improving overall 
effectiveness.64

Surgical Assistance
Advanced navigation and robotic assistance technologies are transforming surgical interventions for HCC. Precise 
preoperative planning and intraoperative guidance are essential for successful liver surgeries, where the goal is to 
remove tumors while preserving healthy tissue.65 These technologies utilize 3D imaging data to create detailed virtual 
models of the liver and tumor, enhancing visualization of the tumor’s location relative to critical structures like blood 
vessels and bile ducts.66 For instance, Khaled et al conducted a feasibility study to automate the Liver Imaging Reporting 
and Data System (LI-RADS) for HCC diagnosis using a deep learning algorithm. They trained a U-Net-based deep 
CNNs on multiphasic MRI data from 174 patients to automatically segment the liver and detect HCC. The model 
achieved high accuracy, with mean DSC of 0.91 for liver and 0.68 for HCC lesions, and reduced false positives through 
postprocessing. This study suggests a more efficient and clinically practical implementation of LI-RADS for HCC 
diagnosis.67

During surgery, robotic systems integrate real-time imaging with preoperative models to guide surgical instruments 
with high accuracy.68 This facilitates precise incisions and complex maneuvers, reducing the risk of complications and 
improving outcomes. Additionally, real-time feedback and predictive analytics from intraoperative data help identify 
potential issues such as excessive bleeding or changes in tumor position, supporting effective decision-making.69

Overall, these advancements in technology are significantly improving the treatment of HCC by personalizing 
therapy, optimizing radiation planning, and enhancing surgical precision, ultimately leading to better patient outcomes 
and reduced risks (Table 3).

Applications of Artificial Intelligence in Hepatocellular Carcinoma Drug 
Development
Drug Discovery and Design
AI is transforming the process of drug discovery and design, particularly for complex diseases like HCC. Traditional 
drug development is a time-consuming and costly process, often taking years to identify promising compounds and 
advance them through clinical trials. AI accelerates this process through advanced techniques such as virtual screening 
and molecular modeling.70

One of the primary applications of AI in drug discovery is AI-driven virtual screening.71 This involves using machine 
learning algorithms to predict the interaction between small molecules and target proteins associated with HCC. By 
analyzing large datasets of chemical compounds and their known interactions, AI models can identify potential drug 
candidates that might interact effectively with specific cancer-related targets. For example, deep learning models can 
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analyze databases of chemical libraries to predict which compounds are most likely to inhibit the growth of liver cancer 
cells or block key signaling pathways involved in tumor progression.15

Molecular modeling, another crucial aspect of AI in drug development, uses computational techniques to simulate the 
behavior of molecules and predict their binding affinities to target proteins.72 AI algorithms can generate detailed 3D 
models of drug molecules and their target proteins, allowing researchers to visualize how these compounds fit into their 
targets’ active sites. This approach helps in optimizing drug design by predicting which modifications to a molecule 
might enhance its efficacy or reduce potential side effects. For instance, AI-driven molecular docking simulations can 
identify the most promising candidates for further development and testing, significantly speeding up the initial phases of 
drug discovery.73

Drug Repurposing
AI is also making significant contributions to drug repurposing, a strategy that involves finding new uses for existing 
drugs. Drug repurposing can be a more efficient and cost-effective approach compared to developing new drugs from 
scratch, as it leverages compounds that have already undergone extensive testing for safety and efficacy.74

Data mining and machine learning techniques are central to AI-driven drug repurposing efforts. By analyzing large 
volumes of biomedical data, including clinical trial results, EHRs, and scientific literature, AI can identify existing drugs 
that might have therapeutic potential for HCC. For example, the role of microRNAs (miRNAs) in the imbalance between 
cell proliferation and apoptosis in cancer was systematically explored. A miRNA-gene regulatory network was con-
structed, and a shortest path-based method was used to assess the impact of miRNAs on cell fate genes. Results from 
breast and liver cancer datasets confirmed that differentially expressed miRNAs significantly affected cell fate genes and 
were associated with cancer progression and drug sensitivity, offering insights for potential therapeutic applications.75

AI can also integrate multi-omics data (such as genomics, proteomics, and metabolomics) to identify existing drugs 
that target pathways or biomarkers associated with HCC.76 Recent studies have demonstrated the efficacy of machine 

Table 3 Applications of Artificial Intelligence in Hepatocellular Carcinoma Treatment

Aspect Focus Area Details AI Contributions

Personalized 
Treatment

Genomic 
Data

AI uses genetic profiles, including mutations and 
gene expression, to tailor treatment plans.

Machine learning models identify mutations linked to 
treatment responses, enabling targeted therapies.

Imaging Data 
Integration

AI combines imaging data with genomic and 
clinical information to optimize treatment 

choices.

Deep learning algorithms evaluate tumor characteristics to 
refine treatment options and reduce side effects.

Radiation 

Therapy

3D Imaging AI analyzes 3D imaging data to create models 

for optimizing radiation dose distribution.

Models predict optimal radiation doses and angles, improving 

targeting accuracy and protecting healthy tissue.

Segmentation 

Accuracy

New techniques enhance tumor and cyst 

differentiation in imaging data.

nnU-Net with Gaussian filter achieved high accuracy in 

segmentation, improving the precision of tumor delineation.

Adaptive 

Treatment

AI adjusts radiation plans based on real-time 

changes in tumor size or shape.

Continuous updates ensure precise targeting throughout 

treatment, enhancing effectiveness and minimizing side 
effects.

Surgical 
Assistance

Preoperative 
Planning

AI creates detailed virtual models of liver and 
tumor for surgical planning.

3D imaging enhances visualization, aiding in accurate tumor 
removal and preserving healthy tissue.

Robotic 
Guidance

Robotic systems use real-time imaging to guide 
surgical instruments during operations.

Real-time feedback helps in performing precise maneuvers 
and addressing issues like bleeding or tumor movement.

Automated 
LI-RADS

AI automates the Liver Imaging Reporting and 
Data System (LI-RADS) for HCC diagnosis.

Deep learning models improve accuracy in liver segmentation 
and HCC detection, reducing false positives.
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learning tools like MDeePred in drug repurposing for HCC. MDeePred leverages datasets from the Open Targets 
Platform, UniProt, ChEMBL, and Expasy databases to predict drug-target interactions (DTIs). Through enrichment 
analyses, MDeePred identified 6 out of 380 DTIs as promising candidates for HCC treatment. These candidates exhibited 
favorable drug-like properties, including physicochemical characteristics, lipophilicity, water solubility, and medicinal 
chemistry profiles, comparable to approved HCC drugs such as lenvatinib, regorafenib, and sorafenib. Additionally, 
molecular docking studies confirmed the binding efficacy of these compounds to HCC-associated targets, highlighting 
their potential for further experimental validation.77 This integrated approach underscores the utility of AI in accelerating 
the discovery of repurposed drugs for HCC, expanding therapeutic options for this challenging disease (Figure 2).

Figure 2 Applications of Artificial Intelligence in Hepatocellular Carcinoma. Created in BioRender. Yuan, X. (2025) https://BioRender.com/n0ddab8.
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Clinical Challenges and Future Perspectives
Clinical Challenges
The integration of AI in HCC management faces significant challenges, particularly in data quality and standardization. AI 
models rely on diverse data sources, such as imaging, genomic, and clinical records, but these often suffer from heterogeneity 
in formats, protocols, and standards.78 For example, imaging data from different machines or institutions may vary in 
resolution, contrast, and acquisition techniques, thereby complicating the creation of unified datasets.79 Similarly, clinical 
data from EHRs may be inconsistent due to variations in data entry practices, incomplete records, and missing values. 
Handling missing data is particularly challenging, as incomplete datasets can introduce biases and inaccuracies into AI 
models.80,81 Although advanced imputation techniques are necessary, they add complexity to data preprocessing and may 
impact model performance. Additionally, data privacy and security are crucial concerns, requiring careful balancing of ethical 
and legal considerations when anonymizing and protecting patient data for AI training. The performance of AI in HCC 
diagnosis is evaluated through false-positive and false-negative rates, critical for clinical decisions. Factors like image quality 
and lesion characteristics influence these rates. Strategies such as multi-modal data integration and human-AI collaboration are 
essential to minimize errors and enhance model accuracy in future research and clinical applications.

To enhance the robustness of AI models in HCC management, distributed learning techniques like cyclical weight 
transfer (CWT) and fairness-aware methods are critical. CWT optimizations, such as proportional local training itera-
tions, improve model adaptability to heterogeneous data, while fairness constraints and adversarial debiasing mitigate 
biases from imbalanced datasets.82 Additionally, explainable AI ensures transparency, and federated learning addresses 
data privacy concerns. Collaborative efforts among researchers, clinicians, and regulators are essential to establish 
standardized protocols and regulatory frameworks, ensuring AI models are reliable, equitable, and applicable across 
diverse clinical settings.83,84

Bias in AI models and regulatory hurdles are critical challenges in HCC management. Bias often stems from 
imbalanced datasets, such as those predominantly from development regions, which underrepresent ethnic groups, 
socioeconomic classes, and geographical areas.85,86 For instance, hepatitis B virus-related HCC is more prevalent in 
Asian populations, while hepatitis C virus and alcohol-related HCC dominate in Western countries, leading to disparities 
in diagnostic accuracy and treatment recommendations.87 Socioeconomic disparities in access to advanced imaging 
further exacerbate bias, as models trained on data from tertiary centers may underperform in resource-limited settings.88 

Gender and age-related biases have also been identified, affecting screening and treatment decisions.89 Addressing these 
issues requires diverse datasets, fairness-aware machine learning, and rigorous validation. Simultaneously, regulatory 
challenges hinder AI adoption, as tools must undergo rigorous evaluation for safety and efficacy. Regulatory frameworks 
by agencies like the Food and Drug Administration and European Commission are evolving but remain complex, 
particularly for adaptive AI models that require ongoing oversight.90,91 Collaborative efforts among researchers, 
clinicians, and regulators are essential to establish clear pathways for AI integration, ensuring patient safety, model 
reliability, and fairness in algorithmic outcomes.

Future Perspectives
Clinicians can implement AI tools in HCC management today by integrating them into existing workflows. For instance, 
AI-based imaging tools for lesion detection can be embedded into Picture Archiving and Communication Systems 
(PACS), providing real-time insights to enhance diagnostic accuracy.92 Additionally, AI-driven risk prediction models, 
which combine imaging, genomic, and clinical data, are increasingly integrated into EHRs, offering decision support 
during consultations.93 To ensure successful implementation, healthcare institutions should provide targeted training for 
clinicians on interpreting AI outputs and integrating them into daily workflows. Ongoing technical support and 
interdisciplinary collaboration between AI developers, clinicians, and IT teams are essential to optimize tool use and 
address operational challenges. By leveraging these existing solutions, clinicians can enhance HCC diagnosis, treatment 
planning, and patient outcomes today, bridging the gap between AI innovation and clinical practice.

Looking to the future, several promising directions can enhance AI’s role in HCC research and management, offering 
transformative potential for personalized and effective healthcare solutions. First, multimodal data integration, which 
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combines diverse sources such as imaging, genomic, and clinical records, can significantly improve model accuracy by 
leveraging complementary insights.94 This approach enables a holistic understanding of HCC, particularly when genomic 
data is paired with imaging results to enhance tumor profiling and tailor personalized treatment strategies.16 Additionally, 
AI and edge computing, which processes data locally on devices or within healthcare systems, facilitates real-time 
analysis and decision-making, minimizing delays and data transfer.95 This is especially beneficial for chronic conditions 
like HCC, where wearable devices equipped with AI algorithms can continuously monitor patient data, detect early signs 
of disease progression, and provide immediate feedback, while also addressing critical privacy concerns.96 Furthermore, 
advanced AI algorithms, such as deep learning, reinforcement learning, and transfer learning, which are designed to 
handle the complexities and variabilities of HCC data, can improve model robustness and generalizability, leading to 
more accurate predictions and tailored treatments.97,98

Figure 3 Challenges and Future Perspectives of Artificial Intelligence in Hepatocellular Carcinoma. Created in BioRender. Yuan, X. (2025) https://BioRender.com/sif344o.
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Moreover, collaborative AI systems, which integrate inputs from multiple healthcare providers and institutions, can 
enhance collective knowledge and decision-making by fostering the sharing of best practices and innovative 
approaches.99 This collaborative framework not only improves patient outcomes but also accelerates the adoption of AI- 
driven solutions across diverse healthcare settings. Finally, establishing robust ethical and regulatory frameworks, which 
ensure transparency, accountability, and fairness in AI algorithms, is essential to gaining trust and promoting responsible 
use in healthcare.91 These frameworks must address concerns such as algorithmic bias, data privacy, and the ethical 
implications of AI-driven decisions. By exploring these interconnected directions, the research community can signifi-
cantly advance AI’s role in HCC management, paving the way for more effective, personalized, and equitable healthcare 
solutions that address the unique challenges of this complex disease (Figure 3).

Conclusion
In summary, while there are notable challenges in integrating AI into HCC research and management—particularly related 
to data quality, standardization, and privacy—there are also exciting opportunities for advancement. Future developments in 
multimodal data integration and edge computing hold the potential to greatly enhance the accuracy, efficiency, and 
personalization of HCC diagnosis and treatment, ultimately leading to improved patient care and outcomes.
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