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Abstract: Oral administration is the most preferred route for drug delivery due to its convenience, non-invasiveness, and patient 
compliance. However, it is challenged by gastrointestinal barriers, enzymatic degradation, and first-pass metabolism, which reduce 
drug bioavailability. Lipid nanoparticles (LNPs), including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), 
offer a promising strategy to overcome these limitations by enhancing drug stability, permeability, and absorption. The Quality by 
Design (QbD) framework provides a systematic approach for LNP development to ensure consistent product quality. By promoting 
process understanding and control, QbD not only supports scientific formulation development but also enhances industrial scalability 
by reducing the experimental workload, shortening the development time, and lowering the production costs. This review highlights 
key QbD elements such as the quality target product profile (QTPP), critical quality attributes (CQAs), critical material attributes 
(CMAs), critical process parameters (CPPs), and design of experiments (DoE) and their roles in guiding formulation and process 
optimization. The effects of various CMAs and CPPs on the CQAs such as particle size, polydispersity index, encapsulation efficiency, 
zeta potential, and drug release are discussed. Furthermore, the in vitro, in vivo, and ex vivo performances of optimized LNPs were 
explored in detail. Overall, QbD offers a robust platform for the rational design and scalable production of high-quality lipid-based 
drug delivery systems for oral administration. 
Keywords: quality by design, optimization, solid lipid nanoparticles, nanostructured lipid carriers, oral administration

Introduction
Nanotechnology offers broader opportunities for the development of novel drug delivery systems to overcome the limitations 
of traditional pharmaceutical formulations. Conventional drugs suffer from drawbacks such as poor solubility and low 
permeability, which subsequently result in poor bioavailability and therapeutic efficiency.1 These issues are particularly 
pronounced in oral drug delivery, owing to environmental variability, enzymatic degradation, and first-pass metabolism.2 

Nanotechnology-based drug delivery systems exploit their size and specific structure to circumvent these hurdles. Various 
nanocarriers, including micelles, dendrimers, polymer-based nanosystems, and lipid-based nanosystems, have been developed 
to enhance the effectiveness of drug delivery via various routes.3–5 Lipid-based nanosystems, which are often categorized as 
vesicular systems, such as liposomes, niosomes, ethosomes, transferosomes, and matrix systems (or lipid nanoparticles, 
LNPs), such as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have attracted considerable interest 
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owing to their potential as drug delivery systems.6–9 In oral drug delivery, LNPs can protect the drug from degradation in the 
acidic environment of the stomach and enzymatic hydrolysis of the intestines.10,11 They also proved to be effective in 
enhancing permeability across epithelial membranes, facilitating lymphatic transport, and bypassing first-pass metabolism, 
thereby improving systemic bioavailability.12–14

Despite their potential as novel drug delivery systems, a comprehensive understanding in LNPs production remains 
lacking. The influences of input materials and process parameters on product properties and therapeutic performance 
have not been clearly explained, which can be attributed to inconsistencies such as batch-to-batch variations in particle 
size, zeta potential, encapsulation efficiency, and drug release profiles during formulation. Furthermore, the traditional 
experimental procedure of changing one-factor-at-a-time (OFAT) is deemed inefficient.15 For instance, modifying the 
lipid type without adjusting surfactant concentration may not improve drug loading, and important interactions between 
formulation variables may be overlooked. Correspondingly, it was realized that adding more tests did not enhance the 
product quality. The trial-and-error nature of this method is also resource-intensive, as researchers often need to restart 
the entire experiment when target quality attributes are not achieved. This approach poses challenges not only in terms of 
cost, but also in meeting predefined product quality requirements.16,17

The quality by design (QbD) approach offers a more systematic design for production, reducing exhaustive experi-
mental procedures to more efficient ones. The QbD strategy for pharmaceutical formulations has been implemented since 
the publication of several guidelines by the International Council for Harmonization of Technical Requirements for 
Pharmaceuticals for Human Use (ICH).18–23 The foundation of QbD is based on scientific design and manufacturing. Its 
core value is that the quality should be incorporated into the product. In addition to pharmaceutical knowledge, a 
mathematical-statistical understanding is important when applying QbD elements in pharmaceutical production. As part 
of QbD, optimization via design of experiment (DoE) is crucial for defining the mathematical model of the relationship 
between independent and dependent variables. DoE can also identify the statistical significance and optimal conditions to 
achieve the desired drug quality.24

In this review, the challenges of oral administration and the corresponding role of LNPs are discussed. Subsequently, we 
explored the implementation of QbD principles by identifying the quality profile in relation to the selection of materials and 
preparation methods based on risk assessment to understand the path for improvement in SLN and NLC production for oral 
drug delivery. Additionally, this article summarizes the findings from recent studies regarding the impact of input variables 
on output responses based on DoE results, where the optimized products were evaluated in vitro, in vivo, and ex vivo for 
various purposes.

Challenges of Oral Drug Delivery
Oral delivery is generally considered a more favorable drug administration route for patients and physicians owing to its 
effortlessness, noninvasive nature, and high patient acceptability.25 Additionally, orally administered drugs may specifically 
target certain regions, thereby localizing therapy in gastrointestinal (GI) diseases, such as gastroesophageal reflux disease, 
inflammatory bowel disease, GI cancer, and colorectal cancer.26–29 Despite these advantages, oral drug delivery still faces 
challenges associated with the inherent properties of drugs and the complexity of the GI system during their traversal.

The GI tract is particularly intriguing because of the variability in its environment. Greatly different pH values are 
encountered by the drugs, from acidic conditions in the stomach (pH 1 − 2.5), duodenum (pH 6.1), intestines (pH 7.1 − 
7.5), and higher pH conditions in the colon (pH 7 − 8).30 Furthermore, the presence of various GI enzymes is particularly 
challenging for protein-based drugs. They may be hydrolyzed and degraded by pepsin in the stomach or by other 
proteolytic enzymes in the small intestine.31 In contrast, the enzymatic activity of pancreatic lipase may promote lipolysis 
in the GI tract and enhance the solubilization of lipophilic drugs or lipid-based formulations.32 GI enzymes also play 
pivotal roles in the first-pass metabolism. This presystemic metabolism is mediated mainly by cytochrome P450 enzymes 
such as CYP3A4, which are predominantly found in the liver and small intestine.33 The large surface area and low blood 
flow in the small intestine might prolong CYP3A4 exposure toward drugs, enabling more extensive metabolism and thus 
decreasing the oral bioavailability of the drugs.34 This intestinal first-pass effect is markedly enhanced by drugs that are 
substrates of CYP3A4, such as felodipine, nifedipine, atorvastatin, and simvastatin.35
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The small intestine is considered the primary site of oral drug absorption, owing to its extensive surface area and 
various transport modes. The microvilli in the small intestine are lined with goblet cells, which facilitate glycoprotein 
secretion and form a mucosal layer.36 This layer is primarily composed of mucin, an oligosaccharide-rich glycosylated 
protein that provides an overall negative charge to mucus, thus facilitating electrostatic interactions with positively 
charged substances.37,38 Intestinal mucus is also involved in the formation of an unstirred water layer (UWL) between the 
intestinal bulk fluid phase and the epithelial brush border. The presence of UWL can be detrimental to lipophilic 
substances because of hindered access to the epithelium, limiting their passage to the systemic circulation.39

To reach the systemic circulation, drugs must be able to cross the intestinal epithelium, which primarily comprises 
enterocytes, along with a smaller number of other cells, such as goblet cells, microfold cells (M cells), and Paneth cells.40 

Epithelium crossing involves several different transport mechanisms owing to its particular structure and constituents. 
Passive diffusion is the most common pathway, which relies on the movement of drugs along their concentration 
gradient, from a higher amount on the apical side to a lower amount on the basolateral side of the membrane. This 
mechanism may occur via the paracellular or transcellular routes. In the paracellular route, drugs traverse the enterocytes 
through intercellular tight junctions, allowing the movement of smaller hydrophilic molecules. In contrast, lipophilic 
molecules can naturally diffuse through the cell membrane transcellularly, owing to their similar affinities.41 

Furthermore, transcellular absorption may also occur via endocytic mechanisms, such as phagocytosis by immune 
cells or M cells, macropinocytosis, clathrin-mediated or clathrin-independent endocytosis, and caveolae-mediated or 
caveolae-independent endocytosis.42

Unlike passive diffusion, active transport allows molecules to move against the concentration gradient. This 
transporter-mediated movement offers specific pathways during drug traversal and requires a certain amount of energy 
derived from adenosine triphosphate (ATP). Among the ATP-dependent transporters, the role of P-glycoprotein (P-gp) 
has been particularly highlighted in oral drug administration. P-gp is an efflux pump that acts as a defense mechanism by 
actively pushing xenobiotics out of enterocytes.36 However, this mechanism can be disadvantageous for orally adminis-
tered drugs because it reduces the intracellular concentration of drugs, thereby limiting drug absorption into systemic 
circulation and reducing oral bioavailability. This limitation is particularly pronounced for the absorption of drugs that 
are P-gp substrates.43

Role of Lipid Nanoparticles in Oral Drug Delivery
Drug incorporation into LNPs, such as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), is a 
feasible strategy for overcoming the variability of GI barriers and the complexity of transport modes during oral 
administration (Figure 1). As a nanoscale system, the structure of LNPs intrinsically generates a larger surface area. 
This results in increased interaction between the systems and biological membranes, facilitating enhanced absorption into 
blood circulation.44 The components of LNPs, which mainly comprise lipids and surfactants as well as additional 
excipients, provide specific advantages for oral drug traversal.

Protection From Degradation
The solid lipid components in LNPs, particularly long-chain fatty acids, can slow the degradation process by digestive 
enzymes, resulting in higher drug stability in the GI environment.40 This allows the drug to reach its target active form, thereby 
enhancing its therapeutic effectiveness.45 A study conducted by Veni and Gupta showed that the drug release of linagliptin 
formulated into SLN using stearic acid as a solid lipid at pH 6.8 was higher than that at pH 1.2. This signifies the ability of 
stearic acid to protect linagliptin from the gastric environment, thereby ensuring intestinal release of the drug.46

Using cetyl palmitate as a solid lipid component in the LNP formulation can also be advantageous for minimizing 
drug degradation owing to its low susceptibility to lipase hydrolysis, leading to prolonged drug retention in the 
formulation.47 El-Dakroury et al reported that the cumulative release of fexofenadine HCl in an acidic medium was 
lower when formulated in SLN using cetyl palmitate compared with the pure drug.48 Similarly, the release of doxorubicin 
from NLC containing the same solid lipid was lower in simulated gastric fluid than in simulated intestinal fluid.49
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Inhibition of Cytochrome P450
First-pass metabolism, mainly mediated by cytochrome P450 enzymes, such as CYP3A4, is a major drawback of 
effective oral administration. Several LNP constituents may act as modulators of CYP3A4 in bypassing the first-pass 
metabolism, and subsequently increasing drug absorption.50 Unsaturated fatty acids, such as oleic acid, can inhibit CYP 
isoforms including CYP3A4. This may be due to the ability of fatty acids to disrupt the microsomal membrane and 
prevent drug binding to the enzyme active site.51 Several reports have shown that formulating NLC using oleic acid as a 
liquid lipid can improve the oral bioavailability of telmisartan and fexofenadine HCl.52,53 In a study by Sharma et al, the 
use of oleic acid in NLC markedly increased the plasma concentration and bioavailability of atorvastatin, which is a 
CYP3A4 substrate, compared to the marketed drug.54

Surfactants also play a pivotal role in the inhibition of CYP3A4. Non-ionic surfactants, such as Cremophor® EL and 
Cremophor® RH-40 have inhibitory effects on CYP3A4, with IC50 values ranging between 0.40 to 0.80 mM. 
Cremophores can alter drug absorption owing to agent-produced membrane fluidization, causing perturbations toward 
the CYP3A4 microenvironment, thus decreasing enzyme function.51 An in vivo pharmacokinetic study demonstrated 
increased bioavailability of silybin in SLN formulated using Cremophor® RH40 as a surfactant.55 In another study, it was 
observed that using Cremophor® EL in the SLN of fenofibrate, a CYP3A4 substrate, resulted in higher plasma 
concentrations than those of the pure drug.56

Inhibition of P-Glycoprotein
P-glycoprotein (P-gp) is an ATP-binding cassette transporter predominantly found in the apical layer of epithelial cells. 
Its primary function as a xenobiotic efflux pump can be detrimental for oral delivery due to restricted drug transport 
across the basolateral layer, thereby limiting the amount of drug in the systemic circulation.57 Designing LNPs with 
appropriately selected constituents that act as P-gp inhibitors is an effective strategy to improve drug transport across the 
intestinal barrier. In general, the commonly proposed P-gp inhibitory mechanism involves obstruction of drug-binding 
sites, disruption of ATP hydrolysis, and alteration of cell membrane integrity.58 Lipid-based excipients, such as glyceryl 
monooleate and hard fat, as well as surfactants, such as Cremophor®, poloxamers, and polysorbates, are among the 
components that can be utilized in LNP formulations for these purposes.59 Tween® 80 (polysorbate 80) has been 
specifically recognized for its synergistic role as an inhibitor of P-gp and CYP3A4.60 Beloqui et al showed that the 
transport of saquinavir, a known P-gp substrate, across Caco-2 cells was enhanced when incorporated into an NLC 
system prepared with polysorbate 80.61 Furthermore, an in vitro permeability study demonstrated higher apical- 

Figure 1 Drug transport mechanisms across intestine. Created in BioRender. Suliman, (K) (2025) https://BioRender.com/vmkadsf.
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basolateral transport of tilmicosin-loaded NLC prepared using poloxamer 188 and polysorbate 80 as surfactants.62 The 
use of Gelucire® 44/14 and polysorbate 80 as liquid lipids and surfactants in NLC also significantly increased the plasma 
concentration of iloperidone, confirming the potential of both excipients as P-gp inhibitors.63

Enhancement of Lymphatic Pathway
The enhancement of oral bioavailability offered by LNPs can also be facilitated through lymphatic transport, allowing 
lipophilic drugs to bypass first-pass metabolism. Lipids in LNPs may promote the formation of chylomicrons, which are 
large lipoproteins that are partly responsible for transcellular drug absorption.36 In the GI tract, triglycerides from lipids 
are broken down by lipase into monoglycerides and free fatty acids, which are then absorbed by enterocytes and 
incorporated into chylomicrons. These drug-loaded chylomicrons subsequently enter the lymphatic capillaries and avoid 
hepatic metabolism to finally reach the systemic circulation.45 Molecules with Log P > 5 are naturally transported via the 
lymphatic pathway. However, drugs with lower Log P values, such as atazanavir (Log P = 4.1), can also utilize this route 
when encapsulated within the NLC system. Using the chylomicron flow block model, Gurumukhi and Bari revealed the 
ability of NLC to circumvent first-pass metabolism, resulting in a higher plasma concentration of atazanavir.64

Lymphatic transport can also be facilitated transcellularly through uptake by M cells, which are specific epithelial 
cells essential for the intestinal immune system. These cells are primarily found in the gut-associated lymphoid tissue 
(GALT) or Peyer’s patches.40 Functionalization of LNPs with targeting ligands such as lectins enables specific binding to 
receptors on the M cell surface, thereby enhancing absorption and subsequent transport into the lymphatic system. A 
study by Hädrich et al demonstrated increased phagocytosis of quercetin NLC when its surface was functionalized with 
wheat germ agglutinin.65

Enhancement of Mucoadhesion
LNPs can also contribute to enhanced mucoadhesion in oral drug delivery via electrostatic, covalent, hydrogen, and van 
der Waals interactions.66 Intestinal epithelial cells are protected by a hydrophilic negatively charged mucus layer that 
serves as a barrier against foreign particles. The functionalization of LNP using positively charged polymers, such as 
chitosan, is considered a feasible strategy to enhance mucoadhesion via electrostatic interactions, subsequently prolong-
ing the drug residence time in the GI tract, enabling controlled drug release, and improving oral bioavailability. A study 
by Pyo et al showed higher plasma concentrations of chitosan-coated fenofibrate NLC than of uncoated fenofibrate NLC. 
The authors suggested that chitosan contributes to enhanced mucoadhesion while also acting as a tight junction 
modulator in intestinal enterocytes, thus facilitating drug transport into the systemic circulation.67 In another study, a 
chitosan-functionalized SLN of thymoquinone showed a higher mucoadhesive efficiency than that of free thymoquinone. 
This may be due to electrostatic interactions between the cationic chitosan-functionalized SLN and anionic mucin 
molecules. In addition, the hydrophilic properties of chitosan further intensified mucoadhesion.68

Mucoadhesion can also be enhanced through covalent bonding between mucosal cysteine residues and thiomer 
(thiolated polymer) molecules. For instance, it was found that the use of thiolated polyoxyethylene oleyl ether surfactant 
in aprepitant-loaded NLC displayed prolonged adhesion to goat intestinal mucosa compared to unmodified surfactant- 
based aprepitant NLC and aprepitant suspensions. Furthermore, the modified NLC formulation also exhibited increased 
plasma concentration and relative oral bioavailability compared to the drug suspension and unmodified NLC.69

Quality by Design Framework
The development of LNPs involves complex interactions between formulation components and process parameters, 
which often result in challenges such as variability in particle size distribution, low encapsulation efficiency, poor drug 
loading, low zeta potential, and inconsistent drug release behavior. These attributes are critical to the performance of 
LNPs but are difficult to optimize using traditional OFAT approaches because of the absence of interaction analysis and 
the need for numerous trial-and-error iterations. In this context, the QbD framework serves as a powerful and structured 
approach for systematically exploring the formulation space. By employing design of experiments (DoE), QbD enables 
the identification and control of critical material attributes (CMAs) and critical process parameters (CPPs) that influence 
the critical quality attributes (CQAs). Beyond its conceptual strengths, QbD also offers practical advantages such as 
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shortened development time, reduced experimental workload, and enhanced precision in targeting desired product 
characteristics. This is particularly valuable for complex systems like SLNs and NLCs, where small variations in 
formulation or processing can significantly impact particle size, encapsulation efficiency, and release profile, which 
subsequently translates into therapeutic performances. Consequently, QbD not only improves formulation robustness and 
scalability but also supports regulatory alignment and cost-effective LNP development.70,71

Quality Target Product Profile
Quality target product profile (QTPP) is a foundational component of the QbD framework, outlining the desired profile of 
a drug product to provide optimal safety and efficacy.70 In pharmaceutical product development, the QTPP provides a 
prospective summary of the final drug product, including dosage form, delivery system, route of administration, dosage 
strength, container closure system, drug release, pharmacokinetic properties, purity, sterility, and stability.18 In the 
context of oral drug delivery, the identification of QTPP related to the enhancement of systemic and/or lymphatic 
absorption is particularly crucial.72 For example, in a QbD-based study of atazanavir-loaded NLC, the QTPP stated that 
the defined pharmacokinetic parameters should be higher than the reference to provide higher drug concentrations, 
ensuring higher lymphatic uptake of the drug.64

In the identification of the QTPP, researchers should consider the regulatory requirements for bioequivalence and 
patient adherence, ensuring that the product matches the therapeutic performance of the reference products.73 The QTPP 
not only guides formulation and manufacturing strategies but also provides a benchmark for assessing critical quality 
attributes (CQAs) throughout the development process, aiming for a high-quality pharmaceutical product that meets both 
safety standards and therapeutic goals.

Critical Quality Attributes
As defined in the ICH Q8 (R2) document, CQA is another important element of QbD that represents the physical, chemical, 
biological, or microbiological properties of a drug product, which must remain within a defined range, limit, or distribution to 
ensure the desired quality.18 Quality attributes can be either critical or noncritical. When failure to achieve a specified range 
results in no efficacy or potential harm to the patient, an attribute should be considered critical.73 Along with the QTPP, CQAs 
play a vital role in guiding product and process development, ensuring that the safety and efficacy standards are met. However, 
CQAs differ from QTPP in scope and function within the QbD framework. QTPP outlines the overall desired characteristics 
and quality of the final drug product, such as the expected release profile and therapeutic effect, whereas CQAs may include 
specific parameters, such as particle size and encapsulation efficiency, which need to be tightly controlled to meet the target 
profile.74 Furthermore, unlike the more fixed profile of the QTPP, CQAs serve as adjustable responses to changes in the 
formulation attributes or process parameters. Thus, CQAs play a critical role in bridging the quality objectives outlined in the 
QTPP with the practical aspects of formulation and process development.71

In the production of lipid-based nanocarriers, common CQAs include particle size, polydispersity index, encapsula-
tion efficiency, drug-loading capacity, cumulative drug release, and zeta potential.75,76 For orally administered drugs, the 
control of uniformly small particles is substantial because nanosized particles (<1000 nm) provide a greater surface 
contact area, subsequently increasing the intestinal absorption.77 Furthermore, nano-sized particles can be transported 
both paracellularly and transcellularly (via endocytosis by enterocytes or via M cell uptake).25,78 However, a larger 
particle size may be useful for extended drug release. LNPs larger than 150 nm are more likely to be taken up by 
phagocytes, which act as reservoirs and accumulate inside the liver or spleen over an extended period before being 
gradually released into systemic circulation.79,80

The selection of zeta potential as a CQA also affects the performance of the final product. Zeta potential describes the 
surface charge of a colloidal particle, which is measured as the electrical potential at a layer relative to a certain point in 
the bulk medium. A higher absolute value of the zeta potential (≥ ±30 mV) indicates stronger repulsive electrostatic 
interactions between particles, thus preventing aggregation and ensuring the stability of the dispersion system.81 

Moreover, from the perspective of drug delivery, the surface charge of nanoparticles is partially responsible for stronger 
membrane binding and cellular uptake enhancement.82,83 Nisini et al found that positively charged liposomes could 
interact with the negatively charged mucosal surfaces of tumor cells, facilitating liposome endocytosis by antigen- 
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presenting cells, thus enhancing cell-mediated immune responses.84 The dependence of cytotoxicity on the zeta potential 
was also demonstrated in a study by Shao et al, where positively charged nanoparticles resulted in higher cytotoxicity 
toward L929 cells.85

Another property that may be considered a CQA in orally administered LNPs is the percentage of unpleasant taste, which 
describes the palatability of the drug product. In a study of diacerein-loaded SLN, it was found that an optimum amount of 
lipid was suitable for producing a palatable preparation.86 Several studies have also revealed the ability of lipids to control the 
release of bitter drugs in saliva, effectively sustaining the concentration of drugs that reach bitter taste receptors.87,88

Critical Material Attributes
Critical material attributes (CMAs) mainly identify the state of the input materials, such as the drug substances and 
excipients employed during production. These attributes encompass a wide range of material properties within an 
acceptable range, which can influence the quality profile of the final product.89 Determining the interrelationship between 
CMAs and CQAs is fundamental during the QbD process, where material attributes are systematically identified, 
screened, and controlled based on their impact on quality.90 In the development of SLNs and NLCs for the oral route, 
determination of CMAs is particularly crucial in relation to their objectives, both to protect the drugs from the GI 
environment and to deliver them into the systemic circulation.

Generally, the type and amount of lipids are the primary considerations in LNPs production. Changes in the type of lipid, 
drug-to-lipid ratio, solid-to-liquid lipid ratio, or total lipid concentration can affect the particle size, drug encapsulation 
efficiency, and release profile of nanoparticles.62,91 For example, the use of solid lipids in different polymorphs can influence 
the phase transition temperature, which affects lipid crystallinity and the likelihood of drug expulsion from the nanoparticle 
matrix.92 In NLCs, the optimum amount of liquid lipids may provide greater encapsulation efficiency because of the lower 
melting point of the system, which subsequently enhances the dissolving capacity of the matrix.93 Furthermore, solid and 
liquid lipid compositions also affect the type of NLCs, which are classified as imperfect, amorphous, or multiple NLCs. In 
imperfect NLCs, a lower amount of liquid lipid is blended with solid crystalline lipids, such as glycerides, reducing 
crystallinity and promoting the formation of an unstructured matrix during cooling. This facilitated a higher drug loading 
inside the matrix voids.94 In the amorphous type, specific non-crystalline solid lipids, such as medium-chain triglycerides, 
hydroxystearate, or isopropyl myristate, form an amorphous core along with liquid lipids. The disordered nature of the matrix 
can minimize drug leakage during storage.95 In multiple NLCs, liquid lipids such as medium-chain and long-chain 
triglycerides or oleic acid are employed in higher amounts, which enables phase separation and oil compartment formation 
within the solid lipid. This compartment provides a suitable environment for solubilizing lipophilic drugs, and subsequently 
promotes sustained or controlled drug release during oral administration.96

Surfactants also play an important role as CMAs in LNPs formulation. The type and concentration of the surfactant 
can modify the surface properties of the nanoparticles, thereby influencing drug loading, stability, particle size distribu-
tion, and pharmacokinetic profile.97 For instance, cationic surfactants such as hexadecyltrimethylammonium bromide 
(CTAB) can improve mucoadhesion by forming electrostatic interactions with negatively charged endocytosis-inducing 
biological membranes, thus enhancing the cellular uptake of nanoparticles.98,99 Both the lipids and surfactants selected in 
the SLN and NLC formulations should be generally recognized as safe based on their biocompatibility, biodegradability, 
and non-toxicity (Table 1).

In surface-modified LNPs, the coating materials can also be considered CMAs. A study by Veni et al indicated that 
increasing the amount of eudragit, a pH-sensitive polymer, delayed the drug release from the SLN matrix. Eudragit- 
coated SLN remain stable in acidic gastric environments, whereas the drug is gradually released upon arrival in alkaline 
intestinal environments.46 The addition of surface charge modifiers to LNPs may also be beneficial. El-say et al reported 
that a higher zeta potential was obtained by increasing the concentration of stearylamine, a positive charge-inducing 
agent, thus improving the stability of LNP.123

Critical Process Parameters
Critical process parameters (CPPs) refer to specific input operating or process state variables that are controlled and 
monitored during production.89 These parameters can impact CQAs, and highly impactful factors should be prioritized. 
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Table 1 Common Excipients in LNPs for Oral Drug Delivery

Component Substance Ref.

Solid Lipid Behenoyl polyoxyl-8 glycerides (Compritol® HD5 ATO) [13]

Cetyl alcohol [86]

Cetyl palmitate [48,49]

Glyceryl behenate [56,100–108]

Glyceryl monooleate [91,109]

Glyceryl monostearate [52,68,110–122]

Glyceryl palmitostearate [56,123–127]

Hard fat [49]

Mono and diglycerides (Geleol® mono and diglyceride NF) [64,128]

Phospholipon® 90G [129]

Soy lecithin [130]

Stearic acid [46,53,55,62,131,132]

Tripalmitin [133]

Liquid Lipid Capric and caprylic acid triglyceride [130]

Caprylocaproyl polyoxyl-8 glycerides [115]

Linoleoyl polyoxyl-6 glycerides [124]

Linseed oil [127]

Medium chain mono and diglycerides [116,117]

Oleic acid [49,52,53,62,91,102,104,111,113,121,131,132]

Propylene glycol dicaprylate [128]

Propylene glycol monocaprylate [13,64,103,119,120,133]

Sucupira Oil [122]

Triglycerides [118]

Vitamin E [125,126]

Surfactant d-α-tocopheryl polyethylene glycol succinate (Vitamin E TPGS) [114,122]

Egg lecithin [107]

Ethoxylated castor oil (Cremophor® EL) [56]

Hydrogenated castor oil (Cremophor® RH 40) [55]

Lauroyl polyoxyl-32 glycerides (Gelucire® 44/14) [123]

Pluronic® F127 [13,118,119]

Pluronic® F68 [46]

Poloxamer [68,91,105,107,110,116,120,125]

Polyethylene glycol 12-hydroxystearate (Solutol® HS15) [124,130]

Polyoxyl 40 [127]

Polysorbate 20 [48,52,115,117]

Polysorbate 80 [49,86,100–102,106,111,113,121,132]

Sodium lauryl sulfate [53]
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The criticality of a process parameter lies in its ability to satisfy the desired product quality. In LNPs production, the 
identification of potential CPPs is directly related to the selection of the preparation method (Figure 2). Based on 
preliminary information, the operating range of a specific parameter can be established to obtain the optimal conditions 
for the preferred CQA results.70 Several preparation methods, such as melt emulsification-ultrasonication, high-pressure 
homogenization (HPH), and high-shear homogenization (HSH), have been widely employed for the QbD-driven 
development of LNPs.100,110,111 Other methods such as hot-melt extrusion, phase inversion temperature, solvent diffu-
sion, solvent evaporation, and spray drying have also been reported.91,130,134,135 However, there have been fewer QbD 
studies conducted using these methods.

Each preparation technique offers a different mechanism along with its advantages and disadvantages. For example, in HPH, 
input materials are accelerated by high pressure (100 − 2000 bar) through a micron-size gap, where the resulting cavitation force 
and shear stress can break down the particle to the nanometer size.136 However, the high-energy nature of HPH potentially leads 
to a suboptimal polydispersity index (PDI) owing to uneven particle disruption.64 It is worth noting that process variations in 
HPH involving hot and cold conditions facilitate distinctive LNP characteristics. In hot HPH, the drug-lipid melt is combined 
with a surfactant above the lipid melting point. The mixture was emulsified. The hot emulsion was subsequently homogenized for 
several cycles at a specific pressure and cooled to room temperature to obtain the SLNs or NLCs. Conversely, in cold HPH, the 

Figure 2 Critical process parameters in various LNP preparation methods.
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drug-lipid melt is first solidified using dry ice or liquid nitrogen. The solid was then crushed to obtain micron-sized particles, 
which were dispersed in a cold surfactant solution, followed by high-pressure homogenization.137 Relatively smaller particles 
can be obtained using the hot process because of the decreased viscosity at higher temperatures. Nevertheless, high temperatures 
may also promote rapid degradation of the LNP system;136 thus, certain conditions should be optimized to control the quality of 
the final product. During the HPH process, the number of homogenization cycles also contributes to the particle size and PDI and 
is commonly considered a CPP in the HPH technique.138

High-shear homogenization and ultrasonication-based methods are other approaches involving high energy. Both 
techniques offer a similar mechanism. Prior to nanosizing, the molten lipid was prepared at 5 − 10 °C above its melting 
point and dispersed in a surfactant solution under stirring at the same temperature. The resulting emulsion was 
homogenized or sonicated to reduce the droplet size to the nanometer scale.139 The homogenization speed and 
cavitation-generating ultrasound amplitude are responsible for particle breakdown and thus may be considered as 
CPPs in their respective methods.140 Concurrently, the duration of sonication and homogenization should be optimized 
to obtain the desired LNP characteristics without overheating the sample.141

In the spray-drying method, LNPs can be converted into dry powders that offer better physicochemical stability than the 
dispersion form. Atomization of the aqueous LNP dispersion may occur because of the high inlet temperature of the spray 
dryer.142 The feed flow rate also promotes physical quality alteration of the LNPs. Mozaffar et al reported that, at a higher 
temperature (180 °C) and flow rate (15 mL/min), the particles were more evenly distributed and free of aggregates.135

The hot-melt extrusion (HME) technique is a relatively less explored method for LNPs preparation, despite its 
scalability and environmentally friendly characteristics.143 During HME, the main ingredients are pumped and mixed 
inside an extruder barrel at 10 − 15 °C above the solid lipid melting temperature. Excipients can be subsequently added to 
certain feeding zones during extrusion. The resultant hot pre-emulsion was then subjected to either sonication or high- 
pressure homogenization to reduce the particle size.56,134,144 In this method, varying the extrusion barrel temperature and 
screw speed evidently influenced the particle size and encapsulation efficiency of the LNPs, and thus could be selected as 
CPPs during production.

In the phase-inversion temperature (PIT) method, a certain type of emulsion is transformed into its reversed type by 
continuously changing the mixture temperature.136 This technique primarily exploits the temperature-dependent proper-
ties of the hydrophilic-lipophilic balance (HLB) of surfactants. A mixture of drugs, lipids, and surfactants was prepared 
prior to the phase inversion. The emulsion was then subjected to several cycles of heating and cooling, followed by rapid 
cooling using cold water (0 °C). This treatment breaks down the emulsion system, resulting in the formation of stable 
LNPs.130 The temperatures for phase inversion and the heating/cooling rate may influence the resulting nanoparticles; 
thus, they can be considered as CPPs in the PIT method.145

To select CPPs for each preparation technique, it is necessary to recognize the tunable operating parameters and 
process state variables that influence the CQAs of the product. Subsequently, the established potential operating space 
could be further employed during continuous manufacturing of LNPs.

Risk Assessment
In the QbD framework, risk assessment is a vital yet distinct component that supports decision-making by identifying and 
prioritizing material attributes and process parameters that may impact CQAs.18 While QbD focuses on defining and 
achieving the QTPP through the systematic control of formulation and process variables, risk assessment serves to 
anticipate potential sources of variability or failure that could compromise product quality, safety, or cost efficiency.

Several risk assessment tools can be used to guide this process. For example, the Ishikawa (fishbone) diagram 
provides a broad overview of the contributing factors from each category, describing the cause-and-effect relationships 
between the variables (Figure 3).112,124 The risk estimation matrix (REM) ranks variables based on their qualitative 
impact on CQAs.101 In contrast, quantitative tools like failure mode and effects analysis (FMEA) assign numerical values 
to severity, occurrence, and detectability of potential failures to generate a risk priority number (RPN).90 This allows 
researchers to prioritize experimental efforts based on criticality. Thus, while QbD is primarily concerned with achieving 
product quality through robust design, risk assessment complements it by systematically evaluating failure points and 
hazards, ultimately enhancing the efficiency and reliability of the development process.

https://doi.org/10.2147/IJN.S534137                                                                                                                                                                                                                                                                                                                                                                                                                                                 International Journal of Nanomedicine 2025:20 8620

Hidayat et al                                                                                                                                                                         

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Design of Experiments
During the QbD course of action, the interactions between independent variables (CMAs and/or CPPs) and dependent 
variables (CQAs) were formalized through the design of experiments (DoE). In the optimization step, these interactions 
are typically represented by a polynomial equation that captures single-factor effects, two-factor interactions, and 
quadratic relationships.146 The generated polynomial equation describes the interplay between factors, providing 
recommended paths to follow upscaled production. Various aspects are considered when selecting DoE models, such 
as the purpose of the investigation, factors and responses to be investigated (number, levels, qualitative or quantitative), 
resources (materials, time, and budget), prior knowledge, and historical data.147 Based on the objective of this study, DoE 
is generally categorized into screening and optimization designs.148 To concise this article, the DoE models that are 
commonly used in the production of LNPs are briefly reviewed. More in-depth information regarding the technical 
details of DoE models has been discussed extensively in several other studies.149–151

Screening Designs
A screening design is considered an initial approach to isolate potentially more significant factors from the numerous 
possible factors influencing responses. Although methodically different, the function of the screening design is similar to 
that of risk assessment.152 In general, a screening step is used only to determine the important variables experimentally 
observed in subsequent optimization designs. Several models, such as two-level full factorial, fractional factorial, 
Plackett-Burman, and Taguchi, are the most frequently employed screening designs in pharmaceutical formulations.153

Factorial design is one of the most comprehensive DoE models which allows multiple factors to be screened simulta-
neously. The full factorial design (FFD) examines all possible combinations of factor levels, ensuring a comprehensive 
analysis of the main effects and interactions. A two-level FFD is commonly employed during the screening step, with levels 
denoted as high (+1) and low (−1) (Figure 4a). The total number of experimental runs is n = 2k, where 2 and k represent the 
number of levels and factors, respectively.70 This design allows the evaluation of both the main effects and the interaction 
effects between the variables. However, as the number of factors increases, the required number of experiments increases 
exponentially, making it impractical for a large number of factors. To address this, fractional factorial design (FrFD) offers a 
more efficient alternative by selecting only a subset (fraction) of the full factorial runs while still capturing the significant 
effects (Figure 4b). Instead of performing all the 2k experiments, a fraction, such as half (2k−1) or a quarter (2k−2) of the total 

Figure 3 Example of an Ishikawa diagram in LNP optimization.
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runs, was conducted.151 For example, in a four-factor scenario, instead of performing all 16 runs for a full 24 design, an FrFD 
with 24–1 = 8 runs may be sufficient for the initial screening.

The Plackett-Burman design (PBD) is a highly efficient screening design that focuses solely on identifying the most 
critical factors among a large number of factors while maintaining a minimum number of experiments. Unlike factorial 
designs, PBD focuses exclusively on estimating the main effects and assumes that interaction effects are negligible.150 

The total number of runs in a PBD follows a multiplication of four greater than the number of factors. For instance, the 
design may require only twelve runs when there are seven or eight factors to screen.154,155 This makes PBD particularly 
useful for preliminary screening, where the goal is to quickly eliminate insignificant factors before moving to a more 
detailed optimization phase. However, because interaction effects are not accounted for, PBD is best suited for cases in 
which factor interactions are either minimal or of no primary interest.71

The Taguchi design is a specialized factorial design that incorporates orthogonal arrays to systematically reduce the 
number of experiments while ensuring robust results.156 However, in contrast to traditional factorial designs that focus on 
the main effects and interactions, the Taguchi design emphasizes the improvement of process stability using a signal-to- 
noise (S/N) ratio to quantify the stability and performance of a system under varying conditions. In the experimental 
setting, the signal (S) represents the desired output quality, whereas the noise (N) represents undesired response 
variability due to uncontrolled factors or external disturbances.157 Depending on the desired outcome of the experiment, 
the S/N ratio can be classified as larger-the-better (LTB), smaller-the-better (STB), or nominal-the-best (NTB).158 For 
example, in a study on erythrocyte-coated NLC, coating factors affecting particle size and PDI were screened based on 
the STB S/N ratio, successfully yielding ultrasmall NLC with potential for glioblastoma therapy.159 The orthogonal 
arrays in the Taguchi design allowed for a wide range of experimental possibilities. A two-level design is commonly used 
to screen for multiple factors in fewer runs. For instance, Pant et al conducted a 7-factor, 2-level experiment with only 8 
runs (L8) using the Taguchi design, instead of 128 (27), to identify the critical factors in the production of raloxifene- 

Figure 4 Schematic illustration of Full Factorial Design, FFD (A); Fractional Factorial Design, FrFD (B); Box-Behnken Design, BBD (C); Central Composite Circumscribed 
Design, CCCD (D); Central Composite Inscribed Design, CCID (E); Central Composite Face-centered Design, CCFD (F). Created in BioRender. Suliman, (K) (2025) 
https://BioRender.com/10a19ff.

https://doi.org/10.2147/IJN.S534137                                                                                                                                                                                                                                                                                                                                                                                                                                                 International Journal of Nanomedicine 2025:20 8622

Hidayat et al                                                                                                                                                                         

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://BioRender.com/10a19ff


loaded NLC.129 To effectively perform screening using the Taguchi design, it is essential to carefully select experiments 
that maintain a statistical balance and provide an unbiased estimation of the effect of each factor on the responses.

Optimization Designs
While FFD are often used for screening, they can also be applied in optimization by incorporating three or more levels 
per factor. A three-level FFD (3k) introduces an additional intermediate level (coded as 0), allowing for a more precise 
estimation of the quadratic effects.147 This is particularly useful when researchers suspect that the relationships between 
factors and responses are nonlinear. However, similar to two-level FFD, the total number of runs increases exponentially, 
making this approach efficient only when working with a small number of factors. Notably, a two-level FFD may be 
applied in an optimization that employs fewer factors.160 Mendes et al constructed two types of designs to develop NLC 
containing atorvastatin calcium: 32 (nine runs) and 22 (four runs) FFD. An observation of the influence of surfactant 
concentration on the particle size revealed similar interactions in both designs.159

Central composite design (CCD) is one of the most extensively used response surface methodology (RSM) designs 
for optimization because it is effective for modeling curvature and optimizing nonlinear processes. The CCD consists of 
three main components: a full factorial or fractional factorial cube (2k), axial (star) points (2k), and center points. The 
total number of runs required is determined by the formula 2k + 2k + cp, where k is the number of factors, and cp is the 
number of center points. Thus, for a 3-factor optimization, a minimum of 15 experiments were required. The axial points 
(coded as +α and − α) may extend the design space beyond the factorial region, allowing observations at extreme 
values.141 Based on the selection of α values, CCD can be categorized as: a) circumscribed (CCCD): the axial points 
extend beyond the factorial space (Figure 4d); b) inscribed (CCID): the axial points remain within the factorial region 
(Figure 4e); and c) face-centered (CCFD): the axial points are positioned on the faces of the factorial cube (Figure 4f).161 

The α value in the CCD varies between 1 and 2k/4, with the latter usually selected to maintain the design rotatability. For 
example, Ayed et al used a rotatable CCD to optimize two factors, the lipid and surfactant amounts, over 13 runs 
(including five center points) in the production of quetiapine fumarate-loaded NLC, with an α value of 1.414 (22/4).131 A 
similar design was employed in a 3-factor, 20-run optimization of NLC containing ifosfamide (including six center 
points), with an α value of 1.682 (23/4).91 It is also noteworthy that the α value in CCD, particularly in face-centered 
design, can be set at the same level as the low (−1) and high (+1) values of the factorial space, omitting observations at 
extreme points, as demonstrated in the study of diacerein-loaded SLN performed by Al-Remawi et al.86

The Box-Behnken design (BBD) is another widely used optimization design, particularly when the relationship 
between the factors and responses is expected to be nonlinear. Unlike CCD, which includes axial points that may extend 
beyond the factorial space, BBD distributes the experimental runs evenly at the midpoint of the factor pairs, eliminating 
the need to test for extremely high and low values (Figure 4c).146 CCD, particularly the circumscribed design, includes 
axial points that extend beyond the factorial region, which can be valuable for exploring a broader response surface but 
may introduce impractical conditions. On the other hand, face-centered CCD maintains experimental points within the 
factorial space but requires more runs because of more levels on account of axial points (+α and −α).153 The number of 
runs in a BBD is given by the formula 2k (k−1) + cp, where k represents the number of factors, and cp represents the 
number of center points. This means that to optimize three factors, a minimum of 13 experiments are required, whereas 
CCD requires at least 15 runs. This makes BBD a more efficient choice for optimization in fewer runs, while still 
maintaining a robust quadratic model. In the development of LNPs, BBD can be used as a follow-up to the screening 
stage. For instance, in a study of lurasidone HCl-loaded SLN fabricated by high-pressure homogenization, Patel et al 
screened seven factors using the Plackett-Burman design. Highly critical factors, namely lipid concentration, homo-
genization pressure, and homogenization cycle, were subsequently optimized to obtain the preferred particle size and 
entrapment efficiency using a 15-run BBD (including three center points).112 Nevertheless, numerous studies have 
reported the direct implementation of BBD for SLN or NLC optimization using 1 − 5 center points, resulting in 13 − 
17 experiments.102,110,113,125
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Design Space
In developing LNPs, identifying an optimal design space is essential to ensure a well-balanced formulation that meets 
predefined quality attributes because each factor can influence a response differently, sometimes even in a contradictory 
manner. For example, increasing the sonication time may reduce the particle size, but it can also lead to an undesirably 
low entrapment efficiency.68,103,104,124 Therefore, it is important to describe an optimal space that simultaneously 
achieves a balanced response for multiple factors. The selection of the most optimized formula is guided by the 
established DoE results, which help map the relationships between the critical factors and their respective responses. 
This process involves defining a design space that serves as a multidimensional region where the combination of input 
variables ensures the achievement of optimal responses.74 One of the most effective tools in this process is contour plot 
overlay, which enables the simultaneous evaluation of multiple responses by superimposing their individual contour 
plots.162 This graphical approach helps to identify an intersection where all quality attributes meet predefined require-
ments, thereby defining the most suitable formulation space. In addition, a desirability function is commonly used to 
simultaneously optimize multiple responses. This method transforms each interaction into a desirability scale ranging 
from 0 (least desirable) to 1 (most desirable), allowing the calculation of a composite desirability index that reflects the 
overall optimization outcome.163 By assigning specific weights to different responses based on their importance, this 
function aids in resolving conflicting optimization criteria, ensuring that the selected formulation maintains a balance 
among all critical parameters.

Optimization of Lipid Nanoparticles for Oral Drug Delivery
In QbD-based studies on the development of LNPs for oral administration, various independent variables (CMAs and/or 
CPPs) have been examined to elucidate their effects on the dependent variables (CQAs). The formation of LNPs relies on 
physicochemical principles such as lipid melting and recrystallization, emulsification, and colloidal stabilization. Upon 
cooling, the dispersed lipid phase solidifies into nanoparticles, while surfactants reduce the interfacial tension and provide 
steric or electrostatic stabilization to maintain colloidal stability.137 The nature and concentration of lipids, their crystal-
linity, and the compatibility with surfactants play key roles in controlling particle characteristics and drug incorporation. 
Process parameters, such as homogenization speed, pressure, and sonication time, directly influence the nucleation and 
growth of particles. Thus, the relationship between the independent variables and LNP formation mechanisms underpins 
their influence on CQAs. The most commonly evaluated CQAs during the optimization stage included particle size, 
polydispersity index, entrapment efficiency, drug loading, zeta potential, and drug release, as presented in Table 2.

Influences of Independent Variables on Particle Size
Particle size is considered to be one of the principal CQAs in LNP development. SLNs and NLCs with smaller particle sizes 
inherently have larger surface areas, facilitating higher drug dissolution and absorption. A smaller particle size is also 
preferable because of the varied transport mechanisms during oral administration.25 Several variables significantly affect 
the size of the LNPs. In most cases, a higher amount of solid lipids leads to an increase in particle size. At higher solid lipid 
concentrations, the increased viscosity may resist oil droplet breakdown, resulting in a larger particle size.114 For example, 
Diwan et al demonstrated that, with other variables held constant, increasing the solid lipid amount from 50 mg to 300 mg led 
to a particle size increase from 279.2 nm to 837.6 nm during production of SLN containing cilnidipine.105 A similar trend is 
also observed in NLC optimization when the total lipid content or solid-to-liquid lipid (S/L) ratio is considered a CMA, 
particularly when the solid lipid concentration exceeds that of the liquid lipid, as evident in various reports.53,115,116,128 

However, contradictory interactions have been observed in several studies. For instance, in the study of paliperidone-loaded 
NLC by Rehman et al, a three-fold increase in total lipid concentration (at an S/L ratio of 70:30) resulted in a particle size 
reduction from 487.9 nm to 332.6 nm.117 This finding aligns with the results of Pant et al in the development of raloxifene- 
loaded NLC, in which smaller particles were obtained at higher solid lipid levels.129

The use of higher liquid lipid concentrations has only been investigated in a few studies. Predominantly, an increased 
amount of liquid lipids is associated with a reduction in the particle size. For instance, in the optimization of eplerenone- 
loaded NLC, Abd-Elhakeem et al demonstrated that increasing the liquid-to-solid lipid (L/S) ratio from 1:1 to 2:1 
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Table 2 Design of Experiments in the Optimization of LNPs for Oral Drug Delivery

Drug (s) | 
LNP Type

Preparation 
Method

DoE DoE Results Performances of Optimized LNP Ref.

Abiraterone 
acetate | SLN

Melt emulsification 
and ultrasonication

Screening: mixture design (4 factors, 15 
runs) 
CCD (13 runs) 
CMAs: solid lipid concentration, surfactant 
concentrationCQAs: PS, PDI, EE, ZP, DR

● Screening result: Glyceryl monooleate and polysorbate 80 were 
selected as solid lipid and surfactant

● Relationship between variables:
↓ PS: ↑ surfactant concentration 
↑ PS: ↑ lipid concentration 
↓ PDI: ↑ surfactant concentration 
↑ PDI: ↑ lipid concentration 
↑ EE: ↑ lipid concentration, ↑ surfactant concentration↓ ZP: ↑ lipid 
concentration 
↑ ZP: ↑ surfactant concentration 
↑ DR: ↑ lipid concentration, ↑ surfactant concentration

● Optimized formulation: 4.4% solid lipid, 3.6% surfactant, resulting PS 
287.67 nm, PDI 0.138, EE 94%, ZP −25 mV, and DR 98.7%

In vitro drug release study:
● ↓ drug release rate (in PBS pH 4.5)
● First-order release kinetics model
● Fickian drug release

Ex vivo gut permeation study:
● ↑ cumulative permeated drug

In vivo pharmacokinetic study:
● ↑ Cmax, AUC, relative bioavailability
● ↓ Tmax, t1/2

[109]

Acyclovir | SLN High shear 
homogenization 
and ultrasonication

CCD (13 runs) 
CMAs: solid lipid concentration, surfactant 
concentration 
CQAs: PS, ZP, PDI

● Relationship between variables:
↓ PS: ↑ surfactant concentration 
↑ PS: ↑ lipid concentration 
↓ ZP: ↑ surfactant concentration 
↑ ZP: ↑ lipid concentration 
↓ PDI: ↑ lipid concentration, ↑ surfactant concentration

● Optimized SLN resulting PS 104.89 nm, ZP −37 mV, and PDI 0.21. 
However, the optimal variables to obtain them were not explained.

In vitro drug release study:
● ↓ drug release rate (in SGF pH 1.2)
● ↓ drug release rate (in SIF pH 6.8)In vivo pharmaco-

kinetic study:
● ↑ Cmax, AUC, t1/2, relative bioavailability
● ↔ Tmax

● ↓ Kel

[106]

Alendronate 
sodium | SLN

Melt emulsification 
and ultrasonication

BBD (15 runs) 
CMAs: solid lipid concentration, surfactant 
concentration 
CPPs: sonication time 
CQAs: PS, EE

● Relationship between variables:↓ PS: ↑ sonication time↑ PS: ↑ lipid 
concentration, ↑ surfactant concentration↓ EE: ↑ surfactant concen-
tration, ↑ sonication time
↑ EE: ↑ lipid concentration

● Optimized formulation: 30% w/w solid lipid, 5% w/w surfactant, 8 
min sonication, resulting PS 98 nm and EE 74.3%

In vitro drug release study:
● ↓ cumulative drug release (in 0.1 N HCl pH 1.2), 

compared to commercial Fosamax® tablet
● In PBS pH 7.4 (not compared) the release of 

Alendronate sodium from SLN showed sustained 
release
In vivo pharmacokinetic study:

● ↑ Cmax, Tmax, AUC, t1/2, relative bioavailability
● ↓ Kel

[110]

Amisulpride | 
NLC

Solvent evaporation FFD (24 runs) 
CMAs: type of solid lipid, lipid/drug ratio, 
type of external suspending medium 
CQAs: PS, EE

● Relationship between variables:
↓ PS: lower in gelucire 43/1, lower in 0.5% TSP medium 
↑ PS: ↑ lipid/drug ratio↑ EE: higher in gelucire 43/1, ↑ lipid/drug ratio, 
higher in 1% HPMC medium

● Selected formulation: gelucire 43/1 as solid lipid, 13:1 lipid/drug, and 
1% HPMC as external suspending medium, resulting smaller PS and 
higher EE

In vitro drug release study:
● Rapid release in 0.1 N HCl pH 1.2 for 2h, followed 

by slower release in PBS pH 7.4 for the next 6 h
In vivo pharmacokinetic study:

● ↑ Cmax, AUC, t1/2, relative bioavailability
● ↓ Kel

[133]

(Continued)
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Table 2 (Continued). 

Drug (s) | 
LNP Type

Preparation 
Method

DoE DoE Results Performances of Optimized LNP Ref.

Apigenin | SLN Melt emulsification 
and ultrasonication

BBD (15 runs) 
CMAs: solid lipid concentration, surfactant 
concentration 
CPPs: sonication time 
CQAs: PS, EE

● Relationship between variables:↓ PS: ↑ surfactant concentration, ↑ 
sonication time
↑ PS: ↑ lipid concentration 
↓ EE: ↑ sonication time↑ EE: ↑ lipid concentration, ↑ surfactant 
concentration

● Optimized formulation: 320 mg solid lipid, 220 mg surfactant, 5 min 
sonication, resulting PS 161.7 nm and EE 80.44%

In vitro drug release study:
● ↑ cumulative drug release (in PBS pH 7)

Ex vivo gut permeation study:
● ↑ permeation flux

Antioxidant study:
● ↑ antioxidant activity

Anti-arthritic study:
● ↓ TNF-α, IL-1β, paw edema

[114]

Apixaban | 
NLC

High pressure 
homogenization

FFD (8 runs) 
CMAs: surfactant concentration 
CPPs: HPH pressure, HPH cycle 
CQAs: PS, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ HPH pressure, ↑ HPH cycle 
↓ EE: ↑ HPH pressure, ↑ HPH cycle 
EE: ↑ surfactant concentration

● Optimized formulation: 1% surfactant, 800 bar HPH pressure, 9 
HPH cycles, resulting PS 232 nm and EE 91.9%

In vitro drug release study:
● ↓ cumulative drug release (in PBS pH 6.8)
● Higuchi release kinetics model

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, t1/2

[111]

Atazanavir | 
NLC

High pressure 
homogenization

CCRD (20 runs)CMAs: total lipid 
concentration, surfactant 
concentrationCPPs: HPH pressureCQAs: 
PS, PDI

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ HPH pressure 
↑ PS: ↑ lipid concentration 
↓ PDI: ↑ surfactant concentration 
↑ PDI: ↑ lipid concentration, ↑ HPH pressure

● Optimized formulation: 1.89% total lipid, 1.93% surfactant, 779.96 
bar HPH pressure, resulting PS 89.02 nm and PDI 0.222

In vitro drug release study:
● ↑ cumulative drug release (in SGF pH 1.2 for 2h, 

continued in SIF pH 6.8 for 22 h)
● Korsmeyer-Peppas release kinetics model
● Non-Fickian drug release

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, MRT, relative bioavailability
● Chylomicron flow block model indicates lymphatic 

uptake of NLC

[64]

Azilsartan | 
NLC

High pressure 
homogenization

FFD (17 runs) 
CMAs: total lipid concentration, surfactant 
concentration 
CPPs: HPH cycles 
CQAs: PS, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ HPH cycles 
↑ PS: ↑ lipid concentration 
↓ EE: ↑ surfactant concentration, ↑ HPH cycles 
↑ EE: ↑ lipid concentration

● Optimized formulation: 1 g total lipid, 0.5 g surfactant, 10 HPH 
cycles, resulting PS 274.2 nm and EE 88%

In vitro drug release study:
● ↓ drug release rate (in PBS pH 6.8)
● Higuchi release kinetics model
● Non-Fickian drug release

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, t1/2, MRT
● ↓ Kel

[116]

Bergenin | NLC Melt emulsification 
and ultrasonication

BBD (13 runs) 
CMAs: total lipid concentration, surfactant 
concentration 
CPPs: sonication time 
CQAs: PS, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ sonication time 
↑ PS: ↑ lipid concentration 
↓ EE: ↑ surfactant concentration 
↑ EE: ↑ lipid concentration, ↑ sonication time

● Optimized formulation: 3.5% total lipid, 3% surfactant, 7 min sonica-
tion, resulting PS 174.3 nm and EE 80.6%

In vitro drug release study:
● ↑ cumulative drug release (in PBS pH 6.8)
● Korsmeyer-Peppas release kinetics model
● Non-Fickian drug release

Ex vivo gut permeation study:
● ↑ apparent permeability coefficient

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, t1/2

● ↓ Kel

In vivo anti-inflammatory activity:
● Bergenin-loaded NLC showed slower but prolonged 

effect compared to free drug

[102]
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Carvedilol | 
SLN

High shear 
homogenization 
and ultrasonication

BBD (15 runs) 
CMAs: solid lipid concentration, surfactant 
concentration, stearylamine (positive 
charge inducing agent) concentration 
CQAs: PS, ZP, EE, DR, T85%

● Relationship between variables:
↓ PS: ↑ surfactant concentration 
↑ PS: ↑ lipid concentration, ↑ stearylamine concentration 
↓ ZP: ↑ surfactant concentration 
↑ ZP: ↑ lipid concentration, ↑ stearylamine concentration 
↑ EE: ↑ lipid concentration, ↑ surfactant concentration, ↑ stearylamine 
concentration 
↓ DR: ↑ lipid concentration, ↑ stearylamine concentration 
↑ DR: ↑ surfactant concentration 
↓ T85%: ↑ surfactant concentration, ↑ T85%: ↑ lipid concentration, ↑ 
stearylamine concentration

● Optimized formulation: 11.9% solid lipid, 2.87% surfactant, 6% stear-
ylamine, resulting PS 31.3 nm, ZP 24.25 mV, EE 91.43%, DR 17.55%, 
and T85% 8.92 h

In vitro drug release study:
● Controlled release behavior was found in all formu-

lations (not compared to free drug)
● Hixson-Crowell release kinetics model
● Non-Fickian drug release
● In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, t1/2, AUC, MRT, relative bioavailability
● ↓ clearance, Kel

[123]

Cilnidipine | 
SLN

Emulsification and 
solvent evaporation

Screening: mini run resolution IV design (5 
factors, 12 runs) 
BBD (17 runs) 
CMAs: solid lipid concentration, internal to 
external phase ratio 
CPPs: temperature 
CQAs: PS, DL

● Screening result: solid lipid concentration, internal to external phase 
ratio, and temperature were the most influential factors.

● Relationship between variables (at given temperatures: 50, 70, 90 ° 
C):
↓ PS: ↑ phase ratio 
↑ PS: ↑ lipid concentration 
↓ DL: ↑ lipid concentration 
↑ DL: ↑ phase ratio

● Optimized formulation: 57.03 mg solid lipid, 0.14 internal to exter-
nal phase ratio, 84 °C temperature, resulting PS 207.1 nm and DL 
15.9%

In vitro drug release study:
● ↓ cumulative drug release (in PBS pH 7.4)
● Makoid-Banakar release kinetics model

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, MRT, relative bioavailability
● ↓ clearance

In vivo pharmacodynamic study:
● NLC system showed higher and more sustained 

hypertensive effect

[105]

Dapagliflozin | 
NLC

High pressure 
homogenization

BBD (17 runs) 
CMAs: S/L lipid ratio, surfactant 
concentration 
CPPs: HPH cycles 
CQAs: PS, EE, DR

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ HPH cycles 
↑ PS: ↑ lipid ratio↑ EE: ↑ lipid ratio, ↑ surfactant concentration, ↑ HPH 
cycles 
↓ DR: ↑ lipid ratio, ↑ DR: ↑ surfactant concentration, ↑ HPH cycles

● Optimized formulation: 8:3 solid/liquid lipid, 3% surfactant, 4 HPH 
cycles resulting PS 231.9 nm, EE 88.32%, and DR 78.58%

In vitro drug release study:
● ↑ cumulative drug release in (SIF pH 6.8)
● Korsmeyer-Peppas release kinetics model
● Non-Fickian drug release

Ex vivo gut permeation study:
● ↑ apparent permeability coefficient

[115]

Dapagliflozin | 
SLN

High shear 
homogenization 
and ultrasonication

BBD (17 runs)CMAs: solid lipid 
concentration, surfactant 
concentrationCPPs: homogenization 
timeCQAs: DR, EE, PS

● Relationship between variables:
↓ DR: ↑ surfactant concentration 
↑ DR: ↑ lipid concentration, ↑ homogenization time 
↓ EE: ↑ lipid concentration, ↑ homogenization time 
↑ EE: ↑ surfactant concentration 
↓ PS: ↑ surfactant concentration, ↑ homogenization time 
↑ PS: ↑ lipid concentration

● Optimized formulation: 1% w/v solid lipid, 20% w/v surfactant, 2 min 
homogenization time, resulting PS 100.13 nm, EE 94.46%, and DR 
99.08%

In vitro drug release study:
● ↑ cumulative drug release (in 0.1 N HCl pH 1.2 for 

2h, continued in PBS pH 7.4 for 22 h)
● Korsmeyer-Peppas release kinetics model

In vivo pharmacokinetic study:
● ↑ Cmax, AUC, Kel

● ↔ Tmax

● ↓ t1/2In vivo anti-diabetic study:
● ↓ blood glucose level, glycosylated hemoglobin
● ↑ insulin level
● Biochemical study:
● ↓ triglycerides, total cholesterol, LDL, uric acid, 

urea, SGOT, SGPT, ALP
● ↑ HDL

[108]
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Table 2 (Continued). 

Drug (s) | 
LNP Type

Preparation 
Method

DoE DoE Results Performances of Optimized LNP Ref.

Diacerein | SLN High shear 
homogenization

CCD (13 runs)CMAs: solid lipid 
concentration, surfactant 
concentrationCQAs: PS, ZP, unpleasant 
taste

● Relationship between variables:
↔ PS 
↓ ZP: ↑ lipid concentration, ↑ surfactant concentration↑ unpleasant 
taste: ↑ lipid concentration, ↑ surfactant concentration

● Optimized formulation: 2% solid lipid, 0.9% surfactant, resulting PS 
48.58 nm, ZP −18.65 mV, and unpleasant taste 39.4%

In vitro drug release study:
● No release in 0.1 M HCl
● Rapid release in PBS pH 6.8 + 2% SLS
● Release profiles of Diacerein SLN stored in amber 

glass and in sachet were intact after 6 months storage
In vivo anti-diarrheal study:

● ↓ defecation output, frequency of defecation

[86]

Doxorubicin | 
NLC

Melt emulsification 
and ultrasonication

CCD (10 runs) 
CMAs: surfactant concentration, pH 
CQAs: PS, EE

● In the formulation, cetyl palmitate (PAL) and Gelucire® 43/01 (GEL) 
was used as solid lipids in different NLC-DOX systems

● Relationship between variables:
↔ PS (GEL-DOX) 
↓ PS (PAL-DOX): ↑ surfactant concentration↑ PS (PAL-DOX): ↑ pH 
↓ EE (GEL-DOX): ↑ pH, ↑ surfactant concentration 
↓ EE (PAL-DOX): ↑ pH 
↑ EE (PAL-DOX): ↑ surfactant concentration

● NLC GEL-DOX in pH 1 with 85 mg surfactant resulting smaller size 
compared to NLC PAL-DOX in the same condition. However, the 
latter resulting higher EE, which is more critical than smaller size.

In vitro drug release study:
● All DOX-loaded NLC formulations showed lower 

release in regime I (FaSSGF pH 1.6) and II (FaSSIF pH 
6.5) and higher release in regime III (PBS pH 7.4) and 
IV (citrate buffer solution pH 6.3)

● Korsmeyer-Peppas release kinetics model
● Fickian (regime II and III), non-Fickian (regime IV), 

super case II (regime I)
In vitro cytotoxicity study:

● All DOX-loaded NLC formulations showed 
enhanced toxicity against MDA-MB-231 cell, close 
to that obtained from free DOX

● Functionalized NLC (with PEG-FA) increased cyto-
toxicity
In vitro cell uptake study:

● DOX-loaded gelucire NLC showed faster cell 
uptake compared to cetyl palmitate NLC

● Functionalized NLC (with PEG-FA) increased cell 
uptake

[49]

Efavirenz | NLC Phase inversion 
temperature

BBD (17 runs) 
CMAs: oil phase concentration, surfactant 
concentration, volume ratio of diluting 
aqueous phase to initial emulsionCQAs: PS, 
PDI, ZP, EE, DL, DR

● Relationship between variables:
↓ PS: ↑ surfactant concentration 
↑ PS: ↑ oil phase concentration 
↓ PDI: ↑ surfactant concentration 
↑ PDI: ↑ oil phase concentration 
↓ ZP: ↑ oil phase concentration, ↑ volume ratio 
↑ ZP: ↑ surfactant concentration 
↓ EE: ↑ oil phase concentration 
↑ EE: ↑ surfactant concentration, ↑ volume ratio 
↓ DL: ↑ oil phase concentration, ↑ surfactant concentration↑ DL: ↑ 
volume ratio 
↓ DR: ↑ surfactant concentration 
↑ DR: ↑ oil phase concentration, ↑ volume ratio

● Optimized formulation: 17.5% oil phase, 10% surfactant, 3.5 of 
diluting aqueous phase to initial emulsion ratio, resulting PS 60.71 
nm, PDI 0.09, ZP −35.93 mV, EE 92.6%, DL 7.39%, and DR 55.96%

In vitro drug release study:
● Higuchi release kinetics model
● Non-Fickian drug release
● In vitro cytotoxicity study:
● ↔ Caco-2 cell viability
● Ex vivo gut permeation study:
● ↑ cumulative permeated drug, apparent permeability 

coefficient

[130]
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Efavirenz | NLC High pressure 
homogenization

CCRD (14 runs) 
CMAs: total lipid concentration, surfactant 
concentration 
CPPs: HPH pressure 
CQAs: PS, PDI, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ HPH pressure 
↑ PS: ↑ lipid concentration 
↓ PDI: ↑ surfactant concentration, ↑ HPH pressure 
↑ PDI: ↑ lipid concentration 
↑ EE: ↑ lipid concentration, ↑ surfactant concentration, ↑ HPH 
pressure

● Optimized formulation: 1.5% total lipid, 2% surfactant, 750 bar HPH 
pressure, resulting PS 106 nm, PDI 0.235, and EE 92%

In vitro drug release study:
● ↑ cumulative drug release (in 0.1 N HCl pH 1.2 for 

2h, continued in PBS pH 6.8 for 22 h)
● Higuchi release kinetics model
● Non-Fickian drug release

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, MRT, relative bioavailability

Toxicity study:
● ↔ SGOT, SGPT, ALP (in low and medium doses, 

after 28 days)
● ↑ SGOT, SGPT, ALP (in high dose, after 28 days)

[128]

Entacapone | 
NLC

Melt emulsification 
and ultrasonication

FFD (8 runs) 
CMAs: total lipid concentration, surfactant 
concentration 
CPPs: sonication time 
CQAs: PS, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ sonication time 
↑ PS: ↑ lipid concentration 
↓ EE: ↑ sonication time↑ EE: ↑ lipid concentration, ↑ surfactant 
concentration

● Optimized formulation: 0.5% total lipid, 1–2% surfactant, 13–15 min 
sonication, resulting PS 161.2 nm and EE 82.5%

In vitro drug release study:
● ↓ drug release rate (in 0.1 N HCl pH 1.2 for 2h, 

continued in PBS pH 6.8 for 22 h)
● Korsmeyer-Peppas release kinetics model
● Non-Fickian drug release

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, t1/2, MRT
● ↓ Kel

[121]

Eplerenone | 
NLC

Melt emulsification 
and ultrasonication

D-optimal (19 runs) 
CMAs: L/S lipid ratio, surfactant 
concentration, type of surfactant 
CQAs: PS, PDI, ZP, EE

● Relationship between variables:
↓ PS: ↑ lipid ratio, lower in Pluronic F127 
↑ PS: ↑ surfactant concentration 
↓ PDI: ↑ lipid ratio 
↑ PDI: ↑ surfactant concentration 
↓ EE: ↑ lipid ratio, ↑ surfactant concentration↑ EE: higher in Pluronic 
F127 
↔ ZP

● Optimized formulation: 2:1 liquid/solid lipid, 0.45% Pluronic F127, 
45s sonication, resulting PS 134 nm, PDI 0.31, EE 76%, and ZP −32.37 
mV

In vitro drug release study:
● ↑ cumulative drug release (in PBS pH 7.4)

Ex vivo gut permeation study:
● ↑ cumulative permeated drug

[118]

Etravirine and 
Darunavir 
Ethanolate | 
NLC

Melt emulsification 
and ultrasonication

CCRD (20 runs) 
CMAs: binary mixture (BM) concentration, 
surfactant concentration 
CPPs: sonication time 
CQAs: PS, PDI, EE (ETR), EE (DRVE)

● Relationship between variables:
↓ PS: ↑ surfactant concentration, sonication time 
↑ PS: ↑ BM concentration 
↓ PDI: ↑ surfactant concentration, sonication time 
↑ PDI: ↑ BM concentration 
↓ EE (ETR): ↑ surfactant concentration, ↑ sonication time 
↑ EE (ETR): ↑ BM concentration 
↓ EE (DRVE): ↑ surfactant concentration, ↑ sonication time 
↑ EE (DRVE): ↑ BM concentration

● Optimized formulation: 4% w/w BM, 3% w/w surfactant, 120 s 
sonication, resulting PS 171.23 nm, PDI 0.135, EE (ETR) 96.56%, 
and EE (DRVE) 94.22%

In vitro drug release study:
● ↑ cumulative drug release (in 0.1 N HCl pH 1.2)
● ↑ cumulative drug release (in acetate buffer pH 4.5)
● ↑ cumulative drug release (in PBS pH 6.8)
● Korsmeyer-Peppas release kinetics model

Ex vivo everted gut sac study:
● ↑ apparent permeability coefficient

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, t1/2, MRT, bioavailability
● Chylomicron flow block model indicates lymphatic 

uptake of NLC
Anti-HIV-1 study:

● NLCs containing ETR, DRVE and ETR-DRVE 
showed higher anti-HIV-1 activity compared to pure 
drugs

[124]
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Table 2 (Continued). 

Drug (s) | 
LNP Type

Preparation 
Method

DoE DoE Results Performances of Optimized LNP Ref.

Exemestane 
and 
Thymoquinone 
| NLC

Melt emulsification 
and ultrasonication

BBD (17 runs) 
CMAs: solid lipid concentration, surfactant 
concentration 
CPPs: sonication time 
CQAs: PS, PDI, EE (EXE), EE (THY)

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ sonication time 
↑ PS: ↑ solid lipid concentration 
↓ PDI: ↑ surfactant concentration, ↑ sonication time 
↑ PDI: ↑ solid lipid concentration 
↓ EE (EXE): ↑ surfactant concentration, ↑ sonication time 
↑ EE (EXE): ↑ solid lipid concentration 
↓ EE (THY): ↑ surfactant concentration, ↑ sonication time 
↑ EE (THY): ↑ solid lipid concentration

● Optimized formulation: 350 mg solid lipid, 200 mg surfactant, 4 min 
sonication, resulting PS 268.2 nm, PDI 0.155, EE (EXE) 76.2%, and EE 
(THY) 75.1%

In vitro drug release study:
● ↓ cumulative drug release (in SGF pH 1.2)
● ↑ cumulative drug release (in SIF pH 6.8)
● Korsmeyer-Peppas release kinetics model
● Fickian drug release

Ex vivo gut permeation study:
● ↑ cumulative permeated drug, apparent permeability 

coefficient
In vitro cell uptake study:

● ↑ MCF-7 cell uptake
In vitro cytotoxicity study:

● ↑ MCF-7 cell cytotoxicity

[103]

Ezetimibe | 
NLC

High pressure 
homogenization

FFD (8 runs) 
CMAs: surfactant concentration 
CPPs: HPH pressure, HPH cycles 
CQAs: PS, EE

● Relationship between variables:
↓ PS: ↑ HPH pressure, ↑ HPH cycles 
↑ PS: ↑ surfactant concentration 
↓ EE: ↑ surfactant concentration 
↑ EE: ↑ HPH pressure, ↑ HPH cycles

● Optimized formulation: 0.5% surfactant, 700 bar HPH pressure, 7 
HPH cycles, resulting PS 134.5 nm and EE 91.32%

In vitro drug release study:
● Sustained drug release (in acetate buffer pH 4.5)
● Higuchi release kinetics model
● Non-Fickian drug release

In vivo anti-hyperlipidemic study:
● ↓ triglycerides, total cholesterol, LDL
● ↑ HDL

[120]

Fenofibrate | 
SLN

Hot-melt extrusion Plackett-Burman design (8 factors, 12 runs) 
CMAs: drug concentration, solid lipid 
concentration, surfactant concentration, 
type of lipid, type of surfactant 
CPPs: screw speed, barrel temperature, 
zone of liquid addition 
CQAs: PS, PDI, ZP, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ barrel temperature, lower in 
Compritol® 888 ATO, lower in Cremophor® EL 
↑ PS: ↑ drug concentration, ↑ lipid concentration 
↓ PDI: ↑ surfactant concentration, lower in Compritol® 888 ATO 
↑ PDI: ↑ lipid concentration 
↓ ZP: ↑ lipid concentration 
↑ ZP: ↑ drug concentration, ↑ surfactant concentration 
↓ EE: ↑ zone of addition 
↑ EE: ↑ drug concentration, ↑ lipid concentration, ↑ screw speed, 
higher in Compritol® 888 ATO, higher in Cremophor® EL

● Optimized formulation: 0.5% w/w drug, 8% w/w Compritol® 888 
ATO, 3% w/w Cremophor® EL, 240 rpm screw speed, 150 °C barrel 
temperature, and zone 4 as zone of liquid addition, resulting PS 125 
nm, PDI 0.284, ZP 39.28 mV, and EE 78.46%

In vitro drug release study:
● ↑ cumulative drug release rate (in PBS pH 7.4)

In vivo pharmacokinetic study:
● ↑ Cmax, AUC
● ↓ Tmax

[56]

Fexofenadine 
HCl | NLC

Solvent injection FFD (9 runs) 
CMAs: S/L lipid ratio, surfactant 
concentration 
CQAs: PS, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration 
↑ PS: ↑ S/L lipid ratio 
↓ EE: ↑ S/L lipid ratio, ↑ surfactant concentration

● Optimized formulation: 6:4 solid/liquid lipid, 0.5% w/v surfactant, 
resulting PS 127.5 nm and EE 81.31%

In vitro drug release study:
● ↓ cumulative drug release (in PBS pH 1.2 for 2h, 

continued in PBS pH 6.8 for 48 h)
● Higuchi release kinetics model
● Fickian drug release

In vivo pharmacokinetic study:
● ↑ Cmax, AUC, t1/2, relative bioavailability
● ↓ Tmax

[53]
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Fexofenadine 
HCl | SLN

High shear 
homogenization 
and ultrasonication

FFD (9 runs) 
CMAs: surfactant concentration, polymer 
molecular weight 
CQAs: PS, ZP, PDI, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration 
↑ PS: ↑ polymer MW 
↑ ZP: ↑ polymer MW 
↓ PDI: ↑ surfactant concentration, ↑ polymer MW 
↓ EE: ↑ surfactant concentration 
↑ EE: ↑ polymer MW

● Optimized formulation: 200 mg surfactant, low MW polymer, result-
ing PS 229 nm, ZP 36.3 mV, PDI 0.23, and EE 64.9%

In vitro drug release study:
● ↓ cumulative drug release rate (in 0.001 M HCl pH 

1.2, PBS pH 6.8, and PBS pH 7.4)
● Higuchi release kinetics model

In vivo anti-ulcerative colitis study:
● ↓ phosphatidylinositol-3 kinase, protein kinase B, 

TNF-α, IL-6

[48]

Flutamide | 
NLC

Melt emulsification 
and ultrasonication

BBD (17 runs) 
CMAs: total lipid concentration, surfactant 
concentration 
CPPs: sonication time 
CQAs: PS, PDI, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ sonication time 
↑ PS: ↑ lipid concentration 
↓ PDI: ↑ surfactant concentration 
↑ PDI: ↑ lipid concentration, ↑ sonication time 
↓ EE: ↑ surfactant concentration, ↑ sonication time 
↑ EE: ↑ lipid concentration

● Optimized formulation: 3% w/w total lipid, 2.5% surfactant, 4 min 
sonication, resulting PS 27.66 nm, PDI 0.175, and EE 97.81%

In vitro drug release study:
● ↑ cumulative drug release (in 1% SLS)
● Korsmeyer-Peppas release kinetics model
● Fickian drug release

In vitro cytotoxicity study:
● ↓ PC3 cell viability

In vitro wound healing study:
● ↓ cell migration

[127]

Ibrutinib | NLC Melt emulsification 
and ultrasonication

Screening: Plackett-Burman design (6 
factors, 12 runs) 
CCD (19 runs) 
CMAs: liquid lipid concentration, drug 
concentration, surfactant, concentration 
CQAs: PS, PDI, EE

● Screening result: liquid lipid concentration, drug concentration, and 
surfactant concentration were the most influential factors.

● Relationship between variables:
↓ PS: ↑ liquid lipid concentration, 
↑ PS: ↑ drug concentration, ↑ surfactant concentration↑ PDI: ↑ liquid 
lipid concentration, ↑ drug concentration 
EE: ↑ liquid lipid concentration, ↑ surfactant concentration

● Optimized formulation: 0.339% liquid lipid, 10% drug, 1.421% sur-
factant, resulting PS 106.63 nm, PDI 0.283, and EE 74.32%

In vitro drug release study:
● ↓ cumulative drug release (in PBS pH 6.8 for 60 h)
● Higuchi release kinetics model

In vivo pharmacokinetic study:
● ↑ Cmax, t1/2, AUC, MRT
● Chylomicron flow block model indicates lymphatic 

uptake of NLC

[119]

Ifosfamide | 
NLC

Solvent diffusion CCRD (20 runs) 
CMAs: drug/lipid ratio, organic/aqueous 
ratio, surfactant concentration 
CQAs: PS, DL, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration 
↑ PS: ↑ drug/lipid ratio, ↑ organic/aqueous ratio 
↓ DL: ↑ organic/aqueous ratio, ↑ surfactant concentration 
↑ DL: ↑ drug/lipid ratio 
↓ EE: ↑ drug/lipid ratio, ↑ organic/aqueous ratio 
↑ EE: ↑ surfactant concentration

● Optimized formulation: 1:3 drug/lipid, 1:10 organic/aqueous phase, 
1% w/v surfactant, resulting PS 223 nm, DL 6.14%, and EE 77%

In vitro drug release study:
● ↓ cumulative drug release in (PBS pH 7.4)
● In PBS pH 1.2 and 6.8 (not compared to free drug) 

the release of ifosfamide from NLC showed initial 
burst, then plateaued at 13–15% at 6h

[91]

Linagliptin | 
SLN

Solvent injection 
and 
homogenization

CCD (35 runs) 
CMAs: solid lipid concentration, polymer 
concentration, surfactant concentration 
CPPs: homogenization speed 
CQAs: PS, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ homogenization speed 
↑ PS: ↑ lipid concentration, ↑ polymer concentration 
↓ EE: ↑ surfactant concentration, ↑ homogenization speed 
↑ EE: ↑ lipid concentration, ↑ polymer concentration

● Optimized formulation: 84 mg solid lipid, 30.58 mg polymer, result-
ing PS 332 nm and EE 59.63%

In vitro drug release study:
● cumulative drug release in SIF pH 6.8 was signifi-

cantly higher than in SGF pH 1.2
● compared to free drug, SLN showed relatively 

slower release (in PBS pH 6.8)
● Zero-order release kinetics model

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, t1/2, relative bioavailability
● ↓ Kel

[46]
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Table 2 (Continued). 

Drug (s) | 
LNP Type

Preparation 
Method

DoE DoE Results Performances of Optimized LNP Ref.

Lurasidone HCl 
| SLN

High pressure 
homogenization

Screening: Plackett-Burman design (7 
factors, 8 runs) 
BBD (17 runs) 
CMAs: solid lipid concentration 
CPPs: HPH pressure, HPH cycle 
CQAs: PS, EE

● Screening result: solid lipid concentration, HPH pressure, and HPH 
cycle were the most influential factors.

● Relationship between variables:
↓ PS: ↑ HPH pressure, ↑ HPH cycle 
↑ PS: ↑ lipid concentration 
↓ EE: ↑ HPH pressure, ↑ HPH cycle 
↑ EE: ↑ lipid concentration

● Optimized formulation: 10% w/v solid lipid, 600 bar HPH pressure, 
7 HPH cycles, resulting PS 139.8 nm and EE 79.1%

In vitro drug release study:
● ↓ drug release rate (in 0.1 N HCl pH 1.2 for 2h, 

continued in PBS pH 6.8 for 22 h)
● Controlled drug release
● Higuchi release kinetics model
● Non-Fickian drug release

Ex vivo drug diffusion study:
● ↓ drug diffusion rate
● Sustained drug diffusion

In vitro cytotoxicity study:
● ↔ Caco-2 cell viability

In vitro cellular permeability study:
● ↑ apparent permeability coefficient

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, relative bioavailability

In vivo pharmacodynamic study:
● ↓ escape latency time in pole climbing test
● ↓ extrapyramidal side effects in catalepsy test

[112]

Lycopene | 
NLC

Melt emulsification 
and ultrasonication

BBD (17 runs) 
CMAs: solid lipid concentration, surfactant 
concentration 
CPPs: sonication time 
CQAs: PS, PDI, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ sonication time 
↑ PS: ↑ lipid concentration 
↓ PDI: ↑ surfactant concentration, ↑ sonication time 
↑ PDI: ↑ lipid concentration 
↓ EE: ↑ sonication time 
↑ EE: ↑ lipid concentration, ↑ surfactant concentration

● Optimized formulation: 12% w/v solid lipid, 5% surfactant, 45s 
sonication, resulting PS 121.9 nm, PDI 0.37, and EE 84.5%

In vitro drug release study:
● ↓ cumulative drug release (in PBS pH 7.4)
● Higuchi release kinetics model
● Fickian drug release

In vitro antioxidant study:
● ↓ IC50

Ex vivo gut permeation study:
● ↑ cumulative permeated drug, apparent permeability 

coefficient
In vitro cytotoxicity study:

● ↓ MDA-MB-231 cell viability

[126]

Nabumetone | 
NLC

Melt emulsification 
and ultrasonication

BBD (17 runs) 
CMAs: total lipid concentration, surfactant 
concentration 
CPPs: sonication time 
CQAs: PS, PDI, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ sonication time 
↑ PS: ↑ lipid concentration 
↑ PDI: ↑ lipid concentration, ↑ surfactant concentration, ↑ sonication 
time 
↓ EE: ↑ surfactant concentration, ↑ sonication time 
↑ EE: ↑ lipid concentration

● Optimized formulation: 2.34% total lipid, 2% surfactant, 6.21 min 
sonication, resulting PS 127 nm, PDI 0.279, and EE 84.4%

In vitro drug release study:
● ↑ cumulative drug release in (PBS pH 6.8)
● Korsmeyer-Peppas release kinetics model
● Fickian drug release

In vivo anti-inflammatory activity:
● Nabumetone-loaded NLC showed higher inhibition 

and prolonged effect compared to free drug

[113]
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Naringin | NLC Melt emulsification 
and ultrasonication

BBD (17 runs) 
CMAs: total lipid concentration, surfactant 
concentration 
CPPs: sonication time 
CQAs: PS, PDI, EE, DL

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ sonication time 
↑ PS: ↑ lipid concentration 
↓ PDI: ↑ surfactant concentration 
↑ PDI: ↑ lipid concentration, ↑ sonication time 
↓ EE: ↑ surfactant concentration, ↑ sonication time 
↑ EE: ↑ lipid concentration 
↓ DL: ↑ lipid concentration, ↑ surfactant concentration, ↑ sonication 
time

● Optimized formulation: 121 mg total lipid, 96 mg surfactant, 2.46 
min sonication, resulting PS 94.45 nm, PDI 0.23, EE 85.33%, and DL 
10.04%

In vitro drug release study:
● ↑ cumulative drug release (in SGF pH 1.2 for 2h, 

continued in SIF pH 6.8 for 22 h)
● First-order release kinetics model

In vitro antioxidant activity:
● Slightly increasing antioxidant activity

Ex vivo gut permeation study:
● ↑ cumulative permeated drug, apparent permeability 

coefficient
Ex vivo intestinal uptake study:

● ↑ permeation

[104]

Olmesartan 
medoxomil | 
NLC

Melt emulsification 
and ultrasonication

FCCD (13 runs) 
CMAs: solid lipid concentration, surfactant 
concentration 
CQAs: PS, ZP, EE, DR

● Relationship between variables:
↓ PS: ↑ lipid concentration 
↑ PS: ↑ surfactant concentration 
↓ ZP: ↑ surfactant concentration 
↓ EE: ↑ lipid concentration 
↑ DR: ↑ surfactant concentration

● Optimized formulation: based on coded levels, the optimized sys-
tem was obtained at 0.3 solid/liquid lipid level (7:3 solid/liquid lipid) 
and 0.16 surfactant level (5.2% surfactant), resulting PS 245.5 nm, ZP 
−19.4 mV, EE 74.7%, and DR 84%

In vitro drug release study:
● ↑ cumulative drug release (in SGF pH 1.2 for 2h, 

continued in SIF pH 6.8 for 10 h)
● Korsmeyer-Peppas release kinetics model
● Fickian drug release

[132]

Paliperidone | 
NLC

High pressure 
homogenization | 
melt emulsification 
and ultrasonication

BBD (29 runs) | BBD (17 runs) 
CMAs: total lipid concentration, surfactant 
concentration 
CPPs: HPH pressure, HPH cycle | 
sonication timeCQAs: PS, EE, DL

● Relationship between variables:
↓ PS: ↑ lipid concentration, ↑ HPH pressure, ↑ HPH cycle, ↑ sonica-
tion time 
↑ PS: ↑ surfactant concentration 
↓ EE: ↑ surfactant concentration 
↑ EE: ↑ lipid concentration, ↑ HPH pressure, ↑ HPH cycle, ↑ sonica-
tion time 
↓ DL: ↑ surfactant concentration 
↑ DL: ↑ lipid concentration, ↑ HPH pressure, ↑ HPH cycle, ↑ soni-
cation time

● Optimized formulation (HPH): 2.98% total lipid, 3.79% surfactant, 
945.72 bar HPH pressure, 4.93 HPH cycles, resulting PS 297.33 nm, 
EE 78.31%, and DL 7.44%• Optimized formulation (melt emulsifica-
tion-ultrasonication): 3% total lipid, 5% surfactant, 11.05 min sonica-
tion, resulting PS 86.35 nm, EE 90.31%, and DL 8.49%

In vitro drug release study:
● ↑ cumulative drug release (in 0.1 N HCl pH 1.2)
● ↑ cumulative drug release (in PBS pH 6.8)
● ↑ cumulative drug release (in PBS pH 7.4)
● Korsmeyer-Peppas release kinetics model
● Fickian drug release

Ex vivo gut permeation study:
● ↑ cumulative permeated drug

In vitro lipolysis study:
● ↑ drug release in aqueous phase and lipid phase

[117]

(Continued)
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Table 2 (Continued). 

Drug (s) | 
LNP Type

Preparation 
Method

DoE DoE Results Performances of Optimized LNP Ref.

Pioglitazone | 
SLN

High shear 
homogenization

BBD (17 runs) 
CMAs: solid lipid concentration, surfactant 
concentration 
CPPs: homogenization speed 
CQAs: PS, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ homogenization speed 
↑ PS: ↑ lipid concentration 
↓ EE: ↑ surfactant concentration, ↑ homogenization speed 
↑ EE: ↑ lipid concentration

● Optimized formulation: 4.5% w/v solid lipid, 3% w/v surfactant, 3800 
rpm homogenization speed, resulting PS 180.65 nm and EE 85.34%

In vitro drug release study:
● ↑ cumulative drug release (in 0.1 N HCl pH 1.2 for 

2h, continued in PBS pH 7.4 for 22 h)
● Korsmeyer-Peppas release kinetics model

In vivo anti-diabetic study:
● ↓ blood glucose level

Biochemical study:
● ↓ triglycerides, total cholesterol, uric acid, urea, 

SGPT, SGOT
● ↑ HDL

[100]

Quetiapine 
Fumarate | 
NLC

High shear 
homogenization

CCRD (13 runs) 
CMAs: total lipid concentration, surfactant 
concentration 
CQAs: PS, PDI, ZP

● Relationship between variables:
↓ PS: ↑ lipid concentration 
↑ PS: ↑ surfactant concentration 
↓ PDI: ↑ lipid concentration 
↑ PDI: ↑ surfactant concentration 
↓ ZP: ↑ lipid concentration 
↑ ZP: ↑ surfactant concentration

● Optimized formulation: 1.2% total lipid, 0.317% surfactant, resulting 
PS 179.2 nm, PDI 0.22, and ZP −33.63 mV

In vitro drug release study:
● Rapid release in FaSSGF pH 1.6 for 3h, followed by 

slower release in FaSSIF pH 6.5 for the next 4 h
● Korsmeyer-Peppas release kinetics model
● Non-Fickian drug release

[131]

Raloxifene | 
NLC

High-shear 
homogenization

Screening: Taguchi design (7 factors, 8 runs) 
BBD (17 runs) 
CMAs: solid lipid concentration, liquid lipid 
concentration, surfactant concentration 
CQAs: PS, ZP, EE, DR

● Screening result: solid lipid concentration, liquid lipid concentration, 
and surfactant concentration were the most influential factors.

● Relationship between variables:
↓ PS: ↑ solid lipid concentration, ↑ surfactant concentration↑ PS: ↑ 
liquid lipid concentration 
↓ ZP: ↑ solid lipid concentration, ↑ liquid lipid concentration, ↑ 
surfactant concentration 
↑ EE: ↑ solid lipid concentration, ↑ liquid lipid concentration, ↑ 
surfactant concentration 
↓ DR: ↑ liquid lipid concentration 
↑ DR: ↑ solid lipid concentration, ↑ surfactant concentration

● Optimized formulation: 794.41 mg solid lipid, 215.4 mg liquid lipid, 
1.98% surfactant, resulting PS 186 nm, ZP −23.6 mV, EE 80.09%, and 
DR 83.87%

In vitro drug release study:
● ↓ cumulative drug release (in 0.1% Tween® 80)
● Characteristically more sustained than raloxifene 

tablet
● Korsmeyer-Peppas release kinetics model
● Fickian drug release

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, t1/2, Ka

[129]

Ritonavir | NLC Melt emulsification 
and ultrasonication

CCRD (15 runs) 
CMAs: total lipid concentration, surfactant 
concentration 
CPPs: ultrasound amplitude 
CQAs: PS, PDI, EE

● Relationship between variables:
↓ PS: ↑ ultrasound amplitude, surfactant concentration 
↑ PS: ↑ lipid concentration 
↓ PDI: ↑ surfactant concentration 
↑ PDI: ↑ ultrasound amplitude, ↑ lipid concentration 
↓ EE: ↑ ultrasound amplitude 
↑ EE: ↑ lipid concentration, ↑ surfactant concentration

● Optimized formulation: 1.82% total lipid, 1.43% surfactant, 40% 
ultrasound amplitude, resulting PS 187.23 nm, PDI 0.119, and EE 
92.01%

In vitro drug release study:
● ↑ cumulative drug release (in SGF pH 1.2 for 2h, 

continued in SIF pH 6.8 for 22 h)
● Higuchi release kinetics model
● Fickian drug release

Ex vivo everted gut sac study:
● ↑ apparent permeability coefficient

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, t1/2, relative bioavailability

[13]
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Rosuvastatin 
calcium | SLN

Melt emulsification 
and solvent 
diffusion

Screening: Taguchi design (7 factors, 8 runs) 
I-optimal design (17 runs) 
CMAs: solid lipid concentration, surfactant 
concentration 
CPPs: stirring speed 
CQAs: PS, ZP, EE, T80%

● Screening result: solid lipid concentration, surfactant concentration, 
and stirring speed were the most influential factors.

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ stirring speed 
↑ PS: ↑ lipid concentration 
↓ ZP: ↑ lipid concentration, ↑ surfactant concentration↑ ZP: ↑ stirring 
speed 
↑ EE: ↑ lipid concentration, ↑ surfactant concentration, ↑ stirring 
speed 
↓ T80%: ↑ lipid concentration, ↑ surfactant concentration, ↑ stirring 
speed

● Optimized formulation: 412 mg solid lipid, 6.25% surfactant, 2625 
rpm stirring speed, resulting PS 63.5 nm, ZP −25.5 mV, EE 89.5%, and 
T80% 8.01 h

In vitro drug release study:
● In all fomulations, more than 80% drugs were 

released within 12 h
● Formulation with smaller amount of lipid and larger 

amount of surfactant showed faster release, while 
medium amount of lipid resulted in a relatively slower 
release

● Different release kinetics were recorded (Fickian to 
non-Fickian
In vitro gastrointestinal stability

● ↔ PS, ZP, EE
In vitro cell uptake study:

● ↑ Caco-2 cell uptake
In vitro cellular permeability study:

● ↑ apparent permeability coefficient
In situ intestinal perfusion study:

● ↑ drug permeability and drug absorption parameters
In vivo pharmacokinetic study:

● ↑ Cmax, t1/2, AUC, MRT
● ↓ Tmax

In vivo pharmacodynamic study:
● ↓ triglycerides, total cholesterol, LDL

[101]

Silybin | SLN Emulsification and 
solvent evaporation

BBD (15 runs) 
CMAs: solid lipid concentration, surfactant 
concentration 
CPPs: homogenization time 
CQAs: PS, ZP, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration (at lower amount); solid lipid and 
homogenization time were not significantly influence PS 
↑ ZP: ↑ surfactant concentration; solid lipid and homogenization time 
were not significantly influence ZP 
↓ EE: ↑ surfactant [concentration] 
↑ EE: ↑ lipid concentration; homogenization time was not significantly 
influence EE

● Optimized formulation: 400 mg solid lipid, 0.56% surfactant, 10 min 
homogenization, resulting PS 271.84 nm, ZP −23.78 mV, and EE 
70.49%

In vitro drug release study:
● Released drug was fewer in HCL pH 1.2, and 

increased up to 40% in PBS pH 6.8
● Higuchi release kinetics model
● Non-Fickian drug release

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, t1/2, AUC, MRT, relative bioavailability

[55]

Sucupira Oil | 
NLC

High pressure 
homogenization

FFD (7 runs)CMAs: solid lipid 
concentration, surfactant 
concentrationCQAs: PS, PDI, ZP

● Relationship between variables:
↑ PS: ↑ lipid concentration, ↑ surfactant concentration↓ PDI: ↑ lipid 
concentration 
↑ PDI: ↑ surfactant concentration 
↓ ZP: ↑ surfactant concentration ↑ lipid concentration

● Optimized formulation: 0.5% sucupira oil, 4.5% solid lipid, 1.425% 
surfactant, resulting PS 148.1–159.3 nm, PDI 0.274–0.305, and ZP 
close to zero

In vitro drug release study:
● • Sustained release in PBS pH 7.4
● First-order release kinetics model

In vitro cytotoxicity study:
● ↔ Caco-2 cell viability

[122]

(Continued)
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Table 2 (Continued). 

Drug (s) | 
LNP Type

Preparation 
Method

DoE DoE Results Performances of Optimized LNP Ref.

Sulforaphane | 
NLC

Melt emulsification 
and ultrasonication

BBD (17 runs) 
CMAs: total lipid concentration, surfactant 
concentration 
CPPs: sonication time 
CQAs: PS, EE, DL

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ sonication time 
↑ PS: ↑ lipid concentration 
↓ EE: ↑ surfactant concentration, ↑ sonication time 
↑ EE: ↑ lipid concentration 
↓ DL: ↑ surfactant concentration, ↑ sonication time 
↑ DL: ↑ lipid concentration

● Optimized formulation: 3% total lipid, 2.5% surfactant, 4 min sonica-
tion, resulting PS 145.38 nm, EE 84.94%, and DL 14.82%

In vitro drug release study:
● ↑ cumulative drug release (in SIF pH 6.8)
● Higuchi release kinetics model

Ex vivo gut permeation study:
● ↑ apparent permeability coefficient

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, t1/2, relative bioavailability
● ↓ Kel

[125]

Telmisartan | 
NLC

Melt emulsification 
and ultrasonication

BBD (17 runs) 
CMAs: total lipid concentration, surfactant 
concentration 
CPPs: sonication time 
CQAs: PS, PDI, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ sonication time 
↑ PS: ↑ lipid concentration 
↓ PDI: ↑ surfactant concentration, ↑ sonication time 
↑ PDI: ↑ lipid concentration 
↓ EE: ↑ surfactant concentration 
↑ EE: ↑ lipid concentration, ↑ sonication time

● Optimized formulation: 2% total lipid, 4% surfactant, 20 min sonica-
tion, resulting PS 172.5 nm, PDI 0.272, and EE 83.72%

In vitro drug release study:
● • ↑ cumulative drug release (in SGF pH 1.2)
● ↑ cumulative drug release (in SIF pH 6.8)
● Korsmeyer-Peppas release kinetics model
● Fickian drug release

Ex vivo tissue uptake study:
● ↑ permeation

In vivo pharmacokinetic study:
● ↑ Cmax, Tmax, AUC, relative bioavailability

[52]

Thymoquinone 
| SLN

Melt emulsification 
and ultrasonication

BBD (15 runs) 
CMAs: solid lipid concentration, surfactant 
concentration 
CPPs: sonication time 
CQAs: PS, PDI, EE

● Relationship between variables:
↓ PS: ↑ surfactant concentration, ↑ sonication time 
↑ PS: ↑ lipid concentration 
↓ PDI: ↑ surfactant concentration 
↑ PDI: ↑ lipid concentration, ↑ sonication time 
↓ EE: ↑ sonication time 
↑ EE: ↑ lipid concentration, ↑ surfactant concentration

● Optimized formulation: 3% w/v solid lipid, 2% w/v surfactant, 5 min 
sonication, resulting PS 166.56 nm, PDI 0.211, and EE 82.66%

In vitro drug release study:
● ↑ cumulative drug release rate (in PBS pH 6.8)
● Korsmeyer-Peppas release kinetics model
● Fickian drug release

Ex vivo gut permeation study:
● ↑ cumulative permeated drug, apparent permeability 

coefficient
In vitro lipolysis study:

● ↑ drug release in aqueous phase and lipid phase
GIT retention study:

● ↑ drug retained in GIT membrane
In vivo pharmacokinetic study:

● ↑ Cmax, t1/2, AUC, MRT, relative bioavailability
● ↓ Tmax, Kel

[68]

Tilmicosin | 
NLC

High shear 
homogenization

Orthogonal design (9 runs) 
CMAs: stearic acid/oleic acid ratio, 
surfactant/mixed lipid ratio, drug/mixed 
lipid ratio, cold/hot water ratio 
CQAs: PS, EE, DL

● Orthogonal design was applied to examine the importance relativity 
of factors.

● Results indicated that drug/mixed lipid ratio significantly influence PS 
and DL.

● Optimized formulation: 1:9 stearic acid/oleic acid, 30% surfactant/ 
mixed lipid, 30% drug/mixed lipid, 1:1 cold/hot water, resulting PS 
276.85 nm, EE 92.92%, and DL 9.14%

In vitro drug release study:
● ↓ cumulative drug release (in SGF pH 1.2)
● ↓ cumulative drug release (in SIF pH 6.8)

In vitro cellular permeability study:
● ↓ net efflux ratio
● ↑ apparent permeability coefficient in apical-basolat-

eral transport

[62]
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Zaleplon | SLN High shear 
homogenization 
and ultrasonication

BBD (17 runs) 
CMAs: solid lipid concentration, surfactant 
concentration, cosurfactant concentration 
CQAs: PS, EE, ZP

● Relationship between variables:
↑ PS: ↑ lipid concentration, ↑ surfactant concentration, ↑ cosurfactant 
concentration 
↓ EE: ↑ surfactant concentration 
↑ EE: ↑ lipid concentration 
↑ ZP: ↑ lipid concentration, ↑ surfactant concentration

● Optimized formulation: 132.89 mg solid lipid, 106.7 mg surfactant, 
0.2% w/v cosurfactant, resulting PS 219.9 nm, EE 86.83%, and ZP 
−25.66 mV

In vitro drug release study:
● ↓ cumulative drug release (in 0.1 N HCl pH 1.2 for 

2h, continued in PBS pH 6.8 for 22 h)
In vivo pharmacokinetic study:

● ↑ Cmax, t1/2, AUC, MRT
● ↔ Tmax

[107]

Notes: ↑, increased value; ↓, decreased value; ↔ unchanged value. 
Abbreviations: AUC, area under the curve; ALP, alkaline phosphatase; BBD, Box-Behnken design; CCD, central composite design; CCRD, central composite rotational design; CMAs, critical material attributes; CPPs, critical process 
parameters; CQAs, critical quality attributes; DL, drug loading; DOX, doxorubicin; DR, drug release; DRVE, darunavir ethanolate; EE, entrapment efficiency; ETR, etravirine; EXE, exemestane; FA, folic acid; FaSSGF, fasted-state simulated 
gastric fluid; FaSSIF, fasted-state simulated intestinal fluid; FFD, full factorial design; GEL, gelucire; HDL, high-density lipoprotein; HPH, high-pressure homogenization; HPMC, hydroxypropyl methylcellulose; HSH, high-shear 
homogenization; IL-1β, interleukin 1β; IL-6, interleukin 6; LDL, low-density lipoprotein; MRT, mean residence time; NLC, nanostructured lipid carrier; PAL, cetyl palmitate; PBS, phosphate-buffered saline; PEG, polyethylene glycol; 
PDI, polydispersity index; PS, particle size; SGF, simulated gastric fluid; SGOT, serum glutamic-oxaloacetic transaminase; SGPT, serum glutamic-pyruvic transaminase; SIF, simulated intestinal fluid; SLN, solid lipid nanoparticle; SLS, sodium 
lauryl sulfate; THY, thymoquinone; TNF-α, tumor necrosis factor α; ZP, zeta potential.
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markedly reduced the particle size.118 This reduction can be attributed to the low viscosity of the liquid lipid, which 
facilitates the rapid movement of surfactant molecules, effectively preventing aggregation, and promoting the formation 
of smaller droplets.164

Surfactants are another key factor that influences the particle size. A higher surfactant concentration primarily leads to 
particle size reduction by enhancing the emulsifying capacity, which prevents droplet agglomeration and concurrently 
stabilizes the dispersion system of the LNPs.91,106,116 This trend has been consistently reported in numerous studies on 
SLN and NLC optimization. For example, while maintaining the other variables constant, increasing the surfactant 
amount from 1% to 3% effectively decreased the particle size from 49 nm to 20 nm, as reported by El-say et al123 

However, contrasting results have been reported in several studies. This can be attributed to the accumulation of 
surfactant molecules on the nanoparticles, which enveloped the surface excessively, thereby increasing their size.119,131

The preparation method also has a direct impact on the LNP particle size, with CPPs generally selected from 
adjustable parameters specific to each method. Typically, the application of higher energy, represented by the HPH 
pressure, homogenization speed, or ultrasound amplitude, leads to a reduction in particle size. A similar effect was 
observed when pre-LNP primary emulsion was subjected to a high-energy process for an extended period during 
production. For instance, the HPH pressure accelerates the input materials at high energy, where the resulting cavitation 
force and shear stress effectively break down particles into smaller sizes.111 Additionally, an increased number of HPH 
cycles can further reduce the particle size owing to the prolonged exposure to high pressures. As an example, during the 
preparation of ezetimibe-loaded NLC, Agrawal et al illustrated that increasing the number of HPH cycles from 5 to 7 at 
700 bars significantly reduced the particle size from 614.4 nm to 262.0 nm.120 In the HME method, increased barrel 
temperature also reportedly decreases SLN particle size, possibly due to the complete melting of lipids and drugs, which 
effectively lowers the viscosity of the drug-lipid system.56

Influences of Independent Variables on Polydispersity Index
The polydispersity index (PDI) is another commonly selected CQA, which is usually measured along with particle size. 
This describes the particle size distribution, which indicates the dispersion characteristics of LNPs. A monodisperse 
system with lower PDI is preferable to ensure homogeneous drug delivery and release. Generally, CMAs influence PDI 
in a manner similar to that of the particle size. Increased solid lipid content may increase LNP viscosity, obstruct uniform 
particle breakdown, and ultimately lead to a higher PDI.103 Formulating NLCs with higher liquid lipid and surfactant 
concentrations can reduce overall viscosity and surface tension, respectively, subsequently reversing this effect, as 
demonstrated in several studies.68,109,118,130

The influence of CPPs on PDI is not as straightforward, as contrasting interactions have been found in multiple 
reports. On several occasions, prolonged high-energy applications can be beneficial because extended exposure to 
cavitation energy promotes a low-PDI system with uniformly distributed smaller particles.103,124,126 However, beyond 
the optimal point, excessive high-energy exposure may generate heat, disrupting the surfactant layer and diminishing its 
stabilizing capacity, ultimately resulting in a more polydisperse LNP system.165 This phenomenon has been observed in 
several studies that have utilized ultrasonication or the HPH method.64,104,113,127

Influences of Independent Variables on Entrapment Efficiency and Drug Loading
In LNP formulations, entrapment efficiency (EE) and drug loading (DL) determine the extent of drug incorporation 
within the lipid matrix, ensuring effective delivery to target sites. For the most part, a higher amount of lipids results in a 
higher EE, owing to the greater space available inside the matrix. This effect was particularly pronounced when drug 
compatibility with a specific lipid was considered. For example, El Assasy et al demonstrated a considerable increase in 
EE in amisulpride-loaded NLC when the solid lipid was changed from tripalmitin to Gelucire® 43/1. This may be due to 
the greater compatibility of amisulpride with Gelucire® 43/1 than with tripalmitin. Furthermore, in the same study, it was 
also observed that increasing the lipid-to-drug ratio from 7:1 to 13:1 resulted in an improvement in EE from 49.50% to 
69.06%.133 A higher lipid concentration may also increase DL, which can be attributed to the reduction in drug expulsion 
from the lipid matrix. However, it is notable that the DL of LNP with high lipid content may still be low when the drug 
makes up only a small fraction of the total mass, as reported in several studies.104,105,130

https://doi.org/10.2147/IJN.S534137                                                                                                                                                                                                                                                                                                                                                                                                                                                 International Journal of Nanomedicine 2025:20 8638

Hidayat et al                                                                                                                                                                         

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



Surfactants have also been found to significantly affect EE in several ways. Gilani et al illustrated that surfactant 
concentration positively influenced EE, as a higher surfactant amount may prevent drug leakage by facilitating layer 
formation in the aqueous phase.114 In contrast, in a study on sulforaphane-loaded NLC, Soni et al argued that excessively 
high surfactant levels could promote drug partitioning into the external aqueous phase by increasing drug solubility, 
ultimately leading to greater drug expulsion and resulting in low EE. A similar interaction was also observed for DL in 
the same study.125

The influence of CPPs on EE generally followed a converging trend, where a higher applied energy tended to lower 
EE. For example, in ultrasonication-based preparation, a higher ultrasound amplitude or prolonged sonication time may 
expose LNPs to greater acoustic cavitation energy, potentially disrupting lipid matrix integrity and reducing their ability 
to retain the drug, thereby decreasing EE.13,68 However, contradictory interactions, where an increased EE was achieved 
with higher energy levels, have also been observed on several occasions. Agrawal et al revealed that high pressure can 
alter the lipid matrix, creating more space within its imperfect structure and thus enhancing drug incorporation.120 It has 
also been reported that during the production of fenofibrate-loaded SLN using the HME method, increasing the screw 
speed can enhance EE by generating a higher shear force inside the barrel, which promotes the formation of a 
homogeneous emulsion comprising the drug, lipid, and surfactant.56

Influences of Independent Variables on Zeta Potential
From a structural standpoint, a zeta potential (ZP) value above +30 mV or below −30 mV signifies stronger electrostatic 
repulsion between particles, which helps prevent aggregation and maintains the stability of the LNP dispersion system. 
Additionally, in oral drug delivery, the surface charge of the LNP may facilitate charge-dependent interactions across GI 
barriers.37,166 The excipients used in the LNP influence the zeta potential in various ways. In the optimization of 
quetiapine fumarate-loaded NLC, Ayed et al used a combination of poloxamer 188 and soybean lecithin as surfactants, 
resulting in a zeta potential ranging from −36.2 mV to −32.5 mV. The observed anionic surface charge was likely 
attributed to the phospholipid component of lecithin. Additionally, the study indicated that increasing the surfactant 
concentration led to a more negative ZP value.131 Dudhipala et al demonstrated a similar interaction in the preparation of 
zaleplon-loaded SLN using poloxamer 188 and egg lecithin. Their polynomial equation analysis further revealed that 
poloxamer 188 had an insignificant impact on the ZP.107

In functionalized LNPs, the use of charge-modifying excipients evidently influences ZP. During optimization of 
carvedilol-loaded SLN, El say et al demonstrated that increasing the concentration of stearylamine, a positive-charge 
modifier, from 4% to 6% markedly elevating the ZP from +8.4 mV to +25.2 mV.123 El-Dakroury et al used chitosan with 
various molecular weights as a coating agent for fexofenadine-loaded SLN with the objective of improving the 
mucoadhesion property of the nanoparticles. These findings indicate that changing the chitosan type from low to high 
molecular weight increases the positive value of ZP to some extent, which may be due to the higher density of the 
positively charged amino groups in chitosan.48,167

Influences of Independent Variables on Drug Release
For oral administration of LNPs, drug release studies are typically conducted either directly as a CQA during optimiza-
tion or evaluated separately after the optimized formulation has been established. It was found that a specific variable 
may exhibit different interactions with drug release. Several reports have indicated that a higher solid lipid concentration 
results in a lower amount of released drug, which can be attributed to the increased viscosity and lipid core thickness, 
thus hindering drug expulsion from the matrix.115,123 Contrasting results have been observed in other studies, in which 
the addition of solid lipids increased the cumulative drug release percentage. This effect may be attributed to prolonged 
drug retention within the matrix, allowing for gradual release, which ultimately results in a higher cumulative release at a 
certain time period.109,129

Surfactants also variably influence the LNP drug release. A higher surfactant concentration can improve drug release 
by enhancing emulsification, reducing particle size, and increasing surface area, which collectively facilitates drug 
release. However, an excessive amount of surfactant may accumulate on the particle surface, leading to an increase in 
size and ultimately slowing the drug release, as reported in several studies.108,130
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A direct correlation between CPPs and drug release has been explored less frequently, as most studies that consider 
drug release as a CQA have primarily focused on optimizing CMAs. In the optimization of dapagliflozin-loaded NLC, 
Zafar demonstrated that an increased number of HPH cycles positively influenced drug release, likely due to reduced 
particle size, which ultimately increased the surface contact area with the release medium.115 Similarly, in a study on 
SLN containing rosuvastatin calcium, it was observed that a shorter time was required for 80% drug release when stirring 
speed was increased, which may also be attributed to reduced particle size.101

It is also noteworthy that unlike other dependent variables such as particle size, PDI, EE, and ZP, where the desirable 
values are well-defined (particle size and PDI should be low, ZP should exceed ±30 mV, and EE should be high), the 
preferred drug release profile can vary among investigators. For instance, in the development of NLC containing olmesartan 
medoxomil, Beg et al demonstrated the positive impact of surfactant concentration on the quantity of drug released within 4 
h (Q4h), where the minimum value was considered optimal because of the goal of achieving sustained release.132 A similar 
surfactant-drug release interaction was also observed in a study of abiraterone acetate-loaded SLN by Konatham et al. 
However, they were optimized for a maximum value owing to their selection of a 24-hour release period (Q24h), as it is more 
favorable for obtaining a higher cumulative release.109 Hence, when considering drug release as a CQA, the optimization 
direction can vary depending on the assigned constraints, despite the same factor-response interaction.

Performance of Optimized Lipid Nanoparticles for Oral Drug Delivery
The ultimate objective of QbD-driven LNP formulation is to develop a high-performance product tailored to the intended 
use of the drug. Thus, it is essential to investigate the performance of LNPs optimized through DoE to ensure that they 
satisfy a predefined target profile. This performance is intrinsically governed by CQAs, such as particle size, poly-
dispersity index, zeta potential, encapsulation efficiency, drug loading, and release profile, each of which is influenced by 
specific CMAs and CPPs identified during the QbD process. The performance of optimized LNPs for oral drug delivery 
is typically evaluated using in vitro, in vivo, or ex vivo methods across various aspects, such as drug release kinetics, 
permeability, pharmacokinetics, and therapeutic efficacy (Table 2).

Drug Release and Kinetics
Optimized LNPs should exhibit a controlled and sustained drug release to ensure prolonged therapeutic action. In vitro 
drug release studies, often conducted using dialysis membrane techniques, help to assess the release profile under 
simulated physiological conditions. Low- and high-pH settings are commonly implemented in specific media to evaluate 
release profiles in both gastric and intestinal environments. For example, an acyclovir-loaded SLN drug release study was 
conducted in simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 6.8) for 24 h. The results indicated that 
the release rates in both media were lower than that of free acyclovir, suggesting a sustained release pattern for 24 h. It is 
also displayed that the release plots in both media were superimposed, implying that acyclovir release from the optimized 
SLN was not pH-dependent.106

It is also common to evaluate drug release under different pH conditions as a continuation, rather than as a separate 
measurement, where the release profile is depicted as a single continuous plot. This is typically conducted by first 
assessing the drug release in a low-pH medium for 2 h, followed by a transition to a high-pH medium for the remaining 
10 or 22 h, assuming that the gastric transit time is shorter than the intestinal transit time.107 A biphasic release pattern is 
frequently observed, characterized by a rapid initial release in an acidic medium, followed by sustained release under 
higher pH conditions. The initial burst release occurred due to the presence of the adsorbed drug on the LNP surface, 
which was readily released upon contact with the medium, whereas the subsequent sustained release was governed by the 
gradual diffusion of the encapsulated drug from the lipid matrix.13,112,121,133 For instance, in a drug release study of 
pioglitazone from SLNs, Shaveta et al demonstrated that more than 30% of the drug was released within the first 2 h, 
whereas a sustained release of up to 89.56% was achieved after 24 h. Furthermore, the study revealed that the cumulative 
release of pioglitazone from the optimized SLN was significantly higher than that of the pure drug under the same 
conditions, which reached only 43.12%.100

Several mathematical models, including zero-order, first-order, Higuchi, Hixson-Crowell, and Korsmeyer-Peppas models, 
are commonly used to analyze drug release kinetics. The coefficient of determination (R²) for each model was subsequently 
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examined to determine the best fit, allowing for a more precise interpretation of drug release behavior. Vieira et al demonstrated 
that the release kinetics of sucupira oil from the NLC matrix were best described by the first-order model (R² = 0.9829), compared 
to the zero-order (R² = 0.7722), Higuchi (R² = 0.9268), and Korsmeyer-Peppas (R² = 0.8403) models. This indicates that the 
release process is primarily governed by the concentration gradient of sucupira oil over time.122 Conversely, zero-order release 
kinetics were observed in an Eudragit-coated SLN containing linagliptin, demonstrating that drug release occurred at a constant 
rate, independent of the remaining drug concentration. This may be attributed to the pH-responsive Eudragit coating, which 
prevents premature drug release in the stomach and dissolves in the intestine, allowing for controlled water penetration and 
diffusion. The lipid matrix further regulates the drug release, prevents burst effects, and ensures a controlled drug profile.46 In 
another study, release kinetics were best described by the Higuchi model, which is primarily governed by diffusion through a 
lipid matrix.55,111,116,125 The Hixson-Crowell model best fits highly uniform LNPs, where drug release is driven by dissolution 
following a gradual reduction in particle size, as demonstrated in a study of carvedilol-loaded SLN.123

Several studies have also reported that the Korsmeyer-Peppas model is the most suitable for describing release 
kinetics, which is predominantly regulated by a combination of multiple mechanisms such as swelling, diffusion, and 
lipid matrix erosion.52,68,124 Additionally, the exponent value (n) calculated from the Korsmeyer-Peppas equation 
provides further insight into the drug release mechanisms. These are generally classified as Fickian diffusion (n < 
0.45), non-Fickian diffusion or anomalous transport (0.45 < n < 0.85), and case II transport (n = 0.85).115,130 For 
example, the n values for quetiapine fumarate (QTF) released from NLC in fasted-state simulated gastric fluid (FaSSGF) 
and fasted-state simulated intestinal fluid (FaSSIF) were 0.508 and 0.624, respectively. The lower n value in FaSSGF, 
which is closer to Fickian diffusion, suggests that QTF release in the gastric environment may be primarily governed by 
simple diffusion from the outer shell of the NLC, with a partial contribution from erosion. Conversely, the higher n value 
in FaSSIF indicates that intestinal drug release is likely driven by a combination of non-Fickian diffusion and erosion 
mechanisms.131 A study by Beg et al illustrated similar findings to some extent, demonstrating that the release 
mechanisms of rosuvastatin calcium from SLN range from Fickian to non-Fickian diffusion. The matrix-type structure 
of SLN plays a crucial role in the regulation of drug diffusion. Furthermore, the release kinetics exhibited a direct 
relationship with solid lipid concentration, which negatively affected the diffusional drug release mechanism. A higher 
lipid content favored the predominance of non-Fickian diffusion, suggesting that an increase in lipid levels contributed to 
a greater influence of erosion-based release mechanisms.101

Drug Permeability and Intestinal Absorption
Effective oral drug delivery requires sufficient permeability of intestinal epithelium. Optimized LNP formulations may 
enhance drug permeability by modulating P-gp efflux or by utilizing lipid-mediated transport mechanisms. Several 
methods, such as ex vivo gut permeation models and in vitro cell line studies, are frequently used to evaluate drug 
permeability and transport across the intestines.

In gut permeation studies, rat or goat intestines are frequently used as models, employing either everted or non- 
everted techniques. The everted method involves turning the intestine inside out. The mucosal side faces outward, 
whereas the serosal side faces inside, allowing direct access to the absorptive surface. Meanwhile, the non-everted 
method maintains the intestine in its natural orientation, where the mucosal surface remains inside.168 In an everted gut 
sac study of ritonavir-loaded NLC, it was revealed that the apparent permeability coefficient (Papp) of the optimized 
formulation was markedly higher than that of the pure drug suspension.13 In another study, a non-everted gut sac method 
was used to compare the permeability of an optimized NLC-containing efavirenz with that of the free drug. The sample 
was placed on the mucosal side and aliquots were withdrawn from the serosal compartment at predetermined time 
intervals. The results showed a two-fold increase in both the cumulative permeated drug and Papp of the NLC, confirming 
the potential of lipid-based nanocarriers to enhance intestinal permeability.130

In vitro cellular permeability studies offer a deeper understanding of the drug transport across the intestinal barrier. 
Caco-2 cells are commonly used as models in these studies because of their morphological and functional similarities to 
the human intestinal epithelium, making them reliable for assessing drug permeability and absorption.122 In a perme-
ability study using the Caco-2 cell line, an optimized SLN formulation reportedly increased the Papp of lurasidone HCl 
six-fold compared to that of the pure drug. Further analysis was performed to elucidate the transport mechanism, using 
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nystatin and chlorpromazine as inhibitors of caveolae-mediated endocytosis and clathrin-mediated endocytosis, respec-
tively. These findings suggest that both transport pathways play a significant role in drug uptake across Caco-2 cells.112 In 
a transport study of rosuvastatin calcium-loaded SLN, filipin and sucrose were utilized as inhibitors of caveolae-mediated 
and clathrin-mediated endocytosis, respectively. The reduction in drug uptake was significant only in the presence of 
sucrose, suggesting that the transport of rosuvastatin calcium across Caco-2 cells is likely clathrin-mediated.101

Besides Caco-2 cells, other cell lines, such as Madin-Darby canine kidney (MDCK) cells, can also serve as epithelial 
models. MDCK cells are particularly useful for studying paracellular transport owing to their distinct tight junction 
properties. In a cellular permeability study of tilmicosin-loaded NLC using the MDCK cell model, the optimized 
formulation exhibited a bidirectional transport mechanism, enhancing cellular uptake while simultaneously inhibiting 
efflux transport. Additionally, this study confirmed that drug uptake is primarily mediated through caveolae-dependent 
endocytosis, highlighting the role of LNPs in facilitating transcellular absorption.62

Pharmacokinetic Profile and Bioavailability
One of the primary advantages of LNPs is their ability to improve the pharmacokinetic profiles of poorly soluble drugs. 
Parameters such as the maximum plasma concentration (Cmax), time to reach maximum concentration (Tmax), area under 
the curve (AUC), and relative bioavailability are critical indicators of systemic drug exposure. Comparative in vivo 
pharmacokinetic studies between the optimized LNP formulation and pure drug suspensions or marketed drugs will help 
to validate the effectiveness of the experimental design. For instance, the optimized formula of NLC-based capsules 
containing amisulpride demonstrated a significantly higher Cmax and AUC than the reference drug Amipride®. This 
extended to a 2.52-fold increase in relative bioavailability, highlighting the potential of NLC formulations to enhance the 
oral absorption and overall systemic availability of amisulpride.133 It is also notable that other pharmacokinetic 
parameters, such as the elimination rate constant (Kel), can provide further insight into the fate of the drug prior to 
entering the systemic circulation. Several studies have reported a decrease in Kel for encapsulated drugs compared to free 
drugs, suggesting prolonged exposure, slower elimination, and enhanced absorption. This also demonstrates the ability of 
LNPs to facilitate lymphatic uptake, allowing the drug to bypass the first-pass metabolism.102,116,169

The role of LNP formulations in facilitating lymphatic transport has often been investigated using the chylomicron 
flow block model. In this approach, cycloheximide is administered to inhibit chylomicron formation, allowing research-
ers to differentiate between the lymphatic and non-lymphatic drug absorption pathways. The effect of lymphatic transport 
on systemic drug exposure was assessed using the pharmacokinetic profile of each formulation. Rangaraj et al investi-
gated the lymphatic uptake capability of ibrutinib-loaded NLC. The resulting Cmax and AUC of the NLC without 
cycloheximide were each 2.75-fold and 3.57-fold higher compared to NLC that administered along with cycloheximide.-
119 Cycloheximide inhibits chylomicron secretion, blocking systemic entry through the lymphatic pathway and ultimately 
leading to lower plasma concentrations. Several reports of drug-loaded LNPs have consistently shown similar results, 
confirming their potential to enhance lymphatic transport.64,124,170

Therapeutic Efficacy
Following the QbD-based preparation, optimized LNPs should demonstrate improved therapeutic outcomes. Based on 
the predefined QTPP and inherent characteristics of the loaded drug, further in vitro or in vivo studies are commonly 
conducted to assess the efficacy of the formulation in achieving the desired pharmacological effects.

Inflammatory Disorders Treatment
Based on in vivo studies in rats, orally administered bergenin and nabumetone encapsulated in NLC displayed a 
significant reduction in carrageenan-induced paw edema compared to the pure drug suspension, revealing the superiority 
of lipid-based nanoformulations as anti-inflammatory agents. Furthermore, the optimized bergenin-loaded NLC exhibited 
a more prolonged effect than the standard drug indomethacin, which was attributed to higher absorption and longer 
circulation time.102,113

The anti-inflammatory potential of drug-loaded LNPs may further elucidate their efficacy for specific disorders. In 
rheumatoid arthritis, pro-inflammatory cytokines such as TNF-α and IL-1β promote the formation of osteoclasts, which 
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are specific cells responsible for bone destruction.171 The downregulation of these cytokines is a key target in arthritis 
therapy as it helps mitigate inflammation and preserve joint integrity. An in vivo study on apigenin-loaded SLN 
demonstrated that the optimized formulation significantly reduced TNF-α and IL-1β levels compared to pure apigenin. 
This orally administered formulation enhances systemic absorption and distribution to tissues and bones, leading to 
higher drug concentrations in the synovial joint, highlighting the potential of SLN as an anti-arthritic agent.114 A similar 
pattern was observed in a study on SLN containing fexofenadine HCl for ulcerative colitis therapy. Oral administration of 
this formulation evidently decreased TNF-α and IL-6 levels in rat colon tissue by 70.79% and 72.99%, respectively. 
Moreover, optimized SLN also downregulated phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt), both of 
which play crucial roles in the inflammatory signaling pathways implicated in the pathogenesis of ulcerative colitis.48

Lipid-Lowering Treatment
Optimized LNPs have also been shown to enhance the therapeutic potential against hyperlipidemia. In separate studies, 
ezetimibe-loaded NLC and rosuvastatin calcium-loaded SLN reportedly reduced total cholesterol (TC), triglycerides 
(TG), and low-density lipoprotein (LDL) levels and increased high-density lipoprotein (HDL) levels in rats treated with a 
high-fat diet (HFD).101,120 Similar improvements in the lipid profile have been observed in studies investigating the 
antidiabetic potential of dapagliflozin-loaded and pioglitazone-loaded SLNs. In these studies, streptozotocin was admi-
nistered along with HFD to induce diabetes. It was revealed that, in addition to lowering TC, TG, and LDL levels while 
increasing HDL, the optimized SLN formulations also reduced SGOT, SGPT, ALP, and blood glucose levels, confirming 
the potential benefits of LNPs in liver function regulation.100,108

Cancer Treatment
The use of LNPs for oral administration in cancer treatment has attracted considerable interest because of their prolonged 
circulation and ability to achieve site-specific targeting. Moraes et al developed an NLC for the oral delivery of 
doxorubicin and assessed its potential in breast cancer treatment. The optimized DOX-NLCs, functionalized with PEG 
and folic acid, demonstrated enhanced cytotoxicity against MDA-MB-231 cells and exhibited rapid cellular internaliza-
tion with over 80% uptake within 30 min, highlighting its superior cellular uptake efficiency.49 Similar performance was 
observed in lycopene-loaded NLC, where cell death was higher than that of the free drug. This may be attributed to 
higher lycopene endocytosis and subsequent accumulation within cells.126 Another breast cancer model, MCF-7 cells, 
was employed to elucidate the potential of NLC to deliver exemestane and thymoquinone (EXE-THY). The EXE-THY- 
loaded NLC simultaneously demonstrated higher cellular uptake and higher cytotoxicity against MCF-7 cells, as 
illustrated by the significantly lower IC50 compared to each drug and their combination. The sustained release of 
EXE-THY from the NLC is particularly beneficial for extending the drug exposure toward cancer cells.103

The anticancer potential of the optimized LNPs has also been evaluated in a prostate cancer model. Sabale et al 
formulated NLC containing flutamide, a nonsteroidal anti-androgen commonly used in prostate cancer treatment. 
However, unlike the conventional approach in which the performance of the LNP formulation is compared with that 
of the free drug, this study aimed to investigate whether nanonization affects the therapeutic activity of flutamide. The 
results showed that PC3 cell viability upon treatment with flutamide-loaded NLC was comparable to that of free 
flutamide, but remarkably lower than that of blank NLC, confirming that nanonization did not compromise the anti- 
cancer activity of the drug. The authors suggested that incorporating flutamide into the NLC matrix is especially 
advantageous for facilitating chylomicron formation, which enhances lymphatic uptake and ultimately enables a more 
efficient oral delivery for prostate cancer therapy.127

HIV Treatment
A major challenge in HIV treatment is the persistence of viral reservoirs, which allow the virus to evade conventional 
antiretroviral therapy. Poor oral bioavailability further complicates effective drug delivery because many antiretroviral 
drugs have low solubility, rapid metabolism, and limited penetration into these reservoirs.172 The use of LNP formula-
tions for antiretroviral drugs has been increasingly explored to address these challenges. In a QbD-based study, Muheem 
et al developed a dual drug-loaded NLC containing etravirine and darunavir ethanolate functionalized with d-α- 
tocopheryl polyethylene glycol succinate (TPGS). An in vitro study in TZM-bl cell lines showed that the optimized 
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NLC formulation inhibited HIV-1 infection by 50% at a drug concentration 58 times lower than that of the pure drug 
suspensions. Furthermore, the results confirmed chylomicron formation and P-gp efflux inhibition by TPGS in the NLC 
formulation, highlighting its potential as an oral antiretroviral therapy.124

Schizophrenia Treatment
Owing to the chronic nature of psychotic disorders, long-term treatment is often necessary to manage the symptoms and 
prevent relapse.173 Developing an effective oral formulation for psychotic therapies is crucial to enhance patient 
compliance and reduce dosing frequency, thereby minimizing the risk of adverse effects, including drug-induced 
Parkinsonism, tardive dyskinesia, and metabolic disturbances.174 Aligning with this objective, Patel et al developed an 
SLN formulation containing lurasidone HCl to evaluate its efficacy in the treatment of schizophrenia in MK-801-induced 
rats. The optimized SLN significantly reduced the escape latency during the pole-climbing test, indicating improved 
cognitive function. Furthermore, the same formulation demonstrated a reduction in extrapyramidal side effects after 7−21 
days of catalepsy testing, further highlighting its potential to effectively manage schizophrenia, while minimizing motor- 
related adverse effects.112

Challenges and Future Perspectives
Despite the advantages of QbD in the development of LNPs for oral drug delivery, several challenges persist, particularly 
the formulation complexity, scalability, and regulatory acceptance. One of the primary difficulties lies in the nonlinear 
relationship between formulation variables, including CMAs, CPPs, and CQAs, which often makes optimization 
unpredictable Although DoE helps to systematically analyze these interactions, the experimental workload and associated 
costs remain significant. To address this, future advancements can focus on the integration of artificial intelligence (AI) 
into QbD modeling. As part of AI technology, machine learning tools, such as artificial neural networks (ANN), can 
analyze the complex relationships between the properties of drugs, excipients, and process parameters. This leads to an 
accurate prediction of the formulation performance in pharmacokinetics/pharmacodynamics (PK/PD) studies, enabling a 
more efficient approach in the optimization step during pharmaceutical manufacturing.175,176

Another key challenge is the scalability of the optimized formulations. Many LNP formulations that perform well at 
laboratory scale fail to retain their properties during large-scale manufacturing. Conventional preparation techniques, 
such as HPH, HSH, and ultrasonication, may not always be feasible for industrial-scale production, owing to batch-to- 
batch variations and process inefficiencies. Continuous manufacturing and Process Analytical Technology (PAT) should 
be emphasized to ensure real-time monitoring of particle size, zeta potential, and encapsulation efficiency, reducing batch 
inconsistencies while improving process efficiency.144,177,178

From a regulatory perspective, nanoformulations face evolving challenges owing to the lack of standardized 
evaluation criteria for safety, bioavailability, and quality control. Although ICH guidelines outline the general principles 
for QbD-driven pharmaceutical development, a globally harmonized framework for lipid-based nanomedicines is still 
lacking. This regulatory uncertainty can delay clinical translation and commercialization.179 The establishment of 
regulatory standards across different regions to streamline approval processes can ensure safety compliance and ascertain 
bioequivalence assessment protocols for LNP-based drug delivery systems.180

The future of QbD-driven LNP development will also be shaped by personalized medical approaches. The current 
formulations are designed for broad patient populations; however, individual metabolic variations can significantly affect 
drug absorption, distribution, and therapeutic efficacy. Integrating pharmacogenomics and precision medicine principles 
into LNP design can lead to tailored drug delivery systems that optimize therapeutic outcomes for individual patients.181 

Furthermore, nanoinformatics and high-throughput screening techniques can be employed to refine LNP formulations 
based on patient-specific factors such as genetic makeup, microbiome composition, and disease pathology.182

Conclusion
The QbD framework has emerged as a powerful approach for the systematic development and optimization of LNPs for 
oral-drug delivery. Given the challenges of oral administration, including gastric degradation, enzymatic metabolism, 
limited intestinal permeability, and first-pass metabolism, SLNs and NLCs have demonstrated significant potential for 
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improving drug bioavailability and therapeutic outcomes. Unlike traditional one-factor-at-a-time (OFAT) methods, QbD 
enables a structured approach through DoE, allowing CMAs, CPPs, and CQAs to be identified, modeled, and optimized. 
This facilitates fine control over key properties, such as particle size, drug encapsulation, zeta potential, and release 
behavior, supporting the development of reproducible and high-performance formulations.

Despite these advancements, challenges remain in the clinical translation, regulatory harmonization, and industrial 
scalability of oral LNPs. Future directions include the integration of artificial intelligence in QbD-based optimization, the 
adoption of continuous manufacturing techniques, and alignment of regulatory standards across regions. Moreover, the 
application of QbD in the context of personalized medicine offers new possibilities for individualized oral therapies. 
Overall, the integration of QbD principles in LNP optimization not only enhances drug performance but also ensures a 
more reliable, scalable, and compliant approach to the development of oral drug delivery systems. Continuous innova-
tions in this field have immense potential to improve patient outcomes and expand the therapeutic landscape of 
nanomedicine.
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