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Introduction: Emerging research emphasizes the critical role of local microbiota in shaping the tumor microenvironment (TME) and 
influencing cancer progression. Lung adenocarcinoma (LUAD) is distinguished by unique bacterial communities that appear to 
regulate immune responses, gene expression, and patient outcomes.
Methods: We compiled microbiome profiles from several cancer types—including LUAD, lung squamous cell carcinoma (LUSC), 
breast carcinoma (BRCA), and thyroid carcinoma (THCA)—using public databases. Non-negative matrix factorization (NMF) was 
employed to categorize LUAD cases based on TME features, while DESeq2 was used to pinpoint bacterial taxa with differing 
abundance. Multi-omics networks were developed to integrate microbial, transcriptomic, and clinical data. For in vitro verification, we 
conducted siRNA-mediated knockdown of the long non-coding RNA LCIIAR and ISG15 in Lewis lung carcinoma cells, followed by 
proliferation assays.
Results: In contrast to LUSC, BRCA, and THCA, LUAD exhibited distinct microbial populations, with notable enrichment of 
Cylindrospermopsis, Cyanothece, and Sulfolobus. NMF clustering identified two LUAD subtypes with differing prognoses. One 
longer survival cluster, marked by reduced bacterial presence and stronger antitumor immunity—reflected in stronger immune 
response, increased effector T cells activity, and greater immune cell infiltration. A competing endogenous RNA (ceRNA) network 
analysis established a link between LCIIAR and ISG15, both overexpressed in LUAD and associated with worse survival outcomes. 
Knockdown LCIIAR or ISG15 through siRNA significantly inhibited lung cancer cell proliferation, pointing to their roles in tumor 
growth and ceRNA-mediated regulation.
Conclusion: LUAD features a distinctive microbiota that engages with inflammatory and ceRNA regulatory pathways. These 
observations underscore the value of targeting microbiome-influenced mechanisms, such as the LCIIAR–ISG15 axis, as 
a promising approach to enhance treatment outcomes in lung adenocarcinoma.
Keywords: lung adenocarcinoma, microbiota, tumor microenvironment, ceRNA network

Introduction
The connection between cancer and microbial agents has undergone significant evolution in understanding over 
centuries. Symbiotic microbiota residing within the human body can affect metabolic pathways, growth dynamics, and 
neoplastic cell functions, thereby impacting the tumor microenvironment.1 A comprehensive global analysis estimated 
that in 2018, around 13% of all cancer cases were linked to infectious agents, including viruses, bacteria, and parasites.2 

Bacteria are increasingly acknowledged for their contributions to the onset of various cancers and their influence on 
responses to treatments, such as immune checkpoint inhibitors.3,4 This deepening insight highlights the microbiome’s 
potential to advance diagnostic and therapeutic strategies.5,6

Dysbiosis, defined as an imbalance in microbial communities, is implicated in cancer development and progression 
through processes such as mutagenesis, epigenetic alterations, and immune modulation.7 For example, Fusobacterium 
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nucleatum manipulates glucose metabolism to support colorectal cancer development,8 while other bacteria adjust 
immune responses and affect tumor prognosis.9 Strikingly, a randomized controlled trial showed that fecal microbiota 
transplantation could reverse resistance to immune checkpoint inhibitors in patients with treatment-resistant melanoma, 
reinforcing the pivotal role of commensal bacteria in tumor immunity.10

Multiple microbial niches exist within the human body, particularly at barrier surfaces. The interplay between these 
microbiota and tumor progression, such as the relationship between the gut microbiome and colorectal cancer, has been 
extensively studied.11 However, these microbial sites have lower biomass than the gastrointestinal tract, and their roles in 
tumorigenesis are still being explored. The lungs, in particular, are exposed to local inflammation from infectious 
exposures, environmental allergens, pollutants, and cigarette smoke. Non-small cell lung cancer (NSCLC), the most 
common type of lung cancer, is the leading cause of cancer-related deaths globally. Understanding the factors contribut-
ing to its development and treatment response is crucial for public health.12 In NSCLC tissues, exposing airway epithelial 
cells to specific bacterial taxa such as Prevotella, Streptococcus, and Veillonella activates the PI3K and AKT signaling 
pathways, correlating with oncogenic transcriptome programs.13 Lung adenocarcinoma (LUAD), a major subtype of 
NSCLC, comprises approximately 40% of lung cancer cases and presents a poor prognosis, contributing significantly to 
the lung cancer burden.14 Recent studies have found that depleting the microbiota in a mouse model of lung adeno-
carcinoma with Kras mutation and p53 deletion significantly suppressed tumor growth.15

The precise influence of the lung microbiome on NSCLC remains poorly defined, partly because isolating viable 
microbial cells from healthy lung tissue is challenging due to low biomass or technical limitations.16 Chronic inflamma-
tion stands out as a key risk factor for NSCLC, underscoring the need for detailed mechanistic studies to clarify the 
microbiota’s role in cancer initiation and progression. Recent efforts analyzing whole-genome sequencing and transcrip-
tomic data from The Cancer Genome Atlas (TCGA) with the SHOGUN algorithm have estimated commensal bacterial 
abundance across a wide array of tumor samples, offering a valuable means to investigate microbial roles in specific 
tumor contexts.17

This study aims to outline differences in microbial composition across various cancers, with a particular focus on lung 
adenocarcinoma. By examining how these microbial populations shape the oncogenic landscape, we aim to discover new 
possibilities for targeted therapeutic interventions.

Materials and Methods
Data Collection
Microbial composition data for lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), breast carcinoma 
(BRCA), and thyroid carcinoma (THCA) were sourced from the Cancer Microbiome database (http://cancermicrobiome. 
ucsd.edu/CancerMicrobiome_DataBrowser).17 Tumor mutational burden (TMB), immunophenoscore (IPS), and T-cell 
and B-cell receptor repertoire profiles were obtained from MF Portrait by BostonGene (https://science.bostongene.com/ 
tumor-portrait).18 Multiple viral signatures for LUAD were derived using the VirusScan pipeline, with a threshold of 100 
reads applied to determine positive or negative status.19 Additional datasets, including gene expression, miRNA profiles, 
DNA copy number variation (CNV), methylation, ATAC-seq peak-calling, and clinical data, were retrieved from UCSC 
Xena (https://xenabrowser.net/datapages).

Microbiome Data Analysis
Microbial abundance data from the Cancer Microbiome database were aligned with clinical data from UCSC Xena using 
sample identifiers. To minimize batch effects, microbial abundance data derived from RNA-seq were selected, encom-
passing both tumor tissue and adjacent normal solid tissue. These data were normalized to reads per million (RPM). 
Alpha diversity was assessed using the Shannon index, and beta diversity was evaluated with Bray-Curtis distances, both 
calculated using the “vegan” R package (v2.6.4).20 Principal coordinates analysis (PCoA) was performed to visualize 
microbial community differences.21 Variations in microbial communities were tested using PERMANOVA and Mantel 
tests. Differentially abundant species were identified with the “DESeq2” package (v3.19), applying an adjusted P-value 
threshold of 0.05.22
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TME Signature and NMF-Based Clustering Analysis
Tumor microenvironment (TME) signatures for LUAD samples (n = 477) were acquired from BostonGene and normalized 
using median scaling. These signatures underwent non-negative matrix factorization (NMF) clustering (v0.27) with K-means, 
testing cluster numbers from 1 to 5.23 Two distinct clusters were selected based on cophenetic, dispersion, and silhouette 
scores. Survival analysis between these TME clusters was conducted using the “survival” package (v3.6.4) in R.

Network Analysis
Interaction networks incorporating TME features, immune checkpoints, viral abundance, and differentially abundant 
species were constructed using Spearman correlation analysis. The STRING database (https://string-db.org/) was 
employed to investigate potential interactions among differentially expressed genes (DEGs), generating protein interac-
tion networks to illustrate regulatory relationships.24 The MCODE algorithm was applied to detect densely connected 
regions within these networks.25 Network co-presence and exclusivity were evaluated using Cytoscape’s Network 
Analyzer tool (v3.10.1).26

ceRNA Network Analysis
The GDCRNATools pipeline (v1.24.0) was used to examine the lncRNA–mRNA competing endogenous RNA (ceRNA) 
network in LUAD TME clusters, based on expression data for 187 lncRNAs, miRNAs, and mRNAs.27 The analysis 
targeted key genes, including BRAF and ISG15. Data were preprocessed, normalized, and analyzed with default 
parameters (Pearson’s r > 0.4, P < 0.05). Interactions were validated using the ENCORI platform. Priority was given 
to interactions exhibiting differential expression across TME clusters, high expression levels, and support from prior 
literature, such as the LCIIAR–miRNA–ISG15 axis. Databases such as miRBase v22 and starBase v2.0 were utilized to 
ensure robust and accurate network construction.

Web Resource Integration Archives
The gene mutation and expression profiles of immune-related genes in LUAD were analyzed using cBioPortal (https://www. 
cbioportal.org/). Survival analysis for ISG15 and LCIIAR was performed with the LnCeCell database (http://bio-bigdata. 
hrbmu.edu.cn/LnCeCell/).28 The multi-omics landscape for ISG15 was explored using UCSC Xena, incorporating the GDC 
Pan-Cancer (PANCAN) database (n = 323), TCGA LUAD database, and TCGA LUSC database (n = 37). Survival analysis 
was conducted using the median as the cutoff point.

siRNA-Mediated Gene Knockdown and Quantitative PCR Analysis
Small interfering RNAs (siRNAs) targeting LCIIAR and ISG15 were designed and synthesized using BLOCK-iT RNAi 
Designer (Thermo Fisher Scientific, Carlsbad, CA). Lewis lung carcinoma cells were transfected with these siRNAs using 
Lipofectamine 3000 (L3000015, Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. After 24 hours, 
total RNA was extracted using an RNA isolation kit (RC101-01, Vazyme, Nanjing, China). cDNA was synthesized from 
1 µg of total RNA with a reverse transcription kit (R223-01, Vazyme). Quantitative real-time PCR (qPCR) was conducted to 
measure LCIIAR and ISG15 expression using gene-specific primers and SYBR Green PCR Master Mix (Q711-02, 
Vazyme). Expression levels were normalized to the housekeeping gene GAPDH. Experiments were performed in triplicate, 
and relative expression levels were calculated using the 2^–ΔΔCt method (see Table S1 for sequences).

Luciferase Assay
To investigate the mechanism by which LCIIAR regulates ISG15 protein expression, a luciferase reporter plasmid 
(Figure S1) was constructed, connecting the CDS and 3′ UTR of ISG15 to luciferase mRNA. This plasmid was co- 
transfected with either an LCIIAR overexpression plasmid, miR-22-3p and miR-3127-5p mimics, or inhibitors. 
Luciferase activity was measured 48 hours post-transfection using the Luciferase Assay System (DD1203-03, 
Vazyme). The miRNA scramble, miR-22-3p mimic, miR-22-3p inhibitor, miR-3127-5p mimic, and miR-3127-5p 
inhibitor were sourced from RIBOBIO Corporation (Guangzhou, China).
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Cell Proliferation Assay Using CCK-8
To assess the effects of LCIIAR or ISG15 knockdown on cell proliferation, a Cell Counting Kit-8 (CCK-8, A311-01, 
Vazyme) assay was conducted. Lewis lung carcinoma cells (LL/2 (LLC1), ATCC number CRL-1642) were cultured, 
frozen, and revived in our laboratory. Following transfection with siRNAs targeting LCIIAR or ISG15, cells were seeded 
into 96-well plates at a density of 5 × 10^3 cells per well. Cell proliferation was measured at 24, 48, and 72 hours post- 
transfection. At each time point, 10 µL of CCK-8 solution was added to each well, and plates were incubated at 37°C for 
2 hours. Absorbance was recorded at 450 nm using a microplate reader.

Statistical Analysis
Statistical comparisons between two groups were performed using the Wilcoxon rank sum test. Linear associations 
between variables were evaluated with Spearman correlation analysis. Alpha diversity was assessed using the Mann– 
Whitney test, and principal coordinates analysis (PCoA) was visualized with Bray-Curtis distances. Variations in 
microbial compositions were tested using PERMANOVA or the Mantel test. Survival analyses were conducted with 
Log rank tests, and Cox regression was applied for multivariate analysis. Experimental data were analyzed using one- 
way ANOVA, with P < 0.05 considered statistically significant. The Benjamini-Hochberg method was used to control the 
false discovery rate in multiple testing scenarios. All statistical analyses were performed in R (v4.4.0).

Results
Distinct Microbial Diversity and Composition Across Cancer Types
We analyzed microbial characteristics in patients with lung adenocarcinoma (LUAD, n=528), lung squamous cell 
carcinoma (LUSC, n=442), breast carcinoma (BRCA, n=1166), and thyroid carcinoma (THCA, n=186) using the 
Cancer Microbiome “SHOGUN” RNA-seq dataset. These cancers encompassed those potentially exposed to the external 
environment (LUAD and LUSC) and contrast tumors not directly associated with lung microbiota (BRCA and THCA). 
At the phylum level, identified bacterial sequences predominantly belonged to Actinobacteria, Bacteroidetes, Candidatus, 
Chlamydiae, Firmicutes, and Proteobacteria. Notably, lung tumors (LUAD and LUSC) exhibited greater abundance of 
these bacterial phyla compared to BRCA and THCA (Figure 1A).

In LUAD tissues, bacterial counts differed significantly between primary tumor (PT) and solid tissue normal (STN) 
samples, with the latter serving as controls (Figure 1B). However, no significant differences in Shannon index values 
were observed among the cancer types (Figure 1C). Beta diversity analysis, based on Bray-Curtis principal coordinates 
analysis (PCoA), revealed distinct clustering differences in the microbiota across the four cancer types (Figure 1D). 
PERMANOVA confirmed significant beta diversity differences between LUAD and LUSC (P<0.001 and P=0.032, 
respectively), indicating distinct microbial communities in lung cancers (Figure 1E).

The volcano plots indicated differentially abundant bacterial genera between PT and STN tissues. In lung cancers, 
genera such as Cyanothece, Sulfolobus, and Alcanivorax were enriched, with Cylindrospermopsis specifically enriched 
in LUAD. Although Cylindrospermopsis showed higher abundance in LUAD tumor tissues than in normal tissues, its 
relative abundance varied across tumor subtypes, suggesting its role may depend on the tumor microenvironment and 
molecular subtype. In contrast, Lachnoclostridium and Ralstonia were enriched in BRCA and THCA, respectively 
(Figure 1F). Venn diagrams illustrated the overlap of differentially abundant genera between PT and STN across cancer 
types, revealing eight genera shared between the two lung cancers but fewer shared with non-lung cancers (Figure S2).

Immune Clustering Distinguishes Prognosis in LUAD
We investigated the associations between microbial diversity, composition, and both clinical and immune characteristics 
in tumor tissues. Analyzed variables included gender, stage, tumor mutational burden (TMB), molecular functional 
portrait (MFP) signature, and immune features such as immune subtype, immune cell infiltration score (IPS). In LUAD, 
bacterial read counts and diversity correlated significantly with several clinical and immune characteristics, notably the 
Shannon indices of BCR and TCR, T and N stages, and tumor purity (Figure 2A). Specifically, we observed significant 
differences in the Shannon index across different T stages, and significant differences in microbial community structure 
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across different N stages, as measured by Bray-Curtis distance. These findings suggest a robust association between 
commensal bacteria and the immunosuppressive microenvironment in LUAD. By contrast, LUSC displayed fewer 
associations between bacterial flora and immune features.

Using non-negative matrix factorization (NMF) based on tumor microenvironment (TME) signatures, we 
classified LUAD patients into two clusters (Figure 2B and Table S2). Survival analysis revealed significant 
differences between these clusters, with Cluster 1 associated with a better prognosis (Figure 2B). Cluster 1 
exhibited lower bacterial read counts than Cluster 2 (Figure 2C), though no significant differences in alpha diversity 
were observed between the clusters (Figure 2C). Beta diversity analysis indicated significant differences between 
the clusters (PERMANOVA, P=0.037) (Figure 2D). DESeq2 analysis showed that genera such as 
Cylindrospermopsis and Saccharibacter were enriched in Cluster 1, which correlated with improved prognosis 
(Figure 2E).

Tumor Commensal Bacteria Correlate with an Inflammatory TME in LUAD
Building on these observations, we further analyzed TME signatures and found that Cluster 1 was characterized by lower 
proliferation rates and heightened immune responses, including elevated expression of MHC class I molecules, natural 

Figure 1 Distinct microbiome diversity and composition across various tumor types. (A) High-abundance bacterial sequences at the phylum level were analyzed in primary 
tumors (PT) and normal solid tissues (STN) from lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and control tumors not directly associated with the 
lung microbiota, including breast carcinoma (BRCA) and thyroid carcinoma (THCA). The distribution of sequence reads for six representative bacterial taxa is presented. 
(B) Bacterial sequence counts and (C) Shannon diversity indices were compared between PT and STN using Mann–Whitney test. (D) Principal coordinates analysis (PCoA) 
of Bray-Curtis distances calculated from bacterial sequence reads in PT and STN; each point represents a sample. (E) Differences in bacterial β-diversity among tumor 
samples were evaluated using PERMANOVA. (F) Volcano plot illustrating differences in bacterial abundance between each PT and the corresponding STN, identified using 
DESeq2 analysis. Upregulated taxa indicate enrichment in tumors (|Log2FC| > 1); statistical significance was considered at P < 0.05.
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killer (NK) cells, and effector cells (Figure 3A). Immune checkpoint molecules such as CTLA4, LAG3, CD80, and CD86 
were also significantly increased in Cluster 1 (Figure 3B). Immune infiltration analysis using Cibersortx revealed 
enrichment of pro-inflammatory cells, including effector T cells, in Cluster 1, suggesting a stronger immune response 
(Figures 3C and S4).

We constructed a multi-omics interaction network incorporating TME features, immune checkpoint genes, viral 
abundances, and differentially abundant bacterial genera (Figure 3D). Within this network, commensal bacteria such as 
Sulfolobus, Cylindrospermopsis, and Cyanothece were prominent and strongly correlated with immune microenviron-
ment characteristics, including effector cell presence and NK cell activity. Viral interactions within the network were 
relatively weak.

Differential gene expression analysis between the clusters identified significant differences in protein-coding genes, 
pseudogenes (eg, TLK2P2), and non-coding RNAs (eg, TTC3-AS1) (Figure 3E). A protein-protein interaction (PPI) 
network, constructed from genes enriched in Cluster 2 and analyzed with minimal common oncology data elements 
(MCODE), identified a core set of interacting genes comprising typical inflammatory factors (Figure 3F). These findings 
emphasize the pivotal role of the microbiota in immunoregulation in LUAD and indicate that commensal bacterial 
enrichment is closely tied to inflammatory characteristics within the TME. Given these strong associations between 

Figure 2 Clustering of immunological features significantly distinguishes LUAD prognosis. (A) The left heatmap shows correlations between bacterial sequence reads, 
Shannon α-diversity index (analyzed by Mann–Whitney test), and Bray-Curtis β-diversity distance (evaluated by PERMANOVA) with tumor and immune-related categorical 
variables. The right heatmap displays correlations with continuous variables, using Spearman regression for α-diversity and Mantel regression for β-diversity. Statistical 
significance is indicated by * P < 0.05, ** P < 0.01, *** P < 0.001. (B) Kaplan-Meier survival curves showing differences in survival times between groups defined by the non- 
negative matrix factorization (NMF) algorithm based on tumor immune microenvironment characteristics; significance assessed using the Log rank test. (C) Differences in 
bacterial sequence reads and Shannon α-diversity index between the two groups were analyzed using Student’s t-test (* P < 0.05). (D) PCA of Bray-Curtis distances between 
the two groups; differences in bacterial β-diversity were assessed using PERMANOVA. (E) Volcano plot showing differences in bacterial abundance between the groups, 
identified using DESeq2 analysis. Upregulated taxa indicate enrichment in tumors (|Log2FC| > 0.5); P < 0.05 was considered statistically significant.
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bacterial presence and inflammatory signaling, we proceeded to investigate the mutation landscapes of inflammation- 
associated genes in LUAD.

Mutation Landscapes of Microbiota-Associated Inflammatory Genes in LUAD
Following our characterization of TME inflammatory profiles and bacterial compositions, we explored the genetic 
architecture of immune-related genes within the identified clusters. Analysis of the ImmPort dataset revealed differential 
expression of key inflammatory regulators: IFNGR1, CD40, and ISG15 were upregulated in Cluster 2 compared to 
Cluster 1, whereas BRAF, IKBKB, and IRF9 were downregulated (Figure 4A). These genes may serve as potential 
mechanistic links between bacterial presence and inflammatory responses in the TME. The differential expression 
patterns of immune-related genes, in the context of varying bacterial abundances, suggested possible genetic mechanisms 
underlying these associations.

We developed an interaction network between enriched bacterial species and differentially expressed immune genes, 
which showed that bacterial species were positively correlated with genes upregulated in Cluster 2 and negatively 
correlated with those downregulated (Figure 4B). This indicates a coordinated regulation of immune responses by the 
microbiota. Analysis of the TCGA dataset revealed that, for genes such as ISG15 exhibiting abnormal expression in over 

Figure 3 Significant correlations between tumor-associated microbiota, tumor immune microenvironment, and TME signature genes. (A) Heatmap displaying clustering of 
tumor microenvironment (TME) signature genes across different clusters. (B) Differential expression of immune checkpoint-related genes between clusters, assessed using 
Student’s t-test (**** P < 0.0001). (C) Immune infiltration analysis by Cibersortx suggests differences in immune cells (* P < 0.05). (D) Multi-omics interaction network 
constructed among clusters for TME signature genes, immune checkpoint genes, and viral and bacterial abundances using Spearman correlation analysis, visualized with 
Cytoscape. Node color indicates type, node size reflects weight, and line color intensity represents interaction strength (intra-group interactions not shown). (E) Volcano 
plot showing differential gene expression between clusters calculated using DESeq2 analysis (|Log2FC| > 0.5); P < 0.05 was considered statistically significant. (F) Interaction 
network and clustering of differentially expressed genes between clusters, constructed using STRING and MCODE algorithms.
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Figure 4 Microbiome-associated inflammatory gene expression and mutation profiles at varying levels of immune activation in LUAD. (A) Differences in expression of 
immune-related genes between clusters; upregulated genes are above the x-axis, downregulated genes below. Different colors represent various immune cell types. (B) 
Correlation analysis between significant commensal bacteria and differentially expressed immune-related genes. In the network diagram, rectangles represent bacteria, 
circles represent genes, lines indicate correlations, and line opacity reflects interaction strength (intra-group interactions not shown). (C) Visualization of mutations and 
expression profiles of immune-related genes with significant mutations across clusters using cBioPortal. The eight genes with significant mutations are indicated in the legend.
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5% of cases, these changes could not be attributed to genetic mutations (Figure 4C), suggesting that alternative regulatory 
mechanisms may mediate the microbiota’s influence on immune gene expression.

Tumor-Associated Microbiota Influence Gene Expression and Prognosis via ceRNA 
Networks and Chromatin Accessibility
We extended our analysis to investigate how microbiota might regulate gene expression and affect prognosis in LUAD. 
Differential expression analysis identified the long non-coding RNA (lncRNA) LCIIAR as significantly upregulated in 
LUAD clusters (|Log2FC|>1; P<0.001), with greater significance than other genes. Additional lncRNAs associated with 
the differentially expressed genes are presented in Figure 5A and Table S3. In LUAD tumor tissues, ISG15 and LCIIAR 
exhibited a significant positive correlation within the competing endogenous RNA (ceRNA) network (P=7.18×10⁻³) 
(Figure 5B and Figure S3). Spearman correlation analysis further confirmed significant associations among LCIIAR 
expression, ISG15 mRNA levels, and Cylindrospermopsis abundance (Figure 5C and Table S4).

Survival analyses indicated that higher expression levels of the ceRNA network genes LCIIAR and ISG15 were 
associated with poorer survival in LUAD patients (Figures 5D, E and S3). Using the R starBase database, we identified 
an lncRNA-mediated ceRNA pathway involving LCIIAR, hsa-miR-22-3p, hsa-miR-3127-5p, and ISG15 (Figure 5F). 
Data from the TCGA-Xena database highlighted relationships among overall survival, ISG15 gene expression, methyla-
tion, and chromatin accessibility across TCGA pan-cancer samples (Figure 5G). Tumor survival time appeared somewhat 
associated with ISG15 expression and chromatin accessibility in the ISG15 coding region, but not with DNA methylation 
in this region. Comparable data for LCIIAR are currently unavailable.

Cell Experiments Confirm the Role of LCIIAR and ISG15 in Enhancing Lung Cancer 
Cell Proliferation
To evaluate the effect of Cylindrospermopsis on lung adenocarcinoma cells, we co-cultured its metabolite, 
Cylindrospermopsin (CYN), with Lewis lung carcinoma cells. CYN reduced the expression of LCIIAR and ISG15 at 
low concentrations and LCIIAR expression at high concentrations (Figure 6A and B). To confirm the functional 
significance of LCIIAR and ISG15 in lung cancer, we conducted experiments using the Lewis lung carcinoma cell 
line. Transfection with siRNAs targeting LCIIAR significantly reduced its expression (Figure 6C), and siRNA-mediated 
knockdown of ISG15 similarly decreased its expression (Figure 6D). Furthermore, LCIIAR knockdown led to reduced 
ISG15 mRNA and protein levels via the ceRNA network (Figures 6E, F and S5).

Luciferase experiments demonstrated that LCIIAR increased the translation of luciferase-ISG15CDS-3’UTR, thereby 
enhancing ISG15 expression through post-transcriptional regulation. This effect was counteracted by miR-22-3p and 
miR-3127-5p mimics, while the miR-22-3p inhibitor amplified it (Figures 6G and S6). Cell proliferation assays using 
CCK-8 showed that altering LCIIAR and ISG15 expression significantly affected lung cancer cell proliferation, with the 
most pronounced effects observed 72 hours post-transfection. These results indicate that both genes play a critical role in 
promoting lung cancer cell proliferation (Figure 6H and I).

Discussion
In this study, we performed an in-depth analysis of microbial diversity and composition across various cancer types, focusing 
particularly on lung adenocarcinoma (LUAD). Our results revealed that LUAD tissues exhibit a distinct microbiota compared 
to other cancers, such as lung squamous cell carcinoma (LUSC), breast carcinoma (BRCA), and thyroid carcinoma (THCA). 
Notably, bacterial genera including Cylindrospermopsis, Cyanothece, and Sulfolobus were significantly enriched in LUAD 
tissues, pointing to a unique microbial signature associated with this malignancy. These findings align with growing evidence 
that the lung microbiome contributes to tumorigenesis and tumor progression.9,29 By identifying significant correlations 
between specific bacteria, immune characteristics, and clinical outcomes in LUAD, our study expands upon this foundation.

The elevated bacterial counts and distinct microbial profiles observed in LUAD suggest that the lung microbiota exerts 
a substantial influence on the tumor microenvironment (TME). By clustering LUAD patients based on immunological features, 
we identified two groups with markedly different prognoses. Cluster 1, linked to improved survival, displayed lower bacterial 
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read counts and enrichment of genera such as Cylindrospermopsis and Saccharibacter. This cluster also exhibited robust immune 
responses, characterized by increased expression of MHC class I molecules, effector cells, and immune cell infiltration. 
Cibersortx analysis further confirmed higher proportions of effector T cells and M1 macrophages in Cluster 1, reinforcing the 

Figure 5 Tumor-associated microbiota influence gene expression and prognosis in multiple cancers through ceRNA networks and chromatin accessibility. (A) Volcano plot 
showing differential expression of lncRNA LCIIAR in LUAD clusters, with higher significance than other genes (|Log2FC| > 1); P < 0.001 was considered statistically 
significant. (B) In LUAD tumor tissues, ISG15 and LCIIAR in the ceRNA network exhibit a significant positive correlation (P = 7.18 × 10⁻³). (C) Significant Spearman 
correlations among the expression of lncRNA LCIIAR, mRNA ISG15, and the abundance of Cylindrospermopsis. (D) Survival analysis showing the association between the 
expression of ceRNA network gene LCIIAR and LUAD patient survival. (E) Survival analysis showing the association between the expression of ceRNA network gene 
LIMD1 and LUAD patient survival. (F) The lncRNA-mediated ceRNA pathway (LCIIAR, hsa-miR-22-3p, hsa-miR-3127-5p, ISG15) was identified based on calculations using 
the R starBase database. (G) Visualization from the TCGA-Xena database showing the relationships among overall survival, expression and methylation, and chromatin 
accessibility of ISG15 in TCGA pan-cancer samples.
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presence of a stronger immune response in this group. These data imply that specific commensal bacteria may foster an immune- 
activated TME, bolstering antitumor immunity and enhancing patient prognosis.

Our experimental findings provide deeper insight into the role of Cylindrospermopsis. We found that Cylindrospermopsin 
(CYN), a toxin produced by this bacterium, modulates the LCIIAR–ISG15 axis in a concentration-dependent manner. At low 
concentrations, CYN activates this axis and upregulates ISG15 expression, whereas at high concentrations, it suppresses 
ISG15 expression. Additionally, CYN exerts toxic effects on human cells, negatively regulating cell proliferation. Existing 
literature indicates that CYN can significantly impair lymphocyte proliferation and immune function,30 suggesting a complex 
interplay with tumor proliferation and the immune microenvironment. This dual role may represent a mechanism by which 
Cylindrospermopsis contributes to tumor development. In contrast, current research on Cyanothece reveals no evidence of its 
influence on immune function. For Sulfolobus, some studies propose that it may promote immune evasion via CRISPR-Cas 
and CRISPR-Cmr systems, potentially enhancing tumor growth within the TME.31,32 The increased abundance of Sulfolobus 
in LUAD tissues could thus contribute to an immunosuppressive microenvironment, facilitating tumor progression.

To elucidate the molecular pathways connecting the microbiota to gene expression and prognosis in LUAD, we 
investigated downstream mechanisms. Our analysis identified the long non-coding RNA (lncRNA) LCIIAR and the gene 
ISG15 as significantly upregulated in LUAD, both correlating with poorer survival. We delineated a competing 
endogenous RNA (ceRNA) network involving LCIIAR, hsa-miR-22-3p, hsa-miR-3127-5p, and ISG15. The positive 

Figure 6 Cell experiments confirm that the role of bacterial metabolites and ceRNA network genes LCIIAR—ISG15 significantly influence lung cancer cell proliferation. 
(A) Cylindrospermopsin (CYN) regulates the expression of LCIIAR and (B) ISG15 in Lewis cell-line. (C) LCIIAR-siRNA reduces LCIIAR expression in Lewis cell-line. (D) ISG15- 
siRNA reduces ISG15 expression. (E) LCIIAR-siRNA reduces ISG15 mRNA expression via the ceRNA network in Lewis cell-line. (F) LCIIAR-siRNA reduces ISG15-protein 
expression in Lewis cell-line. (G) LCIIAR increases the expression level of ISG15 through post-transcriptional regulation. (H and I) CCK-8 cell proliferation assays indicate that 
altering the expression levels of ISG15 and LCIIAR significantly regulates the proliferation of lung cancer cell lines, with the most pronounced effect observed at 72 hours. (*P < 0.05, 
**P < 0.01, ***P < 0.001 ****P < 0.0001).
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correlation between LCIIAR and ISG15 expression, alongside their association with Cylindrospermopsis abundance, 
suggests that the microbiota may regulate gene expression through ceRNA-mediated pathways.

Cell-based experiments validated the functional roles of LCIIAR and ISG15 in driving lung cancer cell proliferation. 
Knockdown of LCIIAR reduced its own expression and concurrently decreased ISG15 levels via the ceRNA network. 
Modulating the expression of these genes significantly altered cancer cell proliferation, with the most notable effects 
observed 72 hours post-transfection. These findings highlight the pivotal roles of LCIIAR and ISG15 in tumor growth, 
positioning them as potential therapeutic targets.

Analysis of TCGA-Xena data further revealed that tumor survival time correlates to some extent with ISG15 expression 
and chromatin accessibility in its coding region, though not with DNA methylation in this area. Comparable epigenetic data 
for LCIIAR remain unavailable, marking a gap for future investigation. Together, these results illuminate the intricate 
regulatory networks linking the microbiota, non-coding RNAs, and epigenetic modifications in LUAD.

Our findings add to the expanding evidence base implicating the tumor microbiota in cancer development and 
progression. While much of the prior research has centered on the gut microbiome, particularly in colorectal cancer,11 our 
study underscores the significance of the lung microbiota in LUAD. Analogous to gut microbiota–ceRNA interactions, 
which modulate gene expression and tumor progression,33 our data suggest that lung microbiota exert similar effects via 
ceRNA networks. However, the distinct bacterial genera and molecular pathways involved reflect the unique microbial 
and tissue contexts of the lung, distinguishing our observations from those in gut-focused studies.

The delineation of regulatory networks involving LCIIAR and ISG15 provides novel insights into how the microbiota 
shapes tumor biology. These discoveries open avenues for developing diagnostic markers and therapeutic strategies targeting 
the lung microbiome and its associated pathways in LUAD. For example, interventions aimed at modulating the microbiota or 
inhibiting the LCIIAR–ISG15 axis could enhance antitumor immunity and improve clinical outcomes.

Nevertheless, our study has limitations. Although sourced from a reliable database, the microbial data may contain errors 
or contamination. Additionally, the observational design limits our ability to establish causality. Future studies, including 
in vivo models, are essential to clarify the mechanistic contributions of specific bacteria to LUAD progression.

In conclusion, our comprehensive analysis demonstrates that the tumor-associated microbiota in LUAD is intricately 
tied to immune characteristics, gene expression profiles, and patient prognosis. By elucidating microbial drivers and 
downstream molecular mechanisms, particularly the LCIIAR–ISG15 axis, this study lays the groundwork for future 
efforts to leverage the microbiome for therapeutic advancements in lung adenocarcinoma.
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