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Abstract: Sarcomas of soft tissue and bone are a rare group of cancers hallmarked by relative 

insensitivity to cytotoxic chemotherapy. The development of targeted therapies in the treatment 

of sarcoma has been difficult due to the significant heterogeneity and rarity of these diseases. 

Inhibition of the mammalian target of rapamycin (mTOR) has emerged as an exciting treatment 

approach and is being studied extensively in sarcoma patients. Ridaforolimus is a second gen-

eration mTOR inhibitor that has shown potential benefit in the treatment of sarcoma. Recently 

a Phase III study demonstrated an improvement in progression-free survival when patients 

with at least stable disease after treatment with standard chemotherapy received maintenance 

ridaforolimus compared to placebo. The results of this study show that mTOR is an important 

pathway in soft tissue and bone sarcomas and represents an exciting opportunity for the improve-

ment in the treatment of our patients.

Keywords: sarcoma, mTOR, ridaforolimus

Introduction
Sarcomas are a heterogeneous group of tumors that arise from mesenchymal cells and 

represent approximately 1% of all adult cancers and 15% of cancers in children and 

adolescents.1,2 For those patients with metastatic disease, median survival remains 

around 1 year. Those sarcomas primarily thought of as pediatric sarcomas, namely 

rhabdomyosarcoma, Ewing sarcoma, and osteosarcoma, are relatively chemotherapy-

sensitive; however, survival after the development of recurrent disease remains poor. 

Unfortunately, for most adult soft tissue sarcomas response rates to chemotherapy 

are only 13%–34%, and this has not led to a significant improvement in overall 

survival.3

Doxorubicin has been used in soft tissue sarcomas for over 30 years, and response 

rates with single agent doxorubicin range from 16%–27%.4,5 Attempts to improve 

overall survival using combinations and/or higher doses of chemotherapy have not been 

successful.6–9 Other agents found to have activity when used alone include decarbon-

ize and ifosfamide, although response rates remain low at 18%–36%.10 Trabectedin 

is approved by the European Medicines Agency, and is currently being evaluated 

further in ongoing Phase III trials. More recently, the combination of gemcitabine and 

docetaxel showed promising progression-free survival (PFS) rates in the second line 

setting; however, response rates and overall survival (OS) remained disappointing, 

16% and 6.2 months (95% CI: 3.6–8.8), respectively.11

Bone sarcomas include Ewing sarcoma and osteosarcoma. Ewing sarcoma and 

osteosarcoma are typically treated with multiagent chemotherapy with relatively high 
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response rates to primary therapy of approximately 70% and 

50%, respectively.12–15 Unfortunately, most patients who go 

on to develop recurrences often have chemotherapy refrac-

tory disease and outcomes are poor.16,17 Ewing sarcoma is 

characterized by translocations involving the EWS gene; 

however, the search for targeted therapies directed to these 

driver mutations has been disappointing.

Few advancements have been made in this disease with 

chemotherapy, thus there is an urgent need for the evaluation 

of alternative treatment strategies. Because of the heterogene-

ity and complexity of these tumors, with a few exceptions, 

effective targeted therapies have remained elusive. The 

mammalian target of rapamycin (mTOR) represents a point 

of convergence of many cellular signaling pathways, and the 

rationale for its inhibition will be described.

Mammalian target of rapamycin
The macrolide antifungal rapamycin, produced by 

Streptomyces hygroscopicus, and its immunosuppressive 

effects were first identified in the 1970s, though its benefit 

as an antirejection immunosuppressant was not fully 

appreciated until the 1990s.18–20 The target of rapamycin 

(TOR) was identified in yeast possessing mutations that 

rendered them resistant to rapamycin, and Sabers et al first 

identified the mammalian homolog (mTOR) in 1995.21–24 

Rapamycin inhibits T-cell proliferation by preventing cell 

cycle progression from G1 to S phase though its interaction 

with mTOR.25,26

mTOR is a member of the serine-threonine protein PI3K-

related kinases and is part of two multiprotein complexes, 

mTORC1 and mTORC2 (Figure 1).27 mTORC1 consists of 

several proteins including regulatory-associated protein of 

mTOR, mLST8, and proline-rich AKT substrate (PRAS40). 

Upstream regulators of mTORC1 include growth factors 

through their receptors via the PI3K/AKT pathway, amino 

acids through the RAG guanosine triphosphate (GTP)-ase 

pathway, cellular energy through LKB1 and AMP-activated 

protein kinase, and cellular stress including hypoxia through 

REDD1.28,29 mTOR is negatively regulated by PRAS40 as 

well as the tuberous sclerosis complex proteins TSC1 and 

TSC2, which inhibit the small GTP-binding protein Rheb 

from activating the complex.30,31–34 mTORC2 includes 

the scaffolding protein rapamycin-insensitive companion 

of mTOR, mSIN-1, proline-rich protein 5, and mLST-8. 

mTORC2 is primarily resistant to rapamycin, although 

chronic exposure does lead to mTORC2 disruption in some 

cell lines.35,36 Upstream regulators of mTORC2 are less well 

defined, but it appears to be activated by growth factors 

and amino acids, including insulin, through PI3K.37,38 PI3K 

signaling promotes mTORC2 binding to ribosomes leading 

to its activation.39

mTOR acts as a central mediator of the cell’s translational 

control in response to nutritional, growth factor, and stress-

induced signals. Downstream targets of mTORC1 include 

4E-binding protein (4EBP) and S6K, which are integral 

components of translational initiation. When activated, 

mTORC1 hyperphosphorylates the 4E-BP1 and leads to its 

dissociation from the initiation factor complex 4e (eIF4E). 

This allows recruitment of eIF4G and its binding to the 

5′ cap.40 mTORC1 also binds and phosphorylates S6K1, 

which is involved in several areas of translational control.40,41 

Downstream effects of mTORC1 activation include protein, 

ribosome, and lipid synthesis, and nutrient transport, lead-

ing to increased cell mass and autophagy.34,42 Similar to the 

upstream regulation of mTORC2, less is known about its 

downstream effects. It is accepted that mTORC2 is important 

in the activation of AKT and members of protein kinase C 

(PKC) family.36,43 Additionally, it appears to be involved in 

regulation of cytoskeleton organization through its interaction 

with Rho GTP-ases.44,45 mTORC2 is upstream to mTORC1 as 

it phosphorylates AKT and is required for its activation, and 

thus regulates mTORC1.36 Alternatively, mTORC1 appears to 

inhibit mTORC2 through its interaction with insulin receptor 

substrate 1 (IRS1).46

mTOR in neoplasia
As mTOR appears to be a major regulator of translational 

control in response to environmental signals, it is not difficult 

to see how its dysregulation could lead to the development of 

several disease processes. In vitro and in vivo models have 

shown that manipulation of the mTORC complexes can lead 

to impaired development and alterations in cellular function.47 

Mutations in tsc1 and tsc2 lead to the tuberous sclerosis 

complex, which is characterized by the formation of benign 

tumors suggesting a link between the mTOR pathway and 

neoplasia. The discovery of the strong interaction between 

mTOR and AKT also suggests its relevance to neoplasia. 

The AKT pathway and AKT itself have been shown to be 

frequently upregulated in most cancers, with both amplifica-

tion and activation of AKT being described.48

Both germline and spontaneous mutations in other 

components of the mTOR pathway also point to its strong 

connection with neoplasia. Patients with Cowden’s disease, a 

syndrome characterized by benign hamartomas, have loss of 

the tumor-suppressor phosphatase related to tensin (PTEN) 

gene which leads to increased PI3K/AKT/mTOR  signaling 
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loss of PTEN through 10q deletions in over half of human 

leiomyosarcomas, and it was subsequently discovered that 

PTEN deletion leads to smooth muscle cell hyperplasia 

and initiation of leiomyosarcoma.64,65 The ewing family 

of tumors (EFT) includes Ewing sarcoma and primitive 

neuroectodermal tumors, and is characterized by fusion 

translocations involving the EWS gene and several genes 

encoding transcription factors. Inhibition of mTOR by 

rapamycin in EFT cell lines leads to G1 cell cycle arrest and 

decreased levels of EWS translocated proteins.62

Alterations of the growth factor receptors and their signal-

ing through PI3K are frequently found in many sarcoma sub-

types. The insulin-like growth factor receptor (IGFR) family 

is frequently studied in sarcomas, particularly because of its 

importance in the development of normal bone in the postnatal 

period.66 IGFR1 transcription is directly inhibited by the tumor 

suppressor Wilms’ tumor protein 1 (WTI). In  desmoplastic 

small cell tumors, the classic EWS-WT1 fusion on copro-

tein leads to IGFR1 over expression. In Ewing sarcoma, the 

EWS-FLI1 fusion protein both requires IGFR1 signaling for 

transformation and regulates IGFR1 signaling.67,68 There is a 

similar interaction between the IGFR pathway and the SYT-

SSX fusion protein found in synovial cell sarcoma.69

Sarcoma clinical trials  
with mTOR inhibitors
Rapamycin acts at mTORC1 by binding to the intracel-

lular FK506-binding protein, FKBP12, which then binds 

to mTORC1.21,70 Rapamycin has significant activity against 

several in vivo cancer models; however, its poor stability and 

solubility limits its use as an antineoplastic.62,71 With the more 

recent understanding of the involvement of the mTOR pathway 

in neoplasia, renewed interest in inhibiting it has led to the 

development of several rapamycin analogues,  including tem-

sirolimus (Torisel; Wyeth, Madison, NJ), everolimus ( Afinitor; 

Novartis, Basel, Switzerland) and ridaforolimus (Merck/Ariad, 

Cambridge, MA). These rapalogues possess properties that 

improve aqueous solubility and allow for oral dosing.  Currently, 

everolimus (renal cell and pancreatic neuroendocrine cancers) 

and temsirolimus (kidney cancer and mantle cell lymphoma) 

have approved indications in oncology.

Thus far, results of clinical trials using everolimus and 

temsirolimus in sarcoma have been disappointing. A small 

Phase II study of everolimus in patients with Kaposi’s 

sarcoma resulted in only one partial response, and raising 

human herpesvirus 8 (HHV8) viral loads highlighting the 

immunosuppressive effects of mTOR inhibitors.72 Another 

Phase II study in patients with soft tissue sarcomas and 

by loss of inhibition of PI3K.49,50 Other mTOR-related 

neoplastic syndromes include, Peutz–Jehgers syndrome, 

lymphangioleiomyomatosis and other PTEN-related harma-

tomatous tumor syndromes.49,51 LKB1 germline mutations 

lead to Peutz–Jehgers syndrome characterized by mucocu-

taneous pigmentation and hamartomas of the gastrointesti-

nal tract.29 Subsequently, mutations of the mTOR pathway 

and altered regulation have been found in many cancers.52 

LKB1 is mutated in non-small cell lung cancer (NSCLC).53 

Somatic PTEN mutations and inactivation have been identi-

fied in several cancers including hematologic malignancies, 

melanoma, glioblastoma, prostate, endometrial, breast, lung, 

pancreas, liver, and adrenal gland cancers.54 In addition, 

somatic mutations or abnormal activation of several of the 

components of the PI3K-AKT-mTOR signaling pathway are 

frequently found in nearly all malignancies, underscoring the 

importance of this pathway in neoplasia.

Rapamycin was first recognized as an antifungal but was 

primarily marketed and first approved as an immunosuppres-

sant agent. Its antineoplastic effects were first recognized well 

before its target was identified in the 1980s by Eng et al, who 

acknowledged its antiproliferative properties and studied it in 

hematologic and solid tumor xenograft models.55 Subsequent 

preclinical studies confirmed the antineoplastic properties 

in lymphoma and thymoma models.56 Some small cell lung 

cancer cell lines possess constitutively phosphorylated S6K 

which are effectively suppressed by rapamycin.57

Because the differential activities of mTORC1 and 

mTORC2 are complex and mTOR is vital to so many cellular 

functions, determining the overall effect of inhibiting these 

pathways has been difficult. Similarly, as our understanding 

of the mTORC2 complex is less well defined, we are only 

now recognizing how inhibiting either complex or both will 

impact tumor growth.

mTOR in sarcoma
The mTOR pathway was first implicated in the development of 

mesenchymal cells by the observation that protein kinase C-a 

(PKC-a) and p-38 mitogen-activated protein kinase (MAPK) 

inhibition by rapamycin inhibits chondrogenesis.58 Both 

PKC-a and MAPK are activated in  malignant  mesenchymal 

chondroblasts. The mTOR pathway is also involved in 

adipocyte differentiation, possibly through its interaction with 

the peroxisome proliferator-activated receptor-γ.59

Several studies have demonstrated that inhibition of 

mTOR by rapamycin induces apoptosis or delays growth 

in several sarcoma models including rhabdomyosarcoma, 

Ewing sarcoma, and Kaposi sarcoma.60–63 Hu et al discovered 
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GIST demonstrated 16 week progression-free rates of only 

13% and 27%, respectively.73

Several Phase II studies of everolimus and temsirolimus, 

both as monotherapy and in combination, are ongoing in vari-

ous sarcoma populations and will further define the potential 

of these drugs in patients with sarcoma.

Ridaforolimus (AP23573, M-8669, formerly  deforolimus) 

is a non prodrug rapalogue which may have improved in 

vivo stability and is available in both intravenous and oral 

 formulations.74 Early phase I studies suggested clinical 

benefit in patients with sarcoma.75,76 Subsequently, a large 

Phase II study of patients with advanced bone and soft tissue 

sarcomas using ridaforolimus 12.5 mg orally daily for five 

consecutive days every 2 weeks has been reported. Patients 

aged $15 years were included with no restrictions on the 

number of prior therapies. Four cohorts were evaluated: 

 primary bone sarcomas, leiomyosarcomas, liposarcomas, and 

other soft tissue sarcomas. The primary end point was clini-

cal benefit rate (CBR) defined as complete response (CR), 

partial response (PR), or stable disease (SD) of $16 weeks, 

using a Simon’s optimal two-stage design.77 A total of 216 

patients were enrolled, and the overall CBR was 28.8% with 

a median PFS of 15.3 weeks (95% confidence interval [CI]: 

14.29–16.29). Patients in the bone sarcoma, leiomyosarcoma, 

and liposarcoma cohorts had slightly higher clinical benefit 

rates than those patients in the ‘other’ cohort (31.5%, 33.3%, 

29.5%, and 21.1%, respectively). This study included pretreat-

ment biomarker analysis of possible predictors of response. 

No biomarker was predicted for efficacy. The most common 

adverse events were stomatitis, fatigue, hyperlipidemia, rash, 

nausea, anemia, and thrombocytopenia, and five patients 

developed pneumonitis.

Based on the prolonged PFS in patients with advanced 

sarcomas, it was hypothesized that ridaforolimus may be 

most beneficial as a maintenance regimen. A randomized, 

placebo-controlled Phase III study of ridaforolimus as main-

tenance therapy in 711 patients with advanced bone and soft 

tissue sarcomas who had at least stable disease following 

prior chemotherapy has been reported.77 Patients received 

40 mg orally daily for 5 days a week. The primary endpoint 

of PFS was met, with a hazard ratio (HR) of 0.72 (P , 0.001). 

Median PFS and 6-month PFS rates were 17.7 weeks and 34% 

in the ridaforolimus group and 14.6 weeks and 23% in the 

placebo group. Although not the primary endpoint, and thus far 

only an early analysis has been reported, there was no statistical 

improvement in overall survival, HR of 0.88 (P = 0.23). The 

most common adverse events were stomatitis, anemia, hyper-

lipidemia, hyperglycemia, renal disorders, and pneumonitis. 

Six deaths due to pulmonary disorders were reported, includ-

ing pneumonitis, pleural effusions, pulmonary embolism and 
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Figure 1 Simplified schematic representation of the mammalian target of rapamycin (mTOR) signaling pathway.
Notes: Red, pathway inhibitor; Green, pathway activator; Blue, mTOR complex protein.
Abbreviation: NOS, not otherwise specified.
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respiratory distress, compared to none in the placebo arm. 

Ridaforolimus received fast track and orphan drug status from 

the US Food and Drug Administration (FDA) and orphan status 

from the European Medicines Agency. The FDA is currently 

reviewing its registration for an indication for maintenance 

therapy in patients with sarcoma based on the results of the 

Phase III study.

Future directions
Response to mTOR inhibitors as monotherapy has been 

disappointing, but not unexpected. The pathway is complex 

and there is still much to discover. Given its importance in 

maintenance of tumor populations in times of stress, it is 

not surprising that alternative pathways would be activated. 

Alternatively, activation of the pathway is involved in 

resistance to cytotoxic chemotherapies. Upregulation of 

PI3K and AKT is frequently seen in tumors both when 

treated with chemotherapy and when mTOR has been 

inhibited.78,79 Combination therapy will likely be needed to 

derive significant benefit from the mTOR inhibitors. Several 

Phase I and Phase II studies are ongoing to evaluate the 

mTOR inhibitors in combination with chemotherapy in other 

solid tumors, and the Phase I/II studies of temsirolimus and 

liposomal doxorubicin in patients with soft tissue and bone 

sarcomas is ongoing.

As described previously, the IGFR pathway appears to 

play a significant role in bone development. This has led to 

significant interest in the use of IGF1R inhibitors in sarcoma 

patients. IGF1R and members of its pathway are frequently 

dysregulated in several sarcoma subtypes.66 Because IGF1R 

is intimately involved with the mTOR pathway and likely 

involved in resistance to mTOR inhibitors, the combination of 

IGF1R and mTOR inhibition is actively being studied. A Phase 

I study of everolimus and CP-751871, a fully human IgG2 

anti-IGF1R monoclonal antibody, in patients with sarcoma 

and other solid tumors demonstrated SD in most patients, 

with one patient with a solitary fibrous tumor having a PR.80 

In a small trial of temsirolimus with cixutumumab, a fully 

humanized IgG1 monoclonal antibody directed at IGF1R, in 

heavily pretreated Ewing sarcoma patients, one patient had a 

prolonged CR and four of 27 patients had a PR.81

Because the kinase domains of mTOR and PI3K are 

very similar, several drugs designed as PI3K inhibitors 

also demonstrate both mTORC1 and mTORC2 inhibition. 

Given the significant interaction and regulation between 

the mTORC1 and mTORC2 complexes, and that mTORC2 

is relatively insensitive to inhibition by the rapalogues, 

combined inhibition will likely provide better efficacy, and 

several Phase I studies of dual PI3K/mTOR inhibitors are 

ongoing.82 To improve mTOR inhibition, companies are now 

actively developing pan-mTOR inhibitors and we hope they 

will soon be evaluated in sarcoma patients.

Conclusion
Sarcomas are a diffuse group of diseases with remarkable 

diversity in their pathophysiology, making drug discov-

ery difficult and improvements in the treatment of our 

patients disappointingly slow. It is likely that we have reached 

a therapeutic plateau with the use of cytotoxic chemotherapy, 

even in those patients with relatively chemotherapy-sensitive 

tumors. The mTOR pathway is frequently dysregulated and 

is implicated in the development of mesenchymal neoplasms, 

making it an interesting target.

Although results with monotherapy treatment with rapa-

logues have been modest, interesting improvements in PFS 

have been demonstrated with ridaforolimus. The results of 

the Phase III study of ridaforolimus as maintenance therapy 

in patients with advanced soft tissue and bone sarcomas who 

had at least SD after standard of care chemotherapy is one of 

the first Phase III studies in many years to demonstrate any 

improvement in this population. We await the FDA’s decision 

regarding approval for this indication; however, the benefit 

in PFS must be balanced with the added toxicity of taking a 

maintenance drug when no improvement in overall survival 

is demonstrated. Progression of sarcoma is frequently asso-

ciated with significant symptoms and decline in quality of 

life; thus, such an approach may be indicated. Nevertheless, 

further investigation of mTOR inhibitors using alternative 

approaches is greatly needed to fully evaluate the impact of 

these drugs on the treatment of sarcoma patients.
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