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O P I N I O N

Abstract: Biocides are heavily used in the healthcare environment, mainly for the disinfection

of surfaces, water, equipment, and antisepsis, but also for the sterilization of medical devices

and preservation of pharmaceutical and medicinal products. The number of biocidal products

for such usage continuously increases along with the number of applications, although some

are prone to controversies. There are hundreds of products containing low concentrations of

biocides, including various fabrics such as linen, curtains, mattresses, and mops that claim to

help control infection, although evidence has not been evaluated in practice. Concurrently,

the incidence of hospital-associated infections (HAIs) caused notably by bacterial pathogens

such as methicillin-resistant Staphylococcus aureus (MRSA) remains high. The intensive use

of biocides is the subject of current debate. Some professionals would like to see an increase

in their use throughout hospitals, whereas others call for a restriction in their usage to where

the risk of pathogen transmission to patients is high. In addition, the possible linkage between

biocide and antibiotic resistance in bacteria and the role of biocides in the emergence of such

resistance has provided more controversies in their extensive and indiscriminate usage. When

used appropriately, biocidal products have a very important role to play in the control of

HAIs. This paper discusses the benefits and problems associated with the use of biocides in

the healthcare environment and provides a constructive view on their overall usefulness in the

hospital setting.
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Introduction
Chemical biocides have been used for centuries, originally for food and water

preservation, although there are early accounts of their use for wound management

(Lister 1867; Craig 1986; Semmelweis 1995). A clear landmark in the use of biocides

in the healthcare setting was the advent of antisepsis and the use of chlorine water in

the early 19th century (Rotter 1998, 2001). The 20th century witnessed a tremendous

increase in the number of active compounds being used for disinfection, sterilization,

and preservation, with the development of cationic biocides such as biguanides

and quaternary ammonium compounds (QACs), phenolics, aldehydes, and

peroxygens (Russell 1999a). The same chemical agent can be used for different

applications, the main difference being the concentration at which it is employed.

For example, the biguanide chlorhexidine is used for surface disinfection at

0.5%–4% volume/volume (v/v), for antisepsis at 0.02%–4% v/v and for preservation

at a concentration of 0.0025%–0.01% v/v. The concentration of a biocide within a

formulation or product is of prime importance for its antimicrobial activity, although

there needs to be a balance between efficacy (ie, destroying microorganisms) and
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toxicity. In hospital settings, 3 levels of disinfection are

recognized (high-, intermediate-, and low-level) depending

upon the risk of microbial survival and transmission to

patients (Rutala and Weber 1999, 2001, 2004a, 2004b).

Hospital disinfection policies have a major role to play in

the control of hospital-associated infections (HAIs) (Rutala

1990, 2000; Rutala and Weber 1999, 2004a; Nelson 2003;

Fraise 2004). The increased usage of products containing

low concentrations of commonly used biocides, such as

phenolics and cationic compounds, has raised some concerns

(Levy 2001; Daschner and Schuster 2004) about their overall

efficacy, but also about the possible emergence of microbial

resistance. Indeed, there are now multiple laboratory reports

about the emergence of bacterial resistance to biocides, often

as a result of exposure to a lower (sublethal) concentration

(Moken et al 1997; Tattawasart et al 1999a; Thomas et al

2000, 2005; Chuanchuen et al 2001; Russell 2002a, 2004a;

Walsh et al 2003). The possible development of bacterial

resistance (not only to biocides, but also to antibiotics), the

benefit of biocide usage, and their possible role in the

emergence of multidrug-resistant bacteria, add further

questions to the extensive use of biocidal products (Levy

2000; Russell 1999b, 2000, 2002a; Russell and Maillard

2000; Schweizer 2001; Bloomfield 2002). The benefits and

disadvantages of biocide usage in the healthcare environ-

ment need to be carefully considered.

Biocides usage and activity
Biocides – usage and policies
Biocides are used extensively in healthcare settings for

different applications: the sterilization of medical devices;

the disinfection of surfaces and water; skin antisepsis; and

the preservation of various formulations. In addition, there

are now numerous commercialized products containing low

concentrations of biocides, the use of which is controversial.

Some professionals believe that the indiscriminate usage of

biocides in the healthcare environment may not be justified

and is detrimental in the long term, for example, by

promoting the emergence of bacterial resistance to specific

antimicrobials (Russell et al 1999; Levy 2000, 2001; Russell

2000, 2002b; Russell and Maillard 2000; Schweizer 2001;

Bloomfield 2002; Daschner and Schuster 2004). The

indiscriminate use of disinfectants in the hospital

environment is not a new problem as it was raised in the

1960s (Ayliffe et al 1969), but it remains a current issue.

There are diverging opinions regarding the use of biocide

formulations and products for noncritical surface

disinfection. While some view such use as unnecessary

(Fraise 2004), others support such a practice (Rutala and

Weber 2004a). The use of biocidal products may be more

appropriate only in specific situations where the risk of

spreading HAIs is high (Bloomfield et al 2004; Russell

2004a). Some surfaces may only need cleaning and do not

require chemical disinfection as they are rarely heavily

contaminated (Table 1), whereas other medical articles need

thorough cleaning with detergents and chemical disinfection,

eg, wash boils, bedpans, urinal (Table 1). Thorough cleaning,

washing, and drying have been shown to limit the risk of

infection (Babb and Bradley 1995a). Flexible endoscopes

are of particular interest, since they are now used for a wide

range of diagnostic and therapeutic procedures. Gastro-

intestinal endoscopes and bronchoscopes are often grossly

contaminated and require special sterilization regimens

involving chemical disinfectants as these medical devices

are often heat sensitive. Several biocides are used for the

high-level disinfection of these devices in specially designed

automated machines, which clean, disinfect, and rinse the

lumens and external surfaces of the flexible endoscopes.

The biocides of choice are glutaraldehyde and ortho-

phthalaldehyde, peracetic acid, alcohol, peroxygen products,

chlorine dioxide, and superoxidized water for the main ones

(Babb and Bradley 1995b) (Table 2). Guidelines are

available from professional societies regarding the

appropriate immersion time and risk assessment (BSG

1998). Overall, the incidence of post-procedural infection

appears low (Fraise 2004). There are some reports describing

the washer-disinfectors as a source of instrument

contamination when the concentration of the high-level

disinfectant is too low (van Klingeren and Pullen 1993;

Griffith et al 1997), or when biofilms are present (eg,

following a lack of cleaning and maintenance) (Babb 1993;

Pajkos et al 2004).

The treatment of air is particularly challenging and is

rarely considered necessary in hospitals, although the NHS

Estates (1994) recommends good ventilation with filtered

air for operating theatres, isolation rooms, and safety

cabinets. In addition, prevention of airborne contaminants,

particularly from the environment, is important through

regular maintenance and use of biocidal treatment of static

water, etc, for example to prevent the onset of Legionella

(NHS Estates 1993; HSC 2000).

The principles of disinfection policy in healthcare

facilities has been described in several reports, by Rutala

(1990, 2000), Ayliffe et al (1993), and more recently by

Fraise (1999, 2004). Disinfection policies should take into

account the reasons and purposes for which disinfectants
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are used, the risk of infection from equipment, or the

environment and implementations of such policies (Table 2)

(Fraise 2004). The benefits of the introduction of

comprehensive disinfection policies on the reduction of

HAIs have been described (Makris et al 2000), although

their implementation has sometimes been perceived as

unsatisfactory (Cadwallader 1989; Kugel et al 2000; Sofou

et al 2002). For example, infection control is an important

element of safe dental practice. Chemical biocides together

with detergents are used for the disinfection of surfaces

(Molinari et al 1996) that can become contaminated with

blood and saliva (McColl et al 1994), and for the disinfection

Table 1 Treatment of the hospital environment and equipment

Environment/Equipment Comments Treatment

Walls, ceiling Rarely heavily contaminated (surfaces need to remain dry) Occasional cleaning and drying. Chemical disinfection
Occasional spillages

Floorsa More heavily contaminated; only a small proportion are Cleaning with detergents. Disinfection
potential pathogens. Related to the activity on the ward recommended only in high-risk areas
(eg, number of people)

Baths Many bacteria remain on the surface after emptying the Thorough cleaning with detergents. Disinfection
bath necessary in maternity and surgical units where

multiresistant bacteria might be present

Washbowls High number of bacteria can grow if not dried properly Thorough cleaning and drying

Toilets Potential risk during gastrointestinal infection Thorough cleaning with detergents, except during
infection outbreaks for which chemical disinfection
might be indicated

Bedpans and urinals Potential risk during gastrointestinal infection Thermal disinfection recommended

Crockery and cutlery Heavily contaminated after handwash processing Washing in a machine with minimal temperature of
50–60°C recommended

Cleaning equipment Floor mops heavily contaminated Heat disinfection recommended. Immersion in
chemical disinfectants should be avoided

Babies’ incubator Rarely heavily contaminated but high risk of transmission Thorough cleaning and drying of surfaces. Chemical
disinfection might be considered

Respiratory ventilators Accumulation of moisture associated with bacterial Changing reservoir bag, tubing and connectors every
growth 48 hours. Heat disinfection for respiratory circuits

recommended. Use of heat-moisture exchangers or
filters recommended. Use of washer–disinfectors for
reusable circuits

Anesthetic equipment Machines rarely heavily contaminated providing that Low temperature steam or washing-machine
the associated tubing is regularly changed (70–80°C) for corrugated tubing. Single use circuit

preferred in some cases. Chemical disinfection to be
avoided

Endoscopes May be heavily contaminated High-level disinfection for flexible heat sensitive
endoscopes. Heat or gaseous sterilization for rigid
devices

Vaginal specula and other Potential risk of acquiring viral infection Single use items are preferred. Heat sterilization
vaginal devices recommended

Tonometers Potentially risk of viral transmission Chemical disinfection requiredb

Stethoscopes Some reports of staphylococci transmission Thorough regular cleaning with 70% alcohol
recommended

Sphygmomanometer Some reports of staphylococci transmission Thorough washing and drying of contaminated cuff.

Linen May be heavily contaminated Heat (65°C) for heat-stable linen. Chemical
disinfection in penultimate rinse, laundering at 40°C
and dry at 60°C for heat-sensitive linen

Dressing trolleys, mattress May require decontamination Thorough cleaning necessary. Decontamination by
covers, supports, curtains heat preferable to chemical disinfection

a Carpets may add additional problems (Fraise 2004b)
b In case of potential transmission of spongiform encephalopathy, disposable tonometer head should be used.
NOTE: Table compiled from information from Ayliffe 1993; Rutala 1990, 2000; Rutala and Weber 1999, 2004b; Fraise 1999, 2004; Nelson 2003.
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of impressions, prosthetic, and orthodontic appliances.

However, a recent survey showed that a large number of

dental practices have no written policies on disinfection and

sterilization procedures (Bagg et al 2001). The lack of

standard infection control measures has been blamed for

HAIs (Nelson 2003; Rutala and Weber 2004b; Takahashi et

al 2004).

Biocides – alteration of activity
The activity of a biocide depends upon a number of factors

(Table 3), some inherent to the biocide, some to

microorganisms. Among microorganisms most resistant to

biocidal exposure are bacterial spores, followed by

mycobacteria, Gram-negative, Gram-positive, and fungal

microorganisms. The sensitivity of viruses usually depends

upon their structure, but notably also depends on whether

they possess an envelope (Maillard 2004), enveloped viruses

being more sensitive to disinfection (Maillard 2001).

Although there are exceptions within this summarized

classification (eg, some mycobacteria are relatively sensitive

to disinfection), this attempt at distinguishing

microorganisms according to their susceptibility to biocides

gives useful information for the selection of an appropriate

biocidal agent (Russell et al 1997). However, it is not always

possible to predict which microorganisms will be present

on certain surfaces, although the organic load or the extent

of microbial contamination, and the presence or not of a

biofilm, can be anticipated (Fraise 1999; Rutala and Weber

1999). An understanding of the factors affecting

antimicrobial activity is essential to ensure that a biocidal

product/formulation is used properly (Russell 2004b). As

mentioned in the introduction, a biocide’s concentration is

probably the most important factor to affect antimicrobial

activity (Table 3) (Russell and McDonnell 2000). Poor

understanding of the concentration exponent can lead to

microbial survival on surfaces, but also in products, and

thus to infection or spoilage. Bacterial survival in biocidal

formulations, notably containing QACs, has been described

since the 1950s’ and has been linked to inappropriate usage

(Speller et al 1971; Prince and Ayliffe 1972; Ehrenkranz et

al 1980; Kahan 1984), for example, a decrease in active

concentration (van Klingeren et al 1993) or the incorporation

of low concentrations in medical devices such as catheters

(Stickler 1974; Stickler and Chawla 1988). Bacteria resistant

to all known preservatives have also been reported

(Chapman 1998; Chapman et al 1998). Exposure/treatment

time is also essential. Standard efficacy tests often

recommend a minimal contact time, such as 1 min for the

testing of hygienic handwash (CEN 1997a) or 5 min for the

testing of disinfectants and antiseptics (CEN 1997b).

Table 2 Principles of disinfection policies

Objectives and purposes To prevent infection but in practical terms to reduce the bioburden to a level at which infection is unlikely. Need to
consider the standard of hygiene expected by patients and staff

Categories of risk for patients and treatment of equipment and environment
High risk Sterilization by heat or other methods (eg, ethylene oxide; low temperature steam formaldehyde); high-level

disinfection may be acceptable (eg, GTA, OPA, PAA)
Intermediate risk Disinfection
Low risk Cleaning and drying usually sufficient; disinfection
Minimal risk Cleaning and drying; disinfection in case of contaminated spillage

Requirements of chemical disinfectants
Spectrum of activity “cidal” rather than “static” activity
Efficacy Rapid action, notably on surfaces
Incompatibility should not be neutralized/quenched easily, eg, by hard water, soap, organic load
Toxicity Should be minimal
Damages to Corrosiveness should be minimal, especially at in use dilution. Should not damage the surface/articles to be
products/surfaces disinfected, eg, endoscopes
Costs should be acceptable and supplies assured

Implementations of the disinfection policies
Organization Infection control team should be responsible. Need clear cut and well defined responsibilities
Training End users (nursing and domestic staff) should be trained appropriately. Clear schedules and supervision by trained

staff should be in place.
Distribution and dilution Staff training is essential. Suitable dispensers of disinfectants should be available
Testing of disinfectants Need to be properly documented and assessed preferably by an independent organisation following standard

protocols.
Costs Should be considered carefully

Abbreviations: GTA, glutaraldehyde; OPA, ortho-phthalaldehyde; PAA, peracetic acid.
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Decreasing exposure time is often associated with a decrease

in activity, which is exemplified from kinetic inactivation

studies (Tattawasart et al 1999b; Fraud et al 2001; Walsh et

al 2003). Other important factors relate to the conditions in

which a product is employed, mainly the presence of organic

materials (which will inactivate certain biocides), or the

concurrent use of a quenching agent, eg, combining a

cationic agent with an anionic surfactant (Table 3) (Russell

2004b), or the use of emollient after hand washing (Walsh

et al 1987; Benson et al 1990). On this latter point,

information available on the effect of hand care product is

sometimes contradictory. Indeed, Heeg (2001) reported that

the use of hand care products did not affect the antimicrobial

efficacy of hand rub formulations, although, in this case, a

very limited number of products were tested. In addition,

the effect of temperature on biocidal activity is important to

understand in specific situations, for example, where

biocidal efficacy relies upon a combination of chemical

inactivation and elevated temperature (eg, certain

sterilization process; automated washer-disinfector), or

when a preservative-containing formulation is stored at a

low temperature. Finally, pH might not be as important here

as it will affect mainly the formulation (thus a concern for

the manufacturer), but should not change drastically during

use. It has to be noted that a change of pH can alter the

biocide’s ionization and hence its activity, the growth of the

microorganisms, and its overall surface charge, eg,

increasing pH enhances the activity of cationic biocides

(Russell 2004b). Understanding these factors is essential

and the appropriate training of end users, ie, nursing and

domestic staff, is important to ensure that the efficacy of a

biocidal product/formulation is maintained (Widmer and

Dangel 2004).

Problems associated with the use
of biocides
The emergence of bacterial resistance to biocides and the

possible linkage between biocide and antibiotic resistance

is a major topic of discussion and concern. The emergence

of bacterial resistance to biocides is not a new phenomenon

and has been described since the 1950s, particularly with

products containing a cationic biocide (Russell 2004a). More

recently, the emergence of bacterial resistance to biocides

to low (inhibitory) concentrations has been widely reported,

mainly from laboratory studies, but also from environmental

investigations.

Emergence of bacterial resistance –
 evidence from laboratory investigations
Investigating the possible emergence of bacterial resistance

to various biocides is a topical subject and reports can easily

be found in the literature, notably on the understanding of

Table 3 Factors influencing the antimicrobial activity of biocides

Factorsa Comments Relevance and consequence in practice

Factors inherent to the biocide

Concentration Understand the concentration exponent (ie, the effect of Appropriate staff training required
dilution upon activity)

Contact time Longer contact time often associated with increased activity Appropriate staff training required

Organic load Quench the activity of a biocide or protect microorganisms Combination of physical (cleaning) and chemical
action required

Formulation Possible inactivation of biocide Understand the nature of the active agent

Temperature Important for some devices (eg, endoscope washer) Important to understand that adequate staff training
is required with certain types of equipment

pH Affect both the biocide (stability and ionisation) and the Probably not as important in the healthcare
microorganism (growth and electric charge) environment

Factors inherent to the cell

Presence of biofilm Dormant “persister” cells difficult to eradicate. Likely to be Combination of physical (cleaning) and chemical
present on equipment, certain surfaces action required

Type of microorganisms Will affect the choice of the agent to use. Bacterial spores: Evaluation of the possible type of biocide needed
the most resistant; envelope viruses: the least resistant

Number of microorganisms High number more difficult to eradicate Biocides often used in high (ie, excess)
concentration. High number of cells might not be a
problem

a Factors listed in order of importance.
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the basis of such resistance. Low to intermediate levels of

resistance have been observed in most cases, although from

time to time high-level resistance has been reported, eg, with

the bisphenol triclosan (Sasatsu et al 1993; Heath et al 1998,

2000), or with the chemosterilant glutaraldehyde (Griffiths

et al 1997; Manzoor et al 1999; Fraud et al 2001; Walsh et

al 2001), and oxidizing agents (Dukan and Touati 1996).

There is now a better understanding of the overall

mechanisms that enable bacteria to withstand exposure to

low concentrations of a biocide (Table 4) (Poole 2002;

Cloete 2003). As mentioned earlier, some microorganisms

are better at surviving a biocidal treatment than others,

primarily through their intrinsic properties and

impermeability. The impermeability barrier, encountered in

spores (Russell 1990; Russell et al 1997; Cloete 2003), but

also in vegetative bacteria such as mycobacteria, and to some

extent, Gram-negative bacteria, limits the amount of a

biocide that penetrates within the cell (Denyer and Maillard

2002; Lambert 2002). The role of specific cell structure,

such as lipopolysaccharides (LPS) in Gram-negative bacteria

(Denyer and Maillard 2002) and the mycoylarabinogalactan

layer in mycobacteria (Lambert 2002), in this resistance

mechanism has been demonstrated by the use of

permeabilizing agents such as ethylenediamine tetraacetic

acid (EDTA) (Ayres et al 1998; McDonnell and Russell

1999; Denyer and Maillard 2002), or organic acids (Ayres

et al 1993; 1998), and cell wall inhibitors such as ethambutol

(Broadley et al 1995; Walsh et al 2001). The insusceptibility

of Gram-negative bacteria to biocidal agents can be

decreased further by a change in overall hydrophobicity

(Tattawasart et al 1999a), outer membrane ultrastructure

(Tattawasart et al 2000a, 2000b), protein content (Gandhi

et al 1993; Brözel and Cloete 1994; Winder et al 2000), and

fatty acid composition (Jones et al 1989; Méchin et al 1999;

Guérin-Méchin et al 1999, 2000).

Bacteria are also able to decrease the intracellular

concentration of toxic compounds by using a range of efflux

pumps (Nikaido 1996; Paulsen et al 1996a; Levy 2002;

McKeegan et al 2003), which can be divided into five main

classes: the small multidrug resistance (SMR) family (now

part of the drug/metabolite transporter [DMT] superfamily),

the major facilitator superfamily (MFS), the ATP-binding

cassette (ABC) family, the resistance-nodulation-division

(RND) family and the multidrug and toxic compound

extrusion (MATE) family (Brown et al 1999; Borges-

Walmsley and Walmsley 2001; Poole 2001, 2002, 2004;

McKeegan et al 2003). The involvement of multidrug efflux

pumps in bacterial resistance to various compounds

including QACs, phenolics, and intercalating agents has

been widely reported (Tennent et al 1989; Littlejohn et al

1992; Lomovskaya and Lewis 1992; Leelaporn et al 1994;

Heir et al 1995, 1999; Sundheim et al 1998), particularly in

Staphylococcus aureus with identified pumps such as

QacA-D (Rouche et al 1990; Littlejohn et al 1992), Smr

(Lyon and Skurray 1987), QacG (Heir et al 1999), and QacH

(Heir et al 1998) and in Gram-negative such as Pseudomonas

aeruginosa, with MexAB-OprM, MexCD-OprJ, MexEF-

OprN, and MexJK (Schweizer 1998; Chuanchuen et al 2002;

Morita et al 2003; Poole 2004) and Escherichia coli with

AcrAB-TolC, AcrEF-TolC, and EmrE (Moken et al 1997;

Table 4 Mechanisms conferring biocide resistance in bacteria

Mechanism Effect Example of structures (and microorganisms)

Decrease in biocide concentration

Impermeability barrier Decrease the amount of a biocide that Spore coats (bacterial spores), LPS (Gram-negative bacteria),
penetrates in the cell mycoylarabinogalactan layer (mycobacteria)

Multidrug efflux pumps Decrease the amount of a biocide within QacA-D, QacG and QacH, Nor A (Staphylococcus aureus),
the cell MexAB-OprM, MexCD-OprJ, MexEF-OprN, MexJK, QacE,

QacΔ1 (Pseudomonas aeruginosa), QacE, SilABC (Klebsiella pneumoniae),
AcrAB-TolC, AcrEF-TolC, EmrE (Escherichia coli)

Degradation Inactivate a biocide outside or within a cell Hydrolase and reductase (E. coli; S. aureus), aldehyde dehydrogenase
(E. coli, P. aeruginosa), catalases, superoxide dismutase and alkyl
hydroxyperoxidasesa (E. coli)

Alteration of target(s) and metabolism

Modification of target Render the effect of a biocide ineffectiveb Enoyl-acyl carrier reductase (S. aureus; E. coli; Mycobacterium smegmatis).

Multiplication of targets Decreases the effective concentration of Interaction with bacterial glycocalyx (in biofilm)
a biocide

Alteration of metabolism Decrease the detrimental effect of a biocide Phenotypic alteration and “persisters” (bacterial biofilm)

a Reduction of free radicals within the cell (eg, following exposure to an oxidising agent);
b Has only been observed with the bisphenol triclosan.
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McMurry et al 1998a; Nishino and Yamagushi 2001; Poole

2004) (Table 4).

Another mechanism that can contribute to the reduction

in the concentration of a toxic compound is degradation

(Table 4). Degradation has been well described for metallic

salts with an enzymatic reduction (Cloete 2003) and for

aldehydes with the involvement of aldehydes dehydrogenase

(Kummerle et al 1996). The degradation of phenols, such

as triclosan, by environmental strains (Hundt et al 2000)

has been reported, but there is little evidence that such

degradation takes place in clinical isolates. In addition, some

bacteria express enzymes such as catalases, superoxide

dismutase, and alkyl hydroxyperoxidases to prevent and

repair free radical-induced damage caused by oxidizing

agents (Demple 1996).

Finally, although the modification of a target site is a

well-known mechanism of bacterial resistance to antibiotics

(Chopra et al 2002), it does not usually occur with biocide –

with possibly one exception, the bisphenol triclosan. This

phenolic compound has been shown to interact specifically

with an enoyl-acyl reductase carrier protein (Heath et al

1999; Levy et al 1999, Roujeinikova et al 1999; Stewart et

al 1999), the modification of which was associated with

low-level bacterial resistance to this compound (McMurry

et al 1999; Heath et al 2000; Parikh et al 2000). The

inhibition of the fatty acid biosynthesis might be involved

in the growth-inhibitory effect of triclosan, but other

mechanisms were involved in its lethal activity (Gomez

Escalada et al 2005).

Some of the mechanisms described above are intrinsic

to the microorganisms; ie, a natural property. The acquisition

of resistance is of notable concern since a previously

sensitive microorganism can become insusceptible to a

biocide (Russell 2002b) or a group of antimicrobials

through, eg, the acquisition of multidrug resistant

determinants (Lyon and Skurray 1987; Silver et al 1989;

Kücken et al 2000; Bjorland et al 2001). Acquired resistance

can arise through several processes, eg, mutations, the

amplification of an endogenous chromosomal gene, and the

acquisition of genetic determinants (Lyon and Skurray 1987;

Paulsen et al 1993; Poole 2002).

Phenotypic variations resulting from biocidal exposure

might lead to bacterial resistance (Chapman 2003) and this

is now well supported by documented laboratory evidence.

This is an issue since phenotypic alterations can lead to the

emergence of resistance to several unrelated compounds in

vitro (Walsh et al 2003; Thomas et al 2005). Phenotypic

variation and antimicrobial resistance also concern bacterial

biofilms, which are increasingly associated with bacterial

contamination and infection, eg, implants, catheters, and

other medical devices (Costerton and Lashen 1984;

Costerton et al 1987; Salzman and Rubin 1995; Gilbert et

al 2003; Pajkos et al 2004). Bacteria in biofilms have been

shown to be more resistant to antimicrobials than their

planktonic counterparts (Allison et al 2000). Resistance

results from a multicomponent mechanism involving

phenotypic adaptation following attachment to surfaces

(Brown and Gilbert 1993; Ashby et al 1994; Das et al 1998),

impairment of biocide penetration, and enzymatic

inactivation (Sondossi et al 1985; Giwercman et al 1991;

Huang et al 1995; Gilbert and Allison 1999), and the

induction of multidrug resistance operons and efflux pumps

(Maira-Litran et al 2000).

Emergence of bacterial resistance to
biocides and antibiotics – evidence from
laboratory investigations
While there is ample evidence from laboratory studies of

bacterial adaptation to biocides, linkage to antibiotic

resistance is not always clear cut (McMurry et al 1998a,

1999; Tattawasart et al 1999a; Thomas et al 2000; Winder

et al 2000; Walsh et al 2003; Nomura et al 2004). Several

laboratory investigations have explored a possible linkage

between bacterial resistance to antibiotics and different

biocides such as the bisphenol triclosan (Moken et al 1997;

McMurry et al 1998a; Chuanchuen et al 2001; Cottell et al

2003), the biguanide chlorhexidine (Russell et al 1998;

Tattawasart et al 1999a), and QACs (Akimitsu et al 1999;

Walsh et al 2003). Similar mechanisms of resistance have

been identified such as impermeability (Tattawasart et al

1999a), the induction of multidrug efflux pumps (Levy 1992;

Moken et al 1997; Schweizer 1998; Zgurskaya and Nikaido

2000; Noguchi et al 2002), over expression of multigene

components or operons (Levy 1992) such as mar (Moken

et al 1997; McMurry et al 1998a), soxRS and oxyR (Dukan

and Touati 1996; McMurry et al 1998a; Wang et al 2001),

and the alteration of a target site (McMurry et al 1999).

Emergence of bacterial resistance –
evidence from investigations in situ
It has been suggested that the use of biocide in healthcare

environments leads to the emergence of antibiotic resistance

in bacteria, although the evidence in situ is lacking overall

(Russell 2002a) or does not support such a claim (Lambert

2004). Nevertheless, there have been a number of cases

Powered by TCPDF (www.tcpdf.org)



Therapeutics and Clinical Risk Management 2005:1(4)314

Maillard

linking biocide usage and emerging antibiotic resistance.

For example, the use of silver sulphadiazine for the treatment

of burn infection was associated with sulphonamide

resistance (Lowbury et al 1976; Bridges and Lowbury 1977).

Likewise, the use of chlorhexidine scrub-based preoperative

showers might be associated with the emergence of

methicillin-resistant S. aureus (MRSA) (Newsom et al

1990). The use of the biguanide in catheters for long-term

indwelling catheterization was linked to the emergence of

Gram-negative bacteria with multiple antibiotic resistance

(Stickler 1974; Stickler and Chawla 1988). The bisphenol

triclosan has also been associated with such cross-resistance

(Chuanchuen et al 2001; Levy 2001; Aiello et al 2004;

Schmid and Kaplan 2004) although evidence in situ is scarce

and recent field investigations failed to make such a link

(Lear et al 2002; Sreenivasan and Gaffar 2002; Cole et al

2003; Lambert 2004). The heavy use of QACs has also been

blamed for the dissemination of qac genes and the spread

of efflux pumps (Paulsen et al 1996a, 1996b; Heir et al 1998,

1999; Mitchell et al 1998; Sundheim et al 1998), although

further evidence is needed to confirm such a link (Russell

2002a).

Other considerations
Biocides are chemical agents that are usually toxic at

relatively high concentration, not only for the end user, but

also for the environment (Dettenkofer et al 2004). The

toxicity of some biocides has been particularly well

described, eg, the high-level disinfectant glutaraldehyde, the

use of which has been associated with dermatitis and

occupational asthma (Di Stephano et al 1999; Shaffer and

Belsito 2000; Vyas et al 2000). Toxicity and irritation have

also been reported with other biocides such as chlorhexidine

(Waclawski et al 1989), povidone iodine (Waran and

Munsick 1995), and other disinfectants and antiseptics

(Sweetman 2002), although such incidence is infrequent

(Rutala and Weber 2004a). Hypersensitivity and irritation

caused by antiseptics might account for the low compliance

in handwashing among healthcare workers (Pittet 2001). A

recent study found that hospital staff using disinfectants

might not appreciate the health risks associated with a

product (Rideout et al 2005).

The future of biocides in the
healthcare environment
There is no doubt that biocides will continue to play an

important role in the prevention of infection in the healthcare

environment, although some caution is needed as to their

usage and the type of products that should contain

antimicrobials. For disinfection and antisepsis purposes,

chemical biocides are usually used at high concentrations,

exceeding their bacterial minimum inhibitory concentrations

many times to achieve a rapid kill. At such concentrations,

a biocide will interact with multiple target sites (Maillard

2002), and the emergence of bacterial resistance is therefore

unlikely.

The increased usage of biocide in formulations and

products is probably driven by the impetus to control and

reduce the spread of HAIs (Favero 2002), by an increase in

public awareness for microbial infection and contamination,

and hygiene (Aiello and Larson 2001; Bloomfield 2002;

Favero 2002), and by strong and profitable commercial

interests. The use of such products needs to be balanced

between the clear benefit of controlling infection and the

potential risk associated with usage, not only in terms of

emerging microbial resistance, but also their toxicity and

environmental pollution (Daschner and Dettenkofer 1997;

Russell 2002b; Gilbert and McBain 2003; Bloomfield et al

2004; Dettenkofer et al 2004; Rutala and Weber 2004a). In

this respect, the benefits of using biocides on noncritical

surfaces to prevent the transmission of HAIs should be

evaluated further (Bloomfield et al 2004). Assessing the role

of biocides in controlling nosocomial infection or the value

of a disinfection policy is difficult to evaluate in situ,

although such information is valuable for the selection of

the appropriate regimens (Fraise 2004). For example, a

recent study showed that the use of alcohol hand gel reduced

HAIs significantly (Zerr et al 2005). For a biocidal

formulation/policy to be effective, (1) knowledge of the

chemical biocide (ie, activity and limitation), (2) training

of end users, and (3) compliance, are essential. It has to be

noted that, when possible, physical processing, eg, heat

sterilization, offers many advantages over chemical

disinfection and should be the method of choice when

appropriate (Fraise 2004). Some authors and institutions

have advocated the rotation of biocidal formulations despite

a lack of scientific evidence of the benefits of such practice

(Murtough et al 2001). A clear understanding of the

mechanisms of action, the factors affecting their activity,

and the problems associated with specific practice is

essential and may contribute to the improvement of a

biocidal product, in terms of activity, but also usage. For

example, improved compliance to hand hygiene in

healthcare settings was observed with the introduction of

hand rub and alcoholic rub products (Pittet 2001; Boyce

and Pittet 2002).
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Likewise, understanding of microbial survival to

disinfection, limitation, and activity of “chemical sterilants”

has led to the commercialization of formulations with

improved efficacy for the high-level disinfection of heat-

sensitive medical devices (Rutala and Weber 1999; Maillard

2002).

Finally, there have been some interesting developments

in the use of biocides for the treatment and prevention of

potential infections. In the dental field, light-activated

biocides such as toluidine blue are being explored for the

treatment of root canals (Walsh 2003; Wilson 2004). In the

medical field, the incorporation of biocide combinations (eg,

phenolics, metallic salts) into implants (Petratos et al 2002),

and catheters (Hanazaki et al 1999), and other medical

devices (Masse et al 2000; Jones et al 2003) is a fast

advancing field of research, although biocide-containing

medical devices may be of some concern (Masse et al 2000;

Stickler 2002). Advances in polymer technology and

biocidal research will undoubtedly contribute to the

emergence of novel biocidal product or biocide-coated/

containing medical devices with selected usage and improve

efficacy.

Conclusion
The last 50 years have witnessed an important increase in

the number of biocides and their usage in the healthcare

environment. When used correctly (ie, compliance with

disinfection/antisepsis regimens), biocides have an

important role to play in controlling infection (Larson et al

2000; Russell 2002a). There is still some uncertainty as to

the extent of their use in the healthcare environment. Should

they be reserved for the disinfection of critical and semi-

critical items/areas only, or should they be used also on

noncritical devices/surfaces? Should the use of biocide-

embedded products (eg, plastics, fabrics) be encouraged or

banned? There is no doubt that the use of chemical biocides

creates a selective pressure. However, it is yet unclear in

practice whether such pressure favors the emergence of

bacterial resistance. It is pertinent to note that the

development of antibiotic resistance as a result of the

selective pressure exerted by their intensive use, and

sometimes misuse, is well documented (WHO 2000).

Monitoring the susceptibility profile of hospital isolates to

biocides might therefore be indicated. This would provide

useful information as to whether bacterial survival in the

healthcare setting following exposure to chemical biocides

results from the bacterial resistance mechanisms (eg, biofilm

persistence) or from disinfection failure following

inappropriate usage. More research is needed to better assess

the effect and efficacy of biocidal policies in practice.

This paper focused mainly on bacterial infection and

did not expend on infection/contamination caused by other

microorganisms such as viruses, fungi, and prions. Among

these microorganisms, prions are the most resistant to

biocides and when the presence of these agents is suspected,

the use of single-use items is recommended. If this is not

possible, special sterilization regimens should be employed

(Taylor and Bell 1993; Taylor 2001; Fichet et al 2004; Rutala

and Weber 2004b). Nonenveloped viruses might also be

particularly resilient to disinfection (Maillard 2001, 2004),

although the virucidal efficacy of biocides and biocidal

policies in situ is poorly documented. Again, more

investigation is needed to gain a better understanding of the

survival capabilities of these microorganisms in the

healthcare environment following disinfection.

Biocides are essential in preventing and controlling

infections in the healthcare environment and the benefits

from their usage currently outweigh possible disadvantages

(Rutala and Weber 2004a). Disinfection of noncritical

surfaces and items, and the usage of biocide-containing

products, need to be reviewed, although the incorporation

of biocides into medical devices to prevent bacterial

infection is promising, if controlled and assessed

appropriately.
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