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Background: Magnetic hyperthermia is currently a clinical therapy approved in the European 

Union for treatment of tumor cells, and uses magnetic nanoparticles (MNPs) under time-varying 

magnetic fields (TVMFs). The same basic principle seems promising against trypanosomatids 

causing Chagas disease and sleeping sickness, given that the therapeutic drugs available have 

severe side effects and that there are drug-resistant strains. However, no applications of this strat-

egy against protozoan-induced diseases have been reported so far. In the present study, Crithidia 

fasciculata, a widely used model for therapeutic strategies against pathogenic trypanosomatids, 

was targeted with Fe
3
O

4
 MNPs in order to provoke cell death remotely using TVMFs.

Methods: Iron oxide MNPs with average diameters of approximately 30 nm were synthesized 

by precipitation of FeSO
4
 in basic medium. The MNPs were added to C. fasciculata choano-

mastigotes in the exponential phase and incubated overnight, removing excess MNPs using 

a DEAE-cellulose resin column. The amount of MNPs uploaded per cell was determined by 

magnetic measurement. The cells bearing MNPs were submitted to TVMFs using a homemade 

AC field applicator (f = 249 kHz, H = 13 kA/m), and the temperature variation during the 

experiments was measured. Scanning electron microscopy was used to assess morphological 

changes after the TVMF experiments. Cell viability was analyzed using an MTT colorimetric 

assay and flow cytometry.

Results: MNPs were incorporated into the cells, with no noticeable cytotoxicity. When a 

TVMF was applied to cells bearing MNPs, massive cell death was induced via a nonapoptotic 

mechanism. No effects were observed by applying TVMF to control cells not loaded with 

MNPs. No macroscopic rise in temperature was observed in the extracellular medium during 

the experiments.

Conclusion: As a proof of principle, these data indicate that intracellular hyperthermia is a 

suitable technology to induce death of protozoan parasites bearing MNPs. These findings expand 

the possibilities for new therapeutic strategies combating parasitic infection.

Keywords: magnetic hyperthermia, magnetic nanoparticles, trypanosomatids, Crithidia 

fasciculata

Introduction
Diseases caused by the Trypanosoma and Leishmania genera affect a global population 

of at least 20 million people, with an estimated at-risk population of approximately 

450 million people.1,2 These statistics indicate that trypanosomatid-induced diseases 

are a severe sanitary problem, with the resulting disease burden affecting much of the 

population residing in the tropical and subtropical regions of the globe.3,4 Despite the 

sanitary relevance of trypanosomatid-induced diseases to human health, no satisfactory 
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treatments exist to combat these infections.5–7 The two 

therapeutic agents that are presently in use for the treatment 

of Chagas disease are nifurtimox and benzimidazole; how-

ever, these drugs were developed approximately 40 years 

ago.8 The main disadvantages of these treatments are a high 

level of toxicity and low therapeutic efficiency during the 

chronic phase of the disease. The latter disadvantage is a 

serious problem because Chagas disease is often diagnosed 

during the chronic phase; therefore, the majority of infected 

people miss the opportunity to be treated using effective 

chemotherapy.9 In addition, several cases of drug-resistant 

or partially resistant strains have been reported for both of 

these drugs.10

The initial stages of Trypanosoma brucei infections, when 

the central nervous system is not compromised, can be treated 

using suramin or pentamidine.11 Again, these drugs are not 

effective during the late stages of the disease (when the major-

ity of cases are diagnosed) because they do not traverse the 

blood–brain barrier. The first-line treatment for these cases 

is melarsoprol, which can cross the blood–brain barrier. 

Melarsoprol is a highly toxic drug that causes a myriad of 

serious side effects, including reactive encephalopathy, in 

approximately 20% of patients receiving this treatment.12 

For the treatment of diseases caused by Leishmania spp., 

pentavalent antimonials are used most often.13 Although 

these drugs are effective for treating the cutaneous form of 

the disease, treatments for the parenteral form are limited. 

In addition, these drugs are highly toxic.

Amphotericin B and pentamidine are considered to be 

second-line drugs because of their serious and/or irrevers-

ible toxic effects. However, these drugs are now being 

reconsidered on the basis of new formulations or dosage 

regimens.13–15 The fact that the majority of drugs currently 

used for trypanosomatid-induced diseases were developed 

approximately 40 years ago reflects the limited success of 

strategies to develop novel therapeutic treatments. This lack 

of success highlights the necessity for new strategies and 

tools to address this important public health issue.

Magnetic hyperthermia is a relatively new medical 

protocol16 that uses magnetic nanoparticles (MNPs) to heat 

areas of the body by application of time-varying magnetic 

fields (TVMFs). The physical mechanisms underlying 

energy absorption by MNPs are related to magnetic relax-

ation of single domains by Arrhenius-Néel processes.4,17 

With the advent of nanotechnology, it has become possible 

to engineer efficient MNPs with the ability to absorb large 

amounts of energy from TVMFs (up to several kW per 

gram of material) to induce a local rise in temperature.18 

Because of their size, these nanoparticles can be incorpo-

rated into target cells, making it possible to heat small foci 

at the single cell level.19 Application of hyperthermia using 

MNPs, alone or in combination with other therapeutic strat-

egies, was proposed more than a decade ago as a therapeutic 

technique to treat cancer.16 In the present study, we used 

Crithidia fasciculata, a nonpathogenic trypanosomatid and 

a well accepted model of other pathogenic trypanosomatid 

parasites,20 to evaluate the use of magnetic hyperthermia 

as a potential trypanocidal treatment. The mechanisms of 

cell death and application of the principles of magnetic 

hyperthermia to treat parasitic diseases are discussed in 

later sections of this paper.

Materials and methods
Reagents and culture media
The chemicals and fetal calf serum used for the present 

study were purchased from Sigma (St Louis, MO). The 

other components of the culture medium were purchased 

from Difco (Lawrence, KS). The apoptosis detection kit 

was purchased from Immunostep (Coimbra, Portugal). The 

diethylaminoethyl (DEAE) cellulose (DE52) was purchased 

from Whatman (Dassel, Germany).

Cells
C. fasciculata choanomastigotes were grown at 28°C in 

Warren culture medium (brain heart infusion 37 g/L, hemin 

100 ng/L, folic acid 100 mg/L) supplemented with 10% 

fetal calf serum. The cells were seeded in 75 cm3 tissue 

culture plates at 1 × 106 cells/mL. C. fasciculata cultures 

were incubated until they reached the exponential phase 

(after approximately 24 hours of incubation). Using daily 

subculturing, the cells were maintained in the exponential 

growth phase for use in the studies. Cell counting was 

performed in a Neubauer chamber. The cells were evalu-

ated for viability by optical microscopic observation of 

flagellar motility and by counting the number of viable 

cells after incubation with 2% Trypan blue in phosphate-

buffered solution.

Magnetic nanoparticles
The MNPs used in the present study were synthesized using 

precipitation of iron (II) salt (FeSO
4
) in the presence of a base 

(NaOH) and a mild oxidant (KNO
3
) under a nitrogen atmo-

sphere, as previously described in the literature.21 Mixing the 

reactants over a 24-hour period resulted in Fe
3
O

4
 particles 

with average diameters of about 30 nm and colloidal stability 

in aqueous medium at pH 7.
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Cell uptake of MNPs and separation  
of nonincorporated MNPs
The cells collected during the exponential growth phase 

were centrifuged and resuspended in fresh culture medium, 

adjusting concentrations to 2.5 × 108 cells/mL. The MNPs 

were added to a final concentration of 0.425 mg/mL and 

incubated at 28°C overnight with gentle agitation. To 

separate the cells from the nonincorporated MNPs, we took 

advantage of the fact that MNPs (isoelectric point 5.0) adsorb 

to DEAE-cellulose resin at pH 7.0 (isoelectric point 2.5), 

whereas C. fasciculata does not interact with the resin under 

these conditions. Briefly, the cells were washed twice with 

phosphate-buffered solution, resuspended in 12 mL of 2% 

glucose in phosphate-buffered solution, and incubated with 

6 g DEAE-cellulose ionic exchange resin that was previously 

equilibrated with glucose in phosphate-buffered solution for 

10 minutes with gentle agitation at room temperature. The 

cells were recovered with an efficiency of more than 95%.

Determination of cell-incorporated 
MNPs by magnetization measurements
The amounts of cell-associated MNPs were determined by 

measuring the saturation magnetization using a supercon-

ducting quantum interference device (MPMS-7T, Quantum 

Design, San Diego, CA). The magnetization measurements 

were conducted on dried MNPs or lyophilized MNP-loaded 

cells, and were performed as a function of the applied mag-

netic field up to 5 kOe (0.4 MA/m) at different temperatures 

between 5 K and 300 K.

Time-varying magnetic field  
application experiments
Aliquots of MNPs (10 mg/mL) or MNP-bearing cells 

(1.7 × 109 cells/mL) were submitted to alternating magnetic 

fields using a homemade AC field applicator. The magnetic 

field applicator, consisting of a resonant LC tank working 

close to the resonant frequency, was used to measure the 

specific power absorption of the samples. A magnetic field 

(f = 249 kHz, H = 13 kA/m) was achieved inside a gap of 

four (2 + 2) turns of a copper tube around high permeability 

polar pieces. The specific power absorption values were 

obtained from adiabatic measurements inside an insulated 

Dewar flask. The temperature data were measured using a 

fiberoptic temperature probe (ReflexTM, Neoptix, Fairport, 

NY) that was immune to the radiofrequency environment. 

Prior to each experiment, temperature evolution was mea-

sured between the 5-minute and 10-minute time points, with 

the RF source turned off to establish a temperature baseline. 

Next, the power was turned on, and the temperature rise was 

monitored for a 30-minute period.

Scanning electron microscopy
Cells in the exponential growth phase were fixed with 2.5% 

glutaraldehyde in 0.1 M sodium cacodylate and 3% sucrose 

solution for 90 minutes at 4°C. The dehydration process was 

conducted by incubating the cells in increasing concentra-

tions of methanol at 30%, 50%, 70%, and 100%. Each of 

these concentrations were used for 5 minutes in duplicate, 

and a final step was conducted using anhydride methanol 

for 10 minutes. A drop of the dehydrated cells in suspension 

was placed over a coverslip. Next, when the methanol was 

evaporated, the coverslip was coated with gold. The samples 

were then observed using scanning electron microscopy 

(EDX Hitachi S-3400 N, Instituto Carboquimica, Zaragoza, 

Spain). Secondary electron images were also performed.

Viability analysis
MTT assay
Cell viability was analyzed using the MTT colorimetric assay. 

For the cytotoxicity assay, 5 × 106 cells (MNPs-/TVMF-, 

MNPs-/TVMF+, MNPs+/TVMF-, or MNPs+/TVMF+) were 

resuspended in 100 µL of Warren culture medium. Next, 

40 µL of MTT dye solution (5 mg/mL in glucose in phosphate-

buffered solution) was added to each aliquot. After 4 hours of 

incubation in Eppendorf tubes at 28°C, the formazan crystals 

were dissolved by addition of 10% sodium dodecyl sulfate 

100 µL. All of the cell debris, which has been shown to inter-

fere with the assay, was removed by centrifugation (10 minutes 

at 13,000 × g ). Next, absorbance of each supernatant was 

read using a microplate reader (Biotek ELX800, Winooski, 

VT) at 570 nm. The spectrophotometer was calibrated to 

zero absorbance using a culture medium without cells. The 

relative cell viability (%) compared with the control cells (the 

exponential-phase cells not submitted to any treatment) was 

calculated as [absorbance] test/[absorbance] control × 100. 

Each measurement was repeated at least five times to obtain 

mean values with standard deviations.

Flow cytometry
The cell viability was also measured using flow cytometry 

with a commercial apoptosis detection kit purchased from 

Immunostep. Briefly, 1 × 106 cells from each sample were 

resuspended in annexin-binding buffer, stained with 5 µL 

of annexin and 5 µL of propidium iodide, and incubated for 

15 minutes at room temperature in the dark. The cell analysis 
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was performed using the FACSAria cytometer (Becton Dick-

inson, Franklin Lakes, NJ) and FACSDiva software.

Results and discussion
The magnetic and physicochemical properties of the MNPs 

used in the present study have been reported elsewhere.22 

The magnetic colloids were composed of cubic Fe
3
O

4
 

nanoparticles with an average diameter of 30 ± 8 nm and 

saturation magnetization at room temperature of 85 emu/g, 

which is close to that of the bulk magnetite magnetization.23 

This synthesis route resulted in magnetic colloids with an 

isoelectric point of 5.0, electrostatically stabilized due to 

adsorption of SO
4

2- groups on the particle surface. The abil-

ity to dissipate heat under a TVMF of any type of MNP is 

measured by the specific power absorption given in watts 

per gram of magnetic material, which for the present MNPs 

and experimental conditions (f = 249 kHz, H = 13 kA/m) 

was found to be 83.6 W/g,22 comparable with other specific 

power absorption values reported in the literature for Fe
3
O

4
 

particles of similar size.24–26 The selection of MNPs was made 

based on the known dependence of specific power absorp-

tion values on an average particle size and size distribution. 

Indeed, the strong dependence of the Nèel relaxation-based 

model on particle size yields a maximum value of specific 

power absorption for magnetite MNPs within a narrow range 

of diameters around 15–30 nm,4 as experimentally confirmed 

in many colloidal system yields.3,19,21 The precise value for 

this maximum will depend on other magnetic properties 

of the MNPs, such as magnetic anisotropy and saturation 

magnetization.

The optimal experimental conditions for C. fasciculata 

to incorporate MNPs were determined by a series of 

experiments as a function of incubation time, incubating 

C. fasciculata with a fixed MNP concentration for increasing 

times from 15 to 240 minutes. After incubation, the nonin-

corporated MNPs were separated by the column method 

detailed in the Materials and Methods section. The mass 

of magnetic material incorporated per cell was determined 

by measuring the saturation magnetization of 100 µL of 

culture medium containing about 109 cells and comparing 

these values with the magnetization of pure colloid.27 From 

these data and the average particle size, the average number 

of MNPs incorporated per cell was calculated (Table 1). The 

number of MNPs incorporated decreased from a maximum 

of approximately 108 nanoparticles per cell after 15 minutes 

of incubation to approximately 106 nanoparticles per cell 

after 1 hour of incubation. Shorter incubation times resulted 

in low and highly variable cell charging, possibly due to 

the fact that the cells require an induction time to activate 

biological mechanisms to incorporate the MNPs. The time 

course of this decrease in cell-associated MNPs followed an 

exponential decay (R2 0.9998), reaching a near-steady state 

after approximately 1 hour of incubation, which remained 

essentially constant for up to 12 hours of incubation (Figure 1 

and Figure S1). From these experiments, we established 

15 minutes of incubation as being the optimal condition for 

charging the cells with a reproducible and defined number 

of MNPs per cell.

To evaluate the suitability of MNPs for hyperthermic 

applications, it was necessary to assess the influence of 

these nanoparticles on cell viability and on incorporation and 

separation conditions. It was observed that, when compared 

with cells in the exponential phase, the nanoparticle-treated 

or mock-treated cultures submitted to separation condi-

tions (incubated with DEAE-cellulose resin in glucose in 

phosphate-buffered solution) remained more than 95% viable 

(data not shown). This finding illustrates that the cell death 

observed in subsequent experiments was not due to previous 

exposure of the cells to toxic conditions.

hyperthermia experiments
After the best conditions for maximum uptake of MNPs by 

the cells were determined (15 minutes of incubation, as stated 

above), the hyperthermia experiments were performed. The 

experiments were designed in a 2 × 2 row-column format 

(Figure 2), in which the four groups were defined as follows: 

cells not-bearing MNPs that were not submitted to TVMFs 

(MNPs-/TVMF-); cells bearing MNPs that were not submit-

ted to magnetic field application (MNPs+/TVMF-); cells not 

bearing MNPs that were submitted to magnetic field appli-

cation (MNPs-/TVMF+); and cells bearing MNPs that were 

submitted to magnetic field application (MNPs+/TVMF+). 

Table 1 Average number of magnetic nanoparticles incorporated within a single cell as a function of incubation time, as calculated from 
the saturation magnetization of magnetically loaded cells

Time 15 minutes 30 minutes 45 minutes 1 hour 1.5 hours 2 hours 4 hours 12 hours

Mass of Fe3O4 (pg/cell) 12.3 0.55 0.31 0.14 0.22 0.15 0.23 0.18
Number of MNPs (×106)/cell 87 3.9 2.2 1.0 1.6 1.1 1.6 1.3

Abbreviation: MNPs, magnetic nanoparticles.
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The effects of the abovementioned treatments on cell 

viability were evaluated using several criteria, including 

direct observation of cell motility using optical micro-

scopic observation, mitochondrial activity using an MTT 

assay, and detailed morphology using scanning electronic 

microscopy (SEM). Qualitative observation of the samples 

examined using the previously described treatments showed 

that the MNPs+/TVMF+ population caused 100% cell death 

(see Supplementary materials). Quantitative analysis of the 

cells by MTT assay revealed that the cell viability of all 

of the other samples was not affected compared with the 

control (MNPs-/TVMF-, Figure 3). Analysis of all four 

samples using SEM revealed severe structural damage in 

cell morphology only for the MNPs+/TVMF+ population, 

particularly at the level of the cell surface, indicating severe 

plasma membrane damage (Figure 4).

Cell death
Because application of the TVMFs was performed in 

an adiabatic device, hyperthermia treatment could have 

produced a transient macroscopic increase in the sample 

temperature due to differences in rates of heat generation 

and dissipation. When a positive control experiment was 

conducted by applying a TVMF to a suspension contain-

ing only MNPs (Figure 5), the sample showed a large 

increase in temperature of about 50°C over the 30 minutes 

of the experiment. Therefore, we tested whether a similar 

increase in average temperature might have contributed to 

the amount of cell death by monitoring the temperature of 

the extracellular medium during application of TVMF. The 

results for both the controls and magnetically loaded cells 

showed only a slight macroscopic increase in temperature 

(about 2°C–4°C) after 30 minutes of TVMF application. 

This result (ie, an absence of temperature increase in samples 

composed of magnetically loaded cells) is expected, based 

on the much lower “average concentration” of MNPs in these 

samples, because the small amounts of uploaded MNPs are 

contained within a total volume of about 0.5 mL of liquid 

cell medium.

These results clearly demonstrate that the heat released 

from the MNPs was not enough to increase the average 
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Figure 1 Number of magnetic nanoparticles uploaded per cell as a function of 
incubation time. 
Notes: The observed decrease of incorporated magnetic nanoparticles followed 
an exponential decay, and reached a near-steady state for incubation times longer 
than 1 hour. 
Abbreviation: NP, nanoparticles.

Figure 2 Schematic view of the experimental 2 × 2 design for evaluating the effect 
of magnetic nanoparticles and time-varying magnetic fields on Crithidia fasciculata. 
(A) Cells without magnetic nanoparticles not submitted to magnetic fields. (B) Cells 
with magnetic nanoparticles without magnetic field application. (C) Application of 
magnetic fields on unloaded cells. (D) Application of magnetic fields on magnetic 
nanoparticle-loaded cells.
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Figure 3 MTT assay results for the four conditions displayed in Figure 2. 
Notes: All samples showed 100% of cell viability except in the case of time-varying 
magnetic fields applied on magnetically loaded cells, which caused 95% ± 5% cell death.
Abbreviations: MNPs-/TVMF-, cells not-bearing MNPs that were not submitted to 
TVMF; MNPs+/TVMF-, cells bearing MNPs that were not submitted to magnetic field 
application; MNPs-/TVMF+, cells not bearing MNPs that were submitted to magnetic 
field application; MNPs+/TVMF+, cells bearing MNPs that were submitted to magnetic 
field application; MNPs, magnetic nanoparticles; TVMF, time-varying magnetic field; 
MTT, (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
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temperature of the cell culture in such a way that would 

compromise viability of the cells. Therefore, the origin of 

cell death measured after application of TVMF should not 

be related to thermal stress. This is in agreement with previ-

ous works on magnetically loaded human dendritic cells,19,28 

demonstrating that application of TVMF for 30 minutes 

yielded up to 90%–95% cell death, without affecting blank 

cells without MNPs. Similar results have been reported in an 

HeLa cell line29 loaded with MNPs. Some theoretical models 

of metal nanoparticles have also suggested this possibility.30 

Because the temperature was essentially constant during the 

experiments, the cell death observed suggests an intracellu-

lar MNP-triggered mechanism different from the apoptosis 

induced by hyperthermia. However, because the temperature 

was measured with a macroscopic sensor, the possibility of 

intracellular heating up to apoptotic temperatures cannot be 

excluded.

To evaluate the plausibility of intracellular heating dur-

ing our experiments, a simplified heat transfer model at the 

single-cell level was considered, eg, a single cell magnetically 

loaded with MNPs, surrounded by a large matrix of unloaded 

cells (or culture medium free of MNPs). We estimated the 

expected intracellular temperature increase in such a case 

based on the measured mass of MNPs in the intracellular 

medium, the calculated average cell volume from SEM 

images (230 ± 50 µm3), and the measured specific power 

absorption values of the pure magnetic colloid. For simplic-

ity, we further approximated the specific heat capacity of a 

single cell to the pure water value of C
P
 = 4.18 J/(g · K). From 

the average cell volume and MNP upload (1–10 pg/cell), we 

estimated a temperature increase rate of 0.02–0.87 K/sec. The 

above calculations were made considering that no heat was 

dissipated from the intracellular medium to the cell environ-

ment, which was a clearly unrealistic hypothesis. Because 

the cell membrane has non-negligible thermal conductivity, 

the calculated heating rates were not enough to increase the 

intracellular temperature up to the 41°C–45°C needed for 

triggering thermally induced apoptotic mechanisms.

Several prior studies suggest that apoptosis-related 

mechanisms are a main cause of hyperthermia-associated cell 

death.19,31 Apoptosis (cellular programmed death) is a precise 

mechanism in which cells follow a programmed sequence of 

events to induce their death, with minimal disturbance to the 

total cell population.32 This phenomenon appears to be pres-

ent in a wide range of organisms, from primitive single-cell 

to higher multicellular eukaryotes. In the present work, we 

investigated whether the cell death of C. fasciculata induced 

by magnetic hyperthermia was attributable to apoptosis. An 

early event considered to be a marker of apoptosis is the 

appearance of phosphatidylserine on the external surface of 

the plasma membrane. Cells that incorporated nanoparticles 

and controls that were either submitted or not submitted to 

the magnetic field were incubated with annexin (used to 

detect the presence of phosphatidylserine) and propidium 

iodide (used to detect damage to the plasma membrane). 

Next, the four populations of cells were analyzed using flow 

cytometry. As illustrated in Figure 6, the results confirm 

100% viability for MNPs-/TVMF-, MNPs+/TVMF-, and 

MNPs-/TVMF+ cell samples and 0% viability of MNPs+/

TVMF+ cells. In this last case, it was observed that the cells 

were reactive to annexin and permeable to propidium iodide, 

indicating plasma membrane damage, which was confirmed 

using SEM (Figure 4). These results suggest that application 

Figure 4 Scanning electron microscopy images of MNPs+ (magnetic nanoparticles)/
TVMF+ (time-varying magnetic field) sample before (A) and after (B) application of 
magnetic fields. 
Note: In the latter case, the changes in cell morphology can be clearly observed, 
reflecting the severe cell damage after TVMF. 
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Figure 5 Specific power absorption of magnetic colloid (solid squares) at 1% weight 
concentration, and the nanoparticle-loaded protozoa (solid line) during application 
of AC magnetic field (H = 160 Oe, f = 250 khz). 
Abbreviations: MAN, magnetic colloid; C. fasciculata, Crithidia fasciculata; 
T, temperature; t, time.
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of TVMF to cells incorporating MNPs results in cell death 

via a nonapoptotic mechanism. Recent work on application 

of TVMF in magnetically loaded cells showed that a large 

decrease in cell viability can be achieved without an actual 

temperature increase in the cell medium.29,33 Furthermore, 

it has been reported that, in the case of magnetically loaded 

dendritic cells, the percentage of cell death was proportional 

to the amount of MNPs taken up.34 Because the cell death 

observed in our work corresponds to the maximum amount 

of uploaded MNPs (ie, after 15 minutes of cocultivation), 

it is still to be determined whether a similar effect could be 

achieved with smaller amounts of uploaded MNPs.

Taken together, our results lead us to propose that, in 

this case, irreversible cell injury due to mechanical stress 

(evidenced by SEM) in MNPs+/TVMF+ cell samples is the 

main cause of death. Theoretical calculations on the effect of 

the power released by MNPs on the cell membrane supports 

this hypothesis.35 However, it is worth mentioning that other 

factors, such as liberation of toxic proteins into the cytoplasm 

due to disruption of membranes compartmentalizing them 

inside specific organelles like lysosomes, cannot be ruled out 

as simultaneous cause of cell injury and death.

Conclusion
In conclusion, the series of experiments reported here dem-

onstrated as a proof of principle that magnetically induced 

hyperthermia can cause death of micro-organisms. Our results 

also illustrate that hyperthermia is a thermal phenomenon at a 

subcellular level because no macroscopic increase of tempera-

ture was observed. We were able to show that hyperthermia 

was specific for cells incorporating MNPs and submitted to 

TVMF because neither the nanoparticles nor TVMF alone 

resulted in loss of viability. Lastly, cells submitted to the 

hyperthermia treatment were dramatically damaged at the 

Specimen_001-NPS AP

FITC-AFITC-A
102

10
2

10
3

10
4

10
5

–1
02

0

–85

–2
31

103 104 105

Specimen_001-BS AP

P
I-

A

Q1 Q2

Q4

FITC-A
102

10
2

10
3

10
4

10
5

–1
02

0

–81 0

–2
35

103 104 105

Specimen_001-BS AP

P
I-

A

Q1 Q2

Q4

102

10
2

10
3

10
4

10
5

–1
02

0

–81 00

–2
15

103 104 105

P
I-

A

Q1 Q2

Q4

Specimen_001-NPC AP

FITC-A
1021010

10
2

10
3

10
4

10
5

–1
02

0

–25

–5
97

103 104 105

P
I-

A

Q1 Q2

Q4Q3

A B

C D

Figure 6 Flow cytometry results of the 2 × 2 experiments shown in Figure 2 (see text for details). Experiments (A–C) showed 89%–91% cell viability, whereas for 
experiment (D), application of magnetic fields for 30 minutes on magnetically charged cells resulted in only 9% cell survival. 
Abbreviations: P1-A, propidium iodide; FITC, fluorescein isothiocyanate.
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plasma membrane level. It should be stressed that although this 

methodology is being extensively investigated and is currently 

used for mammalian cells, to our knowledge, it is not currently 

being proposed to treat diseases caused by micro-organisms. 

The present study highlights this method as a potential and 

novel alternative to treat infections caused by micro-organisms. 

A major advantage of this method is that it causes selective 

physical damage to target cells. Therefore, the probability of 

emergence of resistant strains is small. More detailed studies 

are also being conducted to identify the mechanisms involved 

in cell death in greater detail. Developing delivery systems 

with the capability to direct MNPs specifically to infectious 

agents remains a challenge. These findings lead us to propose 

this method as a novel strategy for developing new therapeutics 

against pathogenic micro-organisms.
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Figure S1 Magnetic response at T = 10 K from (A) unloaded cells, (B) response from Crithidia fasciculata cocultured with MNPs (sample incubated for 15 minutes), 
(C) difference between loaded and unloaded cells (B - A), and (D) pure magnetic colloid. Note that for the pure colloid (D), the curve was divided by 1.35 × 104 to fit the 
same scale as the magnetic signal from loaded cells (C).
Notes: To calculate the amount of magnetic material mmag incorporated by the cells, the MS values from the pure colloids and from the magnetic nanoparticle-loaded cells 
were calculated as m Number of cells.mag [g/cell] M/MS= ×  The number of magnetic nanoparticles per single cell was estimated from the known average particle diameter.

Supplementary materials

• File "a.mov": Cells without magnetic nanoparticles not submitted to magnetic fields
• File "b.mov": Cells with magnetic nanoparticles without magnetic field application
• File "c.mov":  Application of magnetic fields on unloaded cells
• File "d.mov":  Application of magnetic fields on magnetic nanoparticle-loaded cells

The 2 × 2 design for evaluating the effect of magnetic nanoparticles 
and time-varying magnetic fields on Crithidia fasciculata
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