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Abstract: The advent of personalized medicine has ushered in a new era for cancer therapy 

with a significant impact on the management of advanced melanoma. Molecular targeted thera-

pies have shown promise in the management of various malignancies, including melanoma, 

with lower toxicity profiles and better overall survival as compared with conventional therapy. 

The discovery of BRAF mutations in melanoma led to the development of BRAF inhibitors 

for the treatment of advanced melanoma. However, growing concerns over drug resistance 

to molecular targeted therapies including BRAF inhibitors, have spurred efforts to elucidate 

additional molecular targets for the treatment of advanced melanoma. In this review, we discuss 

the known molecular aberrations in melanoma, current and novel targeted approaches in its 

treatment, and drug resistance patterns.
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Introduction
Malignant melanoma is the fifth and sixth most common new skin cancer diagnosis in 

men and women, respectively, in the United States. Among the skin cancers, melanoma 

has the greatest metastatic potential, with metastatic disease occurring in 10%–15% of 

patients at diagnosis.1,2 Metastatic melanoma has a dismal prognosis, with a five-year 

overall survival of 15%. Over the past 40 years, limited progress has been made in the 

treatment of metastatic melanoma through the use of chemotherapy, immunotherapy, 

biochemotherapy, and combinations thereof.3,4

Conventional chemotherapy with dacarbazine and temozolomide has yielded poor 

response rates of 7%–20% and a median survival of nine months, with mild toxicity 

profiles.5,6 Immunotherapies such as interleukin-2, while achieving durable responses 

(response rate 16%, median duration of response 8.9 months) in metastatic melanoma, 

are associated with significant toxicity3 and offer limited options for effective and safe 

therapies for management of metastatic melanoma.7,8

Two new immunotherapeutic agents, ie, ipilimumab (recombinant, fully human 

IgG1 monoclonal antibody against cytotoxic T lymphocyte-associated antigen 4 

[CTLA-4]) and anti-programmed cell death 1 [PD-1], show promise as potentially 

effective therapies with manageable side effect profiles in metastatic melanoma. 

 Ipilimumab has an overall response rate of 10.9%, and in those patients who respond, 

over half have a durable response.9,10 The major limitations are that at this time there 

is no way to predict these responders, and side effects include numerous immune-

mediated toxicities. A T cell regulator that functions similarly to CTLA-4 is PD-1. The 

PD-1 ligand allows tumors to evade the host immune response. PD-1 ligand  antibodies 
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have been shown to enhance tumor immune response in 

patients with melanoma.11 Other promising therapies include 

several angiogenesis-promoting molecules, such as vascular 

endothelial growth factor.12 In spite of recent advances in 

immune-based therapy, and given the absence of long-term 

remissions in the majority of treated patients, new treatments 

for metastatic melanoma are needed.

Recent advances in molecular biology and genomics 

have uncovered the molecular heterogeneity of tumors and 

facilitated a shift in anticancer therapy strategies from the 

traditional “one-size-fits-all” approach to an individualized 

approach to therapy.13,14 Key molecular drivers of tumor 

oncogenesis and mechanisms of tumor resistance have been 

uncovered, revealing the limitations of reliance solely on 

the clinical and pathological classification of tumors. This 

knowledge has resulted in the development of new treatment 

strategies that rely on therapy targeted towards identified 

functional genetic mutations, resulting in improved tumor 

response rates and relatively tolerable side effect profiles.15

The discovery of activating mutations in serine/threonine 

kinase, BRAF (v-raf murine sarcoma viral oncogene homolog 

B1) in 50%–60% of melanomas (superficial spreading type) 

in 2002 spurred investigations into the development of 

targeted therapies. This ultimately resulted in the approval 

of vemurafenib, a BRAF inhibitor, by the US Food and Drug 

Administration in August 2011 for the treatment of locally 

advanced/unresectable or metastatic BRAF-mutated malig-

nant melanoma.16,17 The purpose of this review is to discuss 

the conventional and novel molecular targeted treatment 

approaches for the management of advanced melanoma 

and show the major drug resistance patterns associated with 

BRAF inhibitor therapies.

Molecular pathogenesis  
of melanoma and implications  
for targeted therapy
Melanoma is a heterogeneous disease reflected by its com-

plex pathobiology. Recent advances in molecular genomic 

techniques have enabled the elucidation of functionally 

relevant cellular processes implicated in the oncogenesis 

of melanoma. Dysregulation of the cell growth cycle and 

signaling represent key mechanisms for tumor growth and 

persistence in melanoma and are the predominant molecular 

events in the majority of cases.

Cell cycle changes
Cell cycle dysregulation in melanoma represents one of the 

most important pathogenetic mechanisms for its oncogenesis, 

resulting in uncontrolled cellular proliferation. The most 

prominent molecular target is the CDKN2A locus (chromo-

some 9p21) that acts as a tumor suppressor in melanoma. 

Germline and somatic mutations in CDKN2A account for 

10%–40% of familial melanoma,18 and 10% of all melano-

mas are familial in origin.19 The absolute risk for melanoma 

in individuals with the CDKN2A mutation is modulated by 

identifiable heritable traits (skin, hair, and eye color, large 

numbers of benign and atypical nevi, giant congenital nevi 

or a family history of melanoma) and environmental factors 

(history of sunlight exposure).20,21–24 In familial cases, the 

risk for development of melanoma by the age of 50 years is 

50% in the United States, and 76% by the age of 80 years.25 

In sporadic CDKN2A mutation carriers, the risk of melanoma 

is much lower, at 14%, 24%, and 28% by the ages of 50, 70, 

and 80 years.26

CDKN2A encodes two distinct proteins, p16INK4A and 

p14ARF, which both act as tumor suppressors by inhibiting 

progression of the cell cycle through negative regulation 

of the RB1 and p53 pathways, respectively. Therefore, 

genetic aberrations that lead to functional loss of either of 

these proteins (p16INK4A and p14ARF) will ultimately result in 

uncontrolled cellular proliferation. While initial studies of 

first-generation CDK inhibitors, such as flavopiridol, failed to 

demonstrate efficacy in preclinical studies, second-generation 

CDK inhibitors (SCH 727965), have shown more promising 

results in halting melanoma progression in mouse xenografts. 

This effect is potentiated when CDK inhibitors are combined 

with paclitaxel.27,28

RB1 is the central piece of the pathway controlled by 

p16INK4A, serving in its unphosphorylated form to sequester 

E2F transcription factor, preventing it from inducing gene 

expression critical for transition from the G1 to the S phase 

of the cell cycle. RB1 phosphorylation leads to release of 

E2F, enabling it to induce expression of the target genes 

necessary for progression from the G1 to S phase of the cell 

cycle. Phosphorylation of RB1 is performed by a catalytic 

complex composed of cyclin D1 and CDK 4 or 6. The activity 

of this catalytic complex is dependent on levels of p16INK4A. 

High levels of p16INK4A lead to suppression of the activity 

of the cyclin D1-CDK4/6 complex, with resulting suppres-

sion of RB1 phosphorylation and suppression of release of 

EF2 sequestration and ultimately cell cycle arrest at the G1/S 

step. However, when levels of p16INK4A are low, inhibition of 

the catalytic complex is released, resulting in progression of 

the cell cycle. Genetic mutations that affect the CDKN2A 

locus occur as deletions of p16INK4A in 50% of melanomas 

and as inactivating point mutations in 9% of melanomas.29 
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This suggests that p16INK4A serves a critical role in cell cycle 

regulation in melanocytes. Less common mutations include 

amplifications and point mutations of the CDK4 gene, result-

ing in constitutive activation of the CDK4/cyclin D1 complex, 

overexpression of CDK6, and inactivating mutations in the 

RB1 gene (6% of melanomas).29

TP53 is the most common gene mutation in human 

cancer and p53 transcription factor controls various genes 

responsible for cell cycle arrest, senescence, DNA repair, 

and cell death. However, TP53 mutations represent a low 

frequency event in melanoma, occurring in only 9% of 

melanomas.30 MDM2 is one of the negative regulators of 

p53 and is regulated by p14ARF (one of the protein products 

of CDKN2A) which, when bound to MDM2, inhibits its 

function and stabilizes p53.20 Mutations in p14ARF result in 

restoration of MDM2 activity and ubiquitination of p53 by 

MDM2, with resulting degradation and destabilization of 

p53.31 This loss of p53 through mutations in p14ARF and active 

MDM2 eventually leads to cell cycle progression. Therefore, 

the MDM2-p53 interaction is a possible treatment target for 

tumors because blocking MDM2 stabilizes and reactivates 

p53, allowing for tumor suppression.32 MDM2 antagonists 

are just beginning clinical trials.

Cell signaling changes
Dysregulation of the signal transduction pathway for 

mitogen-activated protein kinase (MAPK), also known as 

RAS/RAF/MEK, plays a key role in multiple human cancers, 

including melanoma. Activation of MAPK signaling by 

mutations is implicated in 90% of melanomas.33 Signaling 

through the MAPK pathway occurs through extracellular 

signals that lead to the binding of a broad array of receptor 

tyrosine kinases, which results in activation of Ras, a small 

G-protein with three isoforms, HRAS, KRAS, and NRAS, 

with resultant downstream effects of cellular proliferation 

and survival. Al-Mulla et al demonstrated the variable 

effects of Ras mutations on the invasiveness of tumors in 

vitro, with implications for the biologic behavior of these 

tumors in vivo.34 The receptor tyrosine kinases include 

growth factor receptors, such as epidermal growth factor 

receptor, c-KIT, platelet-derived growth factor receptor, 

vascular endothelial growth factor receptor, and fibroblast 

growth factor receptor.35 Binding of growth factors to recep-

tor tyrosine kinases leads to activation of Ras, resulting in 

formation of a complex between Ras and one of the RAF 

serine/threonine kinase isoforms, ie, ARAF, BRAF, or 

RAF1 (CRAF). Formation of the Ras-RAF complex leads 

to activation of RAF and phosphorylation and activation of 

MEK that, in turn, activates MAPK isoforms (also known 

as ERK), including MAPK3 and MAPK1. MAPK3 and 

MAPK1 activation results in an array of downstream effects, 

including increased proliferation, protection from apoptosis, 

and increased survival through induction of transcription 

factors and cell cycle proteins in the nucleus.20,35 Ras activa-

tion ultimately results in stimulation of multiple intracellular 

signaling pathways, including the MAPK pathway, Ral gua-

nine nucleotide exchange factors, and the phosphoinositide 

3-kinase (P13K/AKT) pathway.36

The predominant mutations in the MAPK pathway lead-

ing to its constitutive activation are mutations in BRAF. Of 

all malignancies, activating mutations in BRAF are present 

at the highest frequency (27%–68%) in melanomas.16,37 The 

mutation that accounts for the majority (60%–100%) of all 

BRAF mutations in melanoma involves substitution of a glu-

tamate for valine at position 600 (V600E).38,39 This results in 

downstream activation of MAPK and ultimately proliferation 

and survival of melanoma. Hence BRAF V600E represents 

an attractive molecular target for treatment of melanoma. The 

BRAF V600E mutation has also been described in benign 

melanocytic proliferations, suggesting that this mutational 

event alone is not sufficient for tumorigenesis and that 

additional genetic insults are required for transformation to 

melanoma.20 Intermittently sun-exposed skin, as well as acral 

and mucosal melanomas, commonly bear BRAF mutations.40 

MAPK signaling in melanocytes via growth factor-mediated 

activation of adenylate cyclase primarily occurs through 

BRAF and likely explains the high frequency of BRAF muta-

tions seen in melanoma. An increase in adenylate cyclase 

activity results in accumulation of cyclic AMP and activation 

of protein kinase. Activated protein kinase A inhibits CRAF, 

enabling signaling to proceed via BRAF.41

Mutations in the Ras proteins, NRAS, HRAS, and KRAS, 

are less common events in melanoma, accounting for 20%, 

2%, and 1% of all melanomas, respectively. These Ras muta-

tions appear to represent early events in the oncogenesis 

of melanoma, with additional mutational events necessary 

to initiate oncogenic transformation.42 The most common 

(.80%) mutation in NRAS is a point mutation that results 

in substitution of glutamine for leucine at position 61.43 

This point mutation leads to dysfunctional GTPase activity 

that maintains the Ras protein in an activated (GTP-bound) 

state. NRAS-mutated melanomas appear to have distinctive 

clinical, histopathologic, and prognostic features. The typi-

cal clinical presentation is in older individuals (.55 years 

of age) on chronically photoexposed skin of the extremities. 

Histopathologic features include thicker tumors without 
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ulceration and higher mitotic rates compared with BRAF-

mutant melanomas. Mutant NRAS melanoma has a worse 

overall survival than wild-type NRAS melanoma.44–46 Mutant 

NRAS melanoma is dependent on CRAF and not BRAF 

signaling for growth factor-mediated MAPK signaling. This 

pathway relies on two parallel mechanisms, including Ras 

isoform switching, that permits inactivation of BRAF by 

causing its phosphorylation thereby preventing Ras/BRAF 

association, and increased expression of the cyclic AMP 

degrading enzyme, phosphodiesterase IV, which restricts 

protein kinase A activity and ultimately prevents phospho-

rylation of CRAF at its inhibitory sites, promoting CRAF-

mediated MAPK signaling.41 The latter mechanism presents 

an opportunity for therapeutic targeting of phosphodiesterase 

IV through its inhibition in melanomas with Ras mutations 

that are resistant to BRAF V600E inhibitors.47 While phos-

phodiesterase IV antibodies have demonstrated therapeutic 

potential for the management of chronic obstructive pulmo-

nary disease and asthma,48,49 there are no definitive studies 

evaluating their clinical efficacy in mutant NRAS or wild-

type BRAF melanoma. However, preliminary findings have 

demonstrated inhibition of growth potential and increased 

apoptosis of mutant NRAS melanoma cell lines.47

BRAF inhibitors: mechanisms  
of action and drug resistance 
patterns
Recognition of multiple mutations in melanoma within com-

ponents of the MAPK signaling pathway has led to interest 

in targeted therapies, especially given the lack of evidence 

for improved overall survival rates with conventional 

therapies, such as interleukin-2 and chemotherapy.50 While 

mutations in both NRAS and BRAF have been identified in 

melanoma,16,51 therapies targeting the MAPK pathway have 

focused on inhibition of BRAF and MEK. Initial attempts 

to inhibit BRAF in melanoma used sorafenib, a tyrosine 

kinase inhibitor that inhibits multiple tyrosine kinases, 

including BRAF. However, sorafenib does not block the 

V600E mutation, and therapy alone or in combination with 

chemotherapy did not demonstrate benefit.52–54 More selective 

BRAF inhibitors were developed, and in 2011 the US Food 

and Drug Administration approved the selective inhibitor, 

vemurafenib, for patients with malignant melanoma bearing 

the activating BRAF (V600E) mutation. In a Phase I trial, 

81% of patients with V600E-positive metastatic melanoma 

responded to treatment. Overall, 26 of 32 patients showed 

a partial response (defined as a decrease by at least 30% 

in the sum of the largest diameter of each target lesion), 

including two with complete resolution.55 A randomized 

controlled Phase III trial compared vemurafenib with a 

commonly used standard chemotherapy agent, dacarbazine, 

in 675 patients with untreated V600E-positive metastatic 

melanoma. At six months, overall survival was 84% in the 

vemurafenib group and 64% in the dacarbazine group.17 After 

the interim analysis, crossover to vemurafenib from dacarba-

zine was recommended, and an updated analysis continues 

to show improvement in overall survival and progression-

free survival.17 While the initial response can be dramatic, 

progression-free survival has ranged from 5–7 months,17,57 

leading to concern about drug resistance. Indeed, secondary 

mutations in addition to BRAF have been observed with 

progressive disease.58,59

Dabrafenib is another selective BRAF inhibitor that 

has shown significant activity in patients with metastatic 

melanoma in Phase I/II studies.60 Further clinical trials 

are underway with dabrafenib. It is important to note that 

the BRAF inhibitors, vemurafenib and dabrafenib, are the 

first treatments to show benefit in patients with metastasis 

to the brain.61,62 In addition, while vemurafenib has been 

studied in patients with the V600E mutation, studies with 

dabrafenib are examining activity in non-V600E and V600K 

mutations.56,62

Importantly, vemurafenib and dabrafenib have been well 

tolerated overall, with the most common side effects being 

cutaneous. Patients can experience fatigue and arthralgias 

with both agents, but unlike vemurafenib, approximately 

10% of patients on dabrafenib also develop pyrexia.63 Patients 

can experience significant photosensitivity and rash that can 

require dose reduction, and epithelial neoplasms ranging 

from benign keratosis to keratoacanthomas and squamous 

cell carcinomas are common, and can affect up to 20%–30% 

of patients on vemurafenib.17,64 The mechanism underlying 

increased rates of malignant squamous proliferations with 

BRAF inhibitors is thought to involve disruption of the 

MAPK pathway, where inhibition of RAF activity leads to 

increased activity in RAS. RAS mutations are common in 

cutaneous squamous cell carcinomas and keratoacanthomas, 

and the paradoxical activation of RAS seen with BRAF 

inhibition accelerates the oncogenic process.65 There is also 

concern that BRAF inhibition may induce carcinogenesis 

in other melanocytic proliferations or other organs through 

a similar mechanism. For example, new wild-type BRAF 

primary melanomas have been found to arise in patients 

subsequent to treatment with BRAF inhibitors.66

Understanding drug resistance for selective BRAF inhibi-

tors remains a major concern and area of interest. Although 
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the pathway that leads to squamous cell carcinoma with 

BRAF inhibitors seems to have been elucidated, studies 

suggest resistance is due to more complex compensatory 

activation of numerous components of the MAPK pathway. 

There can be upregulation of receptor tyrosine kinases, such 

as platelet-derived growth factor receptor-β and insulin-like 

growth factors, secondary NRAS mutations, and activation 

of MEK.58,59 MEK activation can occur through various muta-

tions in MEK1.67 COT kinase is an activator of the MAPK 

pathway that does not require RAF signaling, and upregula-

tion of COT kinase has been shown to promote resistance to 

BRAF inhibitors.68 In addition, increased phosophorylated 

ERK1/2 levels have been observed in melanomas with 

acquired resistance to vemurafenib.67 Finally, BRAF V600E 

splice variants, reported in colon and thyroid cancer, lead to 

reactivation of feedback in the MAPK pathway via MEK and 

the receptor tyrosine kinase, epidermal growth factor recep-

tor.69–71 The possibilities for potential combinations allowing 

for drug resistance are clearly numerous and complex. These 

resistance patterns support consideration of combination 

therapies, including BRAF inhibitors and drugs that target 

other members of the MAPK pathway.

Future directions in molecular-
targeted therapy for melanoma
With limited disease-free survival rates and drug resistance 

following treatment with BRAF inhibitors, additional treat-

ment options are needed. Efforts are underway to find other 

targeted therapies within the MAPK pathway that could be 

used alone or in combination with BRAF inhibitors. There 

has been significant investigation into MEK inhibition. Phase 

III trials comparing trametinib, a MEK inhibitor, with chemo-

therapy in patients with BRAF V600E/K mutant malignant 

melanoma show improved overall survival and progression-

free survival.72 The combination of dabrafenib and trametinib 

has shown improved progression-free survival as well as 

reduction in the rate of secondary cutaneous neoplasms 

(such as squamous cell carcinoma).73 Based on the numerous 

pathways for resistance, MEK inhibition alone is unlikely to 

be the only answer to BRAF resistance. Nonetheless, MEK 

inhibitors have shown promise.

Another option being explored for targeted therapy in 

melanoma is the receptor tyrosine kinase, c-KIT (or CD117). 

Activating c-KIT mutations have been reported in approxi-

mately 20%–30% of certain subtypes of melanoma, including 

acral melanomas and mucosal melanomas, and melanomas 

that develop on photodamaged skin.74 The most common 

point mutation is L576P in exon 11, but point mutations 

also occur in exons 13, 17, and 18.75 Other tumors, including 

gastrointestinal stromal tumors with c-KIT mutations have 

been responsive to the tyrosine kinase inhibitor, imatinib.76 

Therefore, Phase II trials were conducted with imatinib in 

patients with acral or mucosal melanoma or melanomas on 

chronically sun-damaged skin that harbored KIT mutations 

or amplifications. Response rates of 16%–23% with a small 

number of complete long-term responses have been seen, 

with no difference in response rates between the various 

melanoma subtypes.77–79 Notably, the same KIT mutations 

(K642E and N822K) that have shown response to treatment 

in gastrointestinal stromal tumors also show response in the 

treatment of melanoma. Meanwhile, resistance to specific 

KIT mutations (V654A and D820Y) are observed in both 

gastrointestinal stromal tumors and melanoma.77 There are 

numerous tyrosine kinase inhibitors, and trials involving 

other KIT-directed therapies are underway in patients with 

melanomas harboring c-KIT mutations.

Attempts have been made to target Ras indirectly by 

blocking important post-translation modification. Farnesyl 

transferase inhibitors, such as lonafarnib, block Ras by inhib-

iting its farnesylation and blocking translocation of Ras to 

the plasma membrane. Lonafarnib, in combination with other 

chemotherapeutic agents such as sorafenib and cisplatin, has 

demonstrated encouraging results in metastatic melanoma in 

vitro.80,81 A single clinical trial attempted to treat melanoma 

by inhibiting Ras via farnesyl transferase suppression, and 

showed significant toxicity and a lack of efficacy.82 However, 

it should be noted that the patients in this study were not 

selected based on the presence of NRAS mutation.

Conclusion
The advent of oncologic molecular typing has galvanized the 

discipline of personalized medicine. Recognition of common 

mutations within particular tumors has shown and holds 

tremendous promise for targeted individualized therapies. 

In melanoma, studies show an early favorable response to 

BRAF V600E inhibitors in treating BRAF V600E mutant 

melanomas. However, many challenges remain. The first and 

foremost is the other half of metastatic melanomas which 

do not harbor BRAF mutations. Another challenge is that 

although overall survival increases for those using BRAF 

inhibitors, complete resolution only occurs in a minor-

ity and most cases relapse through secondary resistance. 

Other targeted therapies, such as tyrosine kinase inhibitors, 

are being explored in melanomas with activating c-KIT 

mutations, and therapies such as MEK inhibitors are being 

developed to exploit regulation of the MAPK pathway. 
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Immunomodulation has shown potential, but the ability 

to provide targeted immunomodulating therapy has yet to 

be achieved. The limitations of BRAF inhibitors and other 

targeted therapies reinforce the complexity of these tumors 

and the host response. Combinations of existing and new 

therapeutic options will need to be explored. However, 

advances made over the last few years have generated new 

hope for effective treatments.
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