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Abstract: Basal cell carcinoma (BCC) is the most common human malignancy. Recent 

advances in our understanding of the critical biologic pathways implicated in the development 

and progression of BCC have led to the development of the first molecular targeted therapy for 

this disease. The hedgehog pathway is mutated in virtually all patients with BCC and recent trials 

with vismodegib, an inhibitor of this pathway, have shown significant responses. This review 

will discuss the importance of the hedgehog pathway in the pathogenesis of BCC and describe 

in detail the pharmacology of vismodegib in relation to its activity in advanced BCC.
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Introduction
Basal cell carcinoma (BCC) is the most common human malignancy. Since it is not always 

included in cancer registries, the true incidence is unknown. It is estimated that approxi-

mately 3.5 million nonmelanoma skin cancers in 2.2 million patients are treated annually 

in the United States, the majority of which are BCC (American Cancer Society, Facts 

and Figures 2013). The American Academy of Dermatology estimates that approximately 

2 million BCC are treated every year (http://www.aad.org/dermatology-a-to-z/diseases-

and-treatments/a---d/basal-cell-carcinoma). Fortunately, these tumors are usually amenable 

to local therapy and only 1%–5.3% of lesions recur after initial resection.1

Interestingly, even locally aggressive tumors seldom metastasize and metastatic 

BCC is quite rare. Since accurate incidence records of this disease are not available, 

the burden of metastatic disease is difficult to ascertain. Rates ranging from 0.0028% to 

0.55% of patients with BCC developing metastases have been reported,2–7 but even 

these have been questioned.8 The median age of patients with metastatic BCC at the 

time of diagnosis of the primary lesion is about 45–56 years, and metastases appear at 

a median of about 9 years later.9–11 Factors that may predispose to the development of 

metastatic BCC include male gender,9 primary lesion in the ear region9,11,12 and face,11 

large11 and locally invasive13 primary tumors, recurrence following initial treatment,11 

and impairment of cell mediated immunity (eg, acquired immunodeficiency syndrome, 

therapeutic immunosuppression).14,15

Recent advances in our understanding of the biologic pathways that appear to be 

important in the development and progression of BCC have led to the development of 

the first molecular targeted therapy for this disease, vismodegib. The hedgehog (Hh) 

pathway is mutated in virtually all patients with BCC and inhibition of this pathway 

with vismodegib appears to result in significant clinical responses. The following 
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sections will discuss the importance of the Hh pathway in the 

pathogenesis of BCC and describe in detail the pharmacology 

of vismodegib in relation to advanced BCC.

Hh pathway and its role in BCC
The Hh pathway is one of the most common signal 

transduction pathways used by mammalian cells16 for normal 

embryonic development of the neural tube, axial skeleton, 

skin, and hair,17 and for wound healing during postnatal life.18 

While this pathway appears to be silenced in most adult 

tissues,19 it has been shown to promote the proliferation of 

stem cells from various tissues in the adult. These include 

hematopoietic cells,20 mammary,21 mesenchymal,22 and 

neural23 stem cells. This pathway also appears to play a 

role in the transition of hair follicles from the resting to the 

growth phase.24 This could explain the alopecia noted in 

patients treated with the Hh pathway inhibitor, vismodegib. 

In addition, this pathway seems to be involved in the repair 

of various organs in the adult following injury.25–27

Recent studies have shown that aberrant Hh signaling 

pathway is involved in the pathogenesis, self-renewal of stem 

cells, and chemotherapeutic resistance of BCC.28,29 Besides 

BCC, Hh signaling is also activated in other malignancies 

such as medulloblastoma,30,31 colon,32 prostate,33,34 breast,35 

lung,36 and various hematologic malignancies.37–40 The Hh 

pathway dependent gene upregulation leads to increased 

cell proliferation and cell survival, and promotes bone 

metastases.41 This pathway has been shown to regulate the 

epithelial–mesenchymal transition and dissemination of 

cancer stem cells in solid tumors,42,43 and enhance metastatic 

disease progression.44 These observations suggest that 

targeted inhibition of Hh signaling may be an effective 

treatment strategy for several human cancers.

The signaling cascade of the Hh pathway in mammalian 

cells is initiated by binding of one of three Hh ligands (sonic, 

Indian, or desert Hh) to the 12 pass transmembrane receptor 

patched 1 (Ptch1) (Figure 1). This causes internalization and 

degradation of Ptch1, thereby releasing smoothened (SMO), 
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Figure 1 A schematic diagram showing inhibition of Hedgehog (Hh) signaling by vismodegib.
Notes: The extracellular Hh ligands (Sonic, Indian, or Desert Hh) bind to Patched 1 (Ptch1), relieving the inhibition of Smoothened (SMO) by Ptch1. SMO disrupts the 
cytoplasmic complex containing the Suppressor of Fused (SUFU)-glioma-associated oncogene homologue (Gli) complex resulting in degradation of Gli3 and translocation of 
Gli1 and Gli2 to the nucleus to upregulate target genes like Ptch1, Gli1, c-Myc, Bcl2, vascular endothelial growth factor, and cyclin D1. Vismodegib binds to the extracellular 
domain of SMO, markedly inhibiting the release and translocation of Gli1 and Gli2 to the nucleus.
Abbreviations: Gli, glioma-associated oncogene homologue; Ptch1, patched 1; SHh, sonic hedgehog; SMO, smoothened; SUFU, Suppressor of Fused; VEGF, vascular 
endothelial growth factor.
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a 7 pass transmembrane G protein coupled receptor 

like protein. This protein then enters the primary 

cilia and disrupts the cytoplasmic complex containing 

Suppressor of Fused (SUFU)-glioma-associated oncogene 

homologue (Gli). The SUFU regulates transcriptional 

factors (Glis) through posttranslational modifications like 

phosphorylation, sumoylation, and selective proteolysis.45 

Release of Gli transcription factors (Gli 1–3) from SUFU 

inhibition results in nuclear translocation and upregulation 

of Gli1 associated target genes that include Gli1, Ptch1, 

cyclin D1, c-Myc, vascular endothelial growth factor, Bcl-

2, and snail, depending upon cell type46 and degradation of 

the repressor transcription factor Gli3. Depending on the 

Gli2 posttranscriptional and posttranslational processing 

events, Gli2 has been shown to act as either a positive or 

negative regulator of Hh pathway signaling.47 Deregulated 

Hh signaling has been associated with either mutations in 

pathway genes or overexpression of signaling molecules 

in either tumor cells themselves or in cells within the 

supportive tumor microenvironment.46,48–51

The first link between the Hh pathway and BCC came 

from the discovery of loss-of-function mutations of 

Ptch1 gene in Gorlin syndrome.29,52 Patients with Gorlin 

syndrome are strongly predisposed to the development of 

BCC at an early age. Recent molecular and genetic studies 

have shown that almost all BCC tumors contain genetic 

alterations in components of the Hh signaling pathway 

and these tumors have elevated Ptch and Gli1 messenger 

(m)RNA levels.53,54 This ligand-independent mechanism 

of Hh activation, driven by specific Hh gene mutations 

within the tumor cells, is termed Type I Hh signaling.46 It 

has been estimated that almost 90% of sporadic BCCs have 

loss-of-function mutation in at least one allele of Ptch1 

and in addition, around 10% have activating mutations in 

the SMO, rendering it resistant to Ptch1 inhibition.28,55–57 

In contrast, mutations in other downstream molecules 

of the Hh pathway appear to be rare in BCC. In a study 

of 42 patients with sporadic BCC, only two patients had 

mutations in SUFU, one of which was a missense mutation 

and the other a silent mutation.58 No mutation was seen 

in Gli1.

Pharmacology of vismodegib
Structure
Vismodegib is an orally active SMO inhibitor (2-chloro-

N-[4-chloro-3-pyridin-2-yl-phenyl]-4-methanesulfonyl 

benzamide) with a molecular weight 421.30 g/mol 

(Figure 2).

Preclinical evidence
Vismodegib was shown to be effective in suppressing Gli in 

the Hh responsive tumor cell line CALU-6 when implanted 

in nude mice.59 It was also effective in producing complete 

regression of the Hh pathway dependent medulloblastoma 

allograft model generated from Ptch+/− mice.59

Pharmacokinetics
Vismodegib has an unusual pharmacokinetic profile. It 

demonstrates saturable absorption with a dose dependent 

increase in absorption until a dose of 540 mg, beyond which 

the degree of absorption does not appear to increase.60 This 

could explain the plateau of the rise in concentration of the 

drug within the first 14 days. The drug reaches its steady 

state concentration in the plasma in about 7–14 days after 

initiation of therapy. Vismodegib is highly protein bound to 

albumin and α
1
-acid glycoprotein. Plasma concentrations 

of total vismodegib appear to be strongly correlated with 

α
1
-acid glycoprotein levels.60,61 Food does not seem to affect 

the degree of absorption of vismodegib.

Vismodegib undergoes oxidation mediated by 

the cytochrome P450 (CYP) enzymes CYP2C9, 

CYP3A4, and CYP3A5, and the oxidative metabolites 

are excreted in the feces.62,63 In addition, vismodegib 

undergoes glucuronidation and pyridine ring cleavage 

to a smaller extent.62 A study in dogs and rats found that 

a small proportion of the drug was metabolized by an 

uncommon pyridine ring opening.64 These metabolites 

were excreted in the feces as well. In pharmacokinetic 

studies, vismodegib had an elimination half-life of 

approximately 12 days after a single dose. However this 

duration decreased to 4 days after repeated, once-daily 

administration, suggesting an increased clearance with 

repeated administration.65
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Figure 2 Chemical structure of vismodegib.
Note: Structure of vismodegib is courtesy of Genentech.
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Although it has not been specifically studied, based on the 

pharmacokinetic profile, it is unlikely that renal dysfunction 

affects the safety profile of vismodegib significantly. Hence, 

patients with renal dysfunction are not likely to need a 

modification of their dose. The need for dose modification in 

patients with hepatic dysfunction is currently unknown.

Pharmacodynamics
Vismodegib binds to, and inactivates, SMO. This prevents 

its translocation when Ptch1 is stimulated by Hh ligands and 

leads to the inhibition of the downstream signaling pathways 

and a decrease in the production of downstream proliferation 

factors (Figure 1).66

Exposure to vismodegib leads to the downregulation 

of Gli1. In a Phase I trial of vismodegib in patients 

with locally advanced or metastatic solid tumors there 

was .2 fold downmodulation of Gli1 expression in 

skin biopsies from almost 75% patients, compared with 

pretreatment specimens.66 In the same study, a similar 

proportion of patients with BCC showed .2 fold down-

modulation of Gli1 expression. However, the down-

modulation of Gli1 expression was not associated with 

plasma concentrations of the drug.

Adverse effects
Vismodegib is relatively well tolerated. The most common 

adverse reactions seen in clinical trials have been muscle 

spasms (70%), alopecia (60%), dysgeusia (55%), weight 

loss (45%), fatigue (40%), nausea (30%), diarrhea (30%), 

decreased appetite (25%), constipation (20%), arthralgias (15%), 

vomiting (12%), and ageusia (10%).67 Approximately 30% 

of premenopausal women developed amenorrhea while on 

vismodegib. Other laboratory abnormalities noted by patients 

on clinical trials included hyponatremia (4%), hypokalemia 

(1%), and azotemia (2%). A recent report described the 

development of keratoacanthomas in two patients, who did 

not have a history of previous squamous cell carcinomas, 

while being treated with vismodegib.68 While the authors were 

not able to establish a causal relationship with vismodegib, 

clinicians need to be alert to these findings.

The vismodegib package insert contains a black box warning 

regarding the risk of severe birth defects and embryonic fetal 

death. This is based on rat studies, which demonstrated that 

vismodegib administered at a dose of 10 mg/kg/day showed 

teratogenic effects.69 This dose corresponds to an exposure of 

approximately 20% of the human exposure at the recommended 

dose of 150 mg daily. Similarly, there is a potential risk of 

exposure to the drug through semen. Hence, sexually active 

individuals receiving vismodegib should be advised of the need 

for contraception (Source: Erivedge™ package insert. http://

www.gene.com/download/pdf/erivedge_prescribing.pdf).

Drug resistance
Resistance mechanisms to vismodegib have not been 

extensively studied, which is understandable given the 

relatively short clinical experience with this drug. However, 

anecdotal reports of acquired resistance to vismodegib are 

beginning to emerge. In the only case reported thus far, 

a 26 year old man with treatment refractory metastatic 

medulloblastoma who was treated with vismodegib responded 

initially, but developed progressive disease after 3 months, 

suggesting the development of resistance. A molecular 

analysis of the biopsy specimen obtained at disease 

progression showed a heterozygous G to C missense mutation 

at position 1697, which is responsible for a change in codon 

473 from aspartic acid to histidine (D473H).70 This mutation 

prevents the binding of vismodegib to SMO, thereby leading 

to resistance.

This was further studied in vitro by Dijkgraaf et al who 

replaced the aspartic acid at position 473 of the SMO gene 

with every other amino acid and found that vismodegib 

did not bind to SMO in any of the mutant variations, 

thereby suggesting that D473 is critical for SMO binding 

by vismodegib.71 It is unclear, however, if D473 is directly 

involved in the binding of vismodegib or if its main role is to 

maintain the necessary SMO conformation for binding.

Other potential resistance mechanisms identified in vitro 

include mutations at E518.71 Substitution of glutamic acid 

at this site conferred complete resistance to vismodegib. 

Other possible mechanisms of resistance include focal 

amplifications of the transcription factor Gli2 and the target 

gene Ccnd1, which exert their actions downstream of SMO.71 

There are initial data on resistance to vismodegib in BCC, 

which are described below.

Mechanisms to overcome this resistance are currently 

being studied. Dijkgraaf et al71 screened multiple chemically 

diverse Hh pathway inhibitors and were able to identify 

several compounds that were active against the two known 

SMO resistance mutations, SMO-D473H and SMO-E518K. 

Available data also suggest that Hh pathway resistant 

medulloblastoma allografts may respond to inhibition of 

phosphoinositide-3-kinase.71

Clinical data on vismodegib
The Phase I trial of vismodegib included 68 patients with 

different malignancies, of which 33 had advanced BCC.66 
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Vismodegib was well tolerated with only six patients 

(8.8%) developing grade 4 adverse events (hyponatremia, 

fatigue, pyelonephritis, presyncope, resectable pancreatic 

adenocarcinoma, and paranoia with hyperglycemia). 

A maximum tolerated dose was not reached and based on 

achievement of maximal plasma concentration and response, 

the recommended Phase II dose was 150 mg daily. Interestingly, 

20 patients (19 with BCC and one with medulloblastoma) had 

a response based on Response Evaluation Criteria in Solid 

Tumors (RECIST) criteria.72 At the time of publication, the 

median duration of response in patients with advanced BCC 

was 12.8 months (range 3.7–26.4 months). This led to further 

investigation of vismodegib in BCC.

A multicenter, international, two cohort, nonrandomized 

Phase II study, administered 150 mg of oral vismodegib daily 

to patients with either metastatic or locally advanced BCC 

(inoperable disease or for whom surgery was inappropriate, 

ie, multiple recurrences and a low likelihood of cure, or 

substantial anticipated disfigurement).73 The response 

rate was 30% for patients with metastatic BCC and 43% 

(21% complete response) in patients with locally advanced 

BCC. The median duration of response was 7.6 months in 

both cohorts. The most common adverse events were muscle 

spasms, alopecia, dysgeusia, weight loss, and fatigue. Serious 

adverse events were reported in 25% of patients. Seven deaths 

were reported, although their relationship to the study drug 

was unclear. The results of these studies led to the approval of 

vismodegib for the treatment of metastatic BCC and locally 

advanced BCC in patients who are not candidates for surgery 

or radiation based on the location or size of the lesion.

More recently, vismodegib has been studied for its 

potential to prevent the development of BCC in patients 

with basal cell nevus syndrome. In a randomized placebo 

controlled trial, 42 patients with the basal cell nevus 

syndrome were randomly assigned to either vismodegib 

(150 mg daily) or placebo for 18 months.74 The primary 

end point of this study was the rate of development of new 

BCC that were eligible for surgical resection. Vismodegib 

significantly reduced the rate of new surgically eligible basal 

cell carcinomas when compared to placebo (2 versus 29 new 

surgically eligible BCC per group annually; P , 0.001). 

Vismodegib also reduced the size of existing BCC (median 

decrease 71%) when compared to placebo (median decrease 

21%; P = 0.003). Patients receiving vismodegib had fewer 

surgeries for BCC (mean of −0.31), compared with those 

receiving placebo (mean −4.4; P , 0.001). Palmar and plantar 

pits, pathognomonic signs of the basal cell nevus syndrome, 

also disappeared with vismodegib. However, almost half of 

the patients had to discontinue treatment due to drug related 

adverse events.

Recently, an interesting phenomenon of tumor regrowth 

was reported in patients treated with vismodegib.75 In 

a retrospective analysis of 28 patients on vismodegib, 

Chang et al noted tumor regrowth within or adjacent 

to (#1 cm) the prior tumor bed in 6 (21%) patients.75 

Surprisingly, none of the eight patients with metastatic 

BCC in their analysis demonstrated regrowth after initial 

shrinkage. Hence, close clinical examination of patients, 

even examination of those who have a response to therapy, is 

warranted to detect the development of secondary resistance 

to vismodegib. These findings would also suggest that 

vismodegib and other agents targeting the Hh pathway are 

unlikely to cure BCC, and surgery still would be considered 

the best curative option for patients who can undergo the 

procedure without major cosmetic deformity.

Conclusion
The Hh pathway is critical to the development of BCC. 

Mutations in this pathway are seen in virtually all patients 

with BCC. Inhibition of this pathway with the SMO inhibitor, 

vismodegib, leads to significant responses in patients with 

metastatic and locally advanced BCC. While vismodegib can 

delay the development of BCC in patients with the basal cell 

nevus syndrome, its adverse effect profile tempers its use in this 

setting. Finally, there are reports of resistance to vismodegib 

and those mechanisms are currently being studied.
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