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Abstract: The chemokine CXCL12 (SDF-1) and its cell surface receptor CXCR4 were 

first identified as regulators of lymphocyte trafficking to the bone marrow. Soon after, the 

CXCL12/CXCR4 axis was proposed to regulate the trafficking of breast cancer cells to sites 

of metastasis. More recently, it was established that CXCR4 plays a central role in cancer cell 

proliferation, invasion, and dissemination in the majority of malignant diseases. The stem cell 

concept of cancer has revolutionized the understanding of tumorigenesis and cancer treatment. 

A growing body of evidence indicates that a subset of cancer cells, referred to as cancer stem 

cells (CSCs), plays a critical role in tumor initiation, metastatic colonization, and resistance to 

therapy. Although the signals generated by the metastatic niche that regulate CSCs are not yet 

fully understood, accumulating evidence suggests a key role of the CXCL12/CXCR4 axis. In 

this review we focus on physiological functions of the CXCL12/CXCR4 signaling pathway 

and its role in cancer and CSCs, and we discuss the potential for targeting this pathway in 

cancer management.
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Introduction to the CXCL12/CXCR4 axis
Chemokines are a class of small (8–10 kDa) inflammatory or homeostatic cytokines 

sharing a common biological activity in stimulating the migration of different types of 

cells including lymphocytes, monocytes, neutrophils, endothelial cells, mesenchymal 

stem cells, and malignant epithelial cells.1,2 Chemokines are classified into four con-

served groups – CXC, CC, C, and CX3C – based on the number and spacing of their 

N-terminal cysteine residues: CXC chemokines have a single nonconserved amino 

acid residue (X) between the first N-terminal cysteine residues (C); CC chemokines 

have these two cysteine residues adjacent; C chemokines have only one N-terminal 

cysteine; whereas CX3C chemokines contain three nonconserved amino acid resi-

dues separating the N-terminal cysteine pair. More than 50 chemokines have been 

discovered so far.1,3 The classification of the chemokine receptors is based on the type 

of their ligands. For example, CXC receptors bind CXC ligands, while CC receptors 

bind CC ligands, etc.3

To date, over 20 chemokine receptors have been identified.1,3–5 Chemokine recep-

tors belong to a family of G protein-coupled receptors (GPCRs) containing seven 

transmembrane-spanning α-helix domains. One of the intracellular loops of the 

chemokine receptors couples with heterotrimeric G proteins that mediate a cascade 

of intracellular signaling following ligand binding.4 The heterotrimeric G protein is 

composed of the Gα, Gβ, and Gγ subunits. Both Gα and Gβ subunits have covalently 
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attached lipid tails that anchor G proteins to the plasma 

membrane. In the inactive or basal state, the Gα subunit 

contains the guanine nucleotide diphosphate (GDP).

Upon activation, GPCR acts as a GEF (guanine nucle-

otide exchange factor) and promotes the conformational 

change of the Gα subunit and replacement of the bound GDP 

by guanine nucleotide triphosphate (GTP). This exchange 

triggers the further conformation changes within the Gα 

subunit, which allows the trimeric G protein to be released 

from the receptor, and to dissociate into the GTP-bound 

Gα subunit and Gβ/Gγ dimer. Both the activated compo-

nents interact with various effector proteins and initiate 

unique intracellular signaling cascades, such as activation 

of phospholipase C (PLC), regulation of adenylate cyclase, 

triggering of different kinase cascades including mitogen-

activated protein kinase (MAPK), c-Jun N-terminal kinase 

(JNK), p38, and the phosphoinositide 3-kinase (PI3K) routes 

(Figure 1).5–9

The distinct routes of the GPCRs signaling depend on the 

coupled Gα subunits, which are classified into four families; 

Gα
s
, Gα

i
, Gα

q,
 and Gα

12
. GPCRs coupled to the Gα

s
 stimulate 

adenylyl cyclase whereas Gα
i
 bound GPCRs inhibit it. The 

adenylyl cyclase serves as an effector enzyme that catalyzes 

5′adenosine triphosphate into cyclic adenosine monophos-

phate (cAMP) and thereby activates cAMP-dependent protein 

kinase, which regulates a host of other downstream effectors 

including MAPK signaling pathway.5,10 Activated Gα
i
 is also 

able to activate the Src family of tyrosine kinases, which play 

an important role in signal integration.3,6 GPCRs coupled to 

Gα
q
 act through PLCβ, which cleaves phosphatidylinositol 

4,5-bisphosphate to form the second messenger molecules 

called diacylglycerol and inositol-1,4,5-trisphosphate (IP
3
). 
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Figure 1 A schematic of the CXCL12/CXCR4 signaling pathways.
Abbreviations: eR, endoplasmic reticulum; GTP, Guanosine-5′-triphosphate; RTK, receptor tyrosine kinase; CXCL, chemokine (C-X-C motif) ligand; CXCR, C-X-C 
chemokine receptor; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; JAK, Janus kinase; STAT, signal transducer and activator of   transcription; Cdc42, 
Cell division control protein 42 homolog; Rac, Ras-related C3 botulinum toxin substrate; Rho, Ras homolog gene family;   GRK, G protein-coupled receptor kinase; FOXO, 
Forkhead box protein; NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells; PiP2, phosphatidylinositol bisphosphate; FAK, focal adhesion kinase; PLC, 
phospholipase C; PKC, protein kinase C; Ras, Rat sarcoma protein family; eRK, extracellular-signal-regulated kinase.
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Diacylglycerol activates another enzyme called protein 

kinase C (PKC), whereas IP
3
 diffuses to the endoplasmic 

reticulum where it opens calcium channels and triggers the 

release of calcium from intracellular stores into the cytoplasm. 

This intracellular calcium mobilization is frequently used for 

analysis of chemokine receptor activity.11 GPCRs coupling 

to Gα
12

 alternatively act via the Rho-GEF, which in turn 

activates the small G protein RhoA (Figure 1).5,12

Activation of PI3K by GPCRs is thought to be dependent 

on the direct binding of Gβγ subunits.13 PI3K activation trig-

gers a signaling cascade leading to the activation of AKT 

(also called protein kinase B) and its downstream targets 

including phosphoinositide-dependent kinase 1 (PDK1), 

glycogen synthase kinase 3 (GSK3), mammalian target 

of rapamycin (mTOR), p70 ribosomal protein S6 kinase 

(p70S6K), forkhead family transcription factors (FOXO), and 

other signaling proteins. Notably, PI3K activation in response 

to the GPCR-mediated signaling results in the activation of 

focal adhesion kinase (FAK), which induces migratory activ-

ity in different types of cells, including tumor cells.6,14,15

The duration of the GPCR signaling depends on the Gα 

subunit lifespan in the GTP-bound state. Hydrolysis of the GTP 

of Gα-GTP to GDP leads to the inactivation of the Gα subunit 

and to its reassociation with the Gβ/Gγ dimer, which terminates 

all effector interactions.16,17 In addition, chemokine receptor 

signaling is tightly regulated by the process of internalization 

and lysosomal degradation. Upon GPCR signaling activation, 

intracellular domains of receptors are phosphorylated by the 

second messenger kinases such as G protein-coupled receptor 

kinases (GRKs), followed by the binding of the phosphorylated 

receptors with regulatory proteins called arrestins. Arrestins 

impair communication of GPCRs with the G proteins and 

target them for lysosomal degradation following protein 

internalization and trafficking (Figure 1).18,19

Interestingly, it has been reported that several chemokine 

receptors including CCR2, CCR5, CXCR1, CXCR2, CXCR4, 

and CXCR7 can undergo homo- or hetero-dimerization upon 

ligand binding; a process that was proposed to regulate dis-

tinct intracellular signaling pathways.7,20,21 Chemokines and 

their receptors display a high degree of redundancy in that 

most chemokines bind to multiple receptors and vice versa. 

The chemokine stromal cell-derived growth factor 1 (SDF-

1), also known as CXCL12, binds primarily to its cognate 

receptor CXCR4, which is also a coreceptor for the entry of 

the Human immunodeficiency virus (HIV) into the target 

immune cells (T helper cells) besides the CD4 receptor.22

The assumption that CXCR4 is the only receptor for 

CXCL12 was recently challenged, since it was demonstrated 

that this chemokine also binds to the orphan receptor called 

CXCR7, which is a receptor for the interferon-inducible T cell 

chemoattractant CXCL11/I-TAC.  Moreover, CXCR7 constitu-

tively forms heterodimers with the CXCR4 receptor. Growing 

evidence indicates that binding of CXCL12 to CXCR7 does 

not result in activation of signaling pathways typical of G 

proteins. It has been proposed that CXCR7 serves as a ligand 

scavenger or acts as a “decoy” receptor.23,24 Very recently, this 

receptor has been described as an activator of various signal-

ing pathways in a CXCL12-dependent manner.23,24 CXCR7 

is broadly expressed in normal tissues including the heart, 

brain, spleen, kidney, lung, testis, ovary, thyroid, and human 

placenta.23 A germline deletion of CXCR7 resulted in perinatal 

lethality, and expression of CXCR7 was associated with car-

diac development.25 Moreover, CXCR7 is upregulated in many 

malignant cells, including breast, lung, cervical, pancreatic, 

and prostate cancer cells, and found to be involved in tumor 

cell growth, survival, and metastasis.21,22,24

Physiological function  
of the CXCL12/CXCR4 signaling
CXCL12 is a small (8 kDa) homeostatic chemokine that was 

originally described as an efficacious lymphocyte chemoat-

tractant and regulator of hematopoiesis, and was soon after 

also characterized as a modulator of multiple physiological 

processes.26–29 CXCL12 is a pleiotropic chemokine that is 

widely expressed in different organs including the brain, lung, 

colon, heart, kidney, and liver where it acts as a chemoat-

tractant for immature and mature hematopoietic cells; it 

thus plays an important role in inflammation and immune 

surveillance of tissues. Additionally, CXCL12 serves as an 

emergent salvage signal for initiating tissue regeneration 

and repair. Of note, various tissues respond to the chemical 

or physical insults such as toxic agents, hypoxia, and irra-

diation by increasing expression and secretion of CXCL12, 

which is important for recruitment of CXCR4 positive stem 

and progenitor cells to a site requiring tissue regeneration.29 

CXCL12 is expressed from a single gene in six splice vari-

ant isoforms known as SDF-1α, SDF-1β, SDF-1γ, SDF-1δ, 

SDF-1ε, and SDF-1ϕ.30–32 These CXCL12 isoforms share 

the same first three exons but contain different fourth exons. 

Different splice variants are characterized by distinct proper-

ties such as stability and tissue of origin. SDF-1α is consti-

tutively produced in many organs but tends to undergo rapid 

degradation in the blood. In contrast, SDF-1β displays high 

proteolytic stability and is expressed in highly vascularized 

organs such as the liver, spleen, and kidney. SDF-1γ is present 

in less vascularized organs such as the heart and brain.30–32 
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Dissection of the functional differences between the CXCL12 

isoforms warrants further investigation.

The expression of CXCL12 cognate receptor CXCR4 

has been shown to be highest in hematopoietic cells but it 

is also widely and constitutively expressed by numerous 

cells types including hematopoietic stem cells, endothelial 

stem cells, liver oval stem cells, neural stem cells, skeletal 

muscle satellite cells, primordial germ cells, retina pigment 

epithelium stem cells, and embryonic stem cells. All of these 

cells not only express functional CXCR4 on their surface but 

also follow a CXCL12 gradient.26–29,33–39 A growing body of 

evidence suggests that the CXCL12/CXCR4 axis is essen-

tial for the migration of progenitor cells during embryonic 

hematopoiesis and organogenesis as well as for organ homeo-

stasis, vascularization, and tissue regeneration.38–51 Due to the 

apparent redundancy within the chemokine system, knockout 

of one of the chemokine/GPCR axes could be compensated 

to a large extend by other GPCR routes. However, mice 

lacking the CXCR4 or CXCL12 genes exhibit a significant 

defect in the colonization of embryonic bone marrow (BM) 

by hematopoietic stem cells (HSC), and show defects in the 

development of other organs including the heart, brain, and 

blood vessels. In the case of CXCL12 and CXCR4, ablation 

of either gene is lethal and these embryos die in utero. Thus, 

the CXCL12/CXCR4 axis appears to have a fundamental 

physiological role in normal tissue development.26,27,49–52

Role of the CXCL12/CXCR4 axis  
in cancer and cancer stem cells
The chemokine CXCL12 and its cognate receptor CXCR4 

were first identified as regulators of trafficking and tissue 

localization of B cells from patients with chronic lympho-

cytic leukemia.53,54 Shortly thereafter CXCR4 was proposed 

to regulate the trafficking and invasion of breast cancer cells 

to sites of metastases.55 More recently, it has been established 

that CXCR4 plays a central role in tumor cell dissemination 
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Figure 2 CXCR4 expression in cancer cells and tumor stroma.
Notes: (A) Prostate tumor cells have a higher expression of CXCR4 than corresponding normal epithelial tissues (shown with red arrows). Tumor and normal prostate 
stroma cells also express CXCR4 protein (shown with black arrows). (B) The Oncomine (Life Technologies, Carlsbad, CA, USA) data sets indicate a high expression of 
CXCR4 mRNA in HNSCC, glioblastoma, breast, and pancreatic tumors compared to normal tissues. (C) Prostate cancer PC3 CXCR4+ cell population has a higher proportion 
of CD44+/CD133+ cells compared to PC3 CXCR4- cell population. Cells expressing high or low levels of CXCR4 were FACS-purified and plated in 384-well black clear-
bottom plates in serum-free epithelial basal medium as described previously. Adapted from Dubrovska A, elliott J, Salamone RJ, et al. CXCR4 expression in Prostate Cancer 
Progenitor Cells. PLoS ONE. 2012;7(2):e31226.110 The cells were fixed after 18 hours and stained with anti-CD133 and anti-CD44 antibodies. Scale bar indicates 15 µm.
Abbreviations: CXCR, CXC chemokine receptor; CD, cluster of differentiation; DAPi, 4’,6-diamidino-2-phenylindole; HNSCC, head and neck squamous cell carcinoma; 
FACS, fluorescence-activated cell sorting.
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and metastasis development in more than 75% of all can-

cers including breast, ovarian, lung, colon, prostate, kidney, 

melanoma, brain, esophageal, pancreatic, and many forms of 

leukemia.56–60 Whereas CXCR4 expression is low or absent 

in many normal tissues, it is highly expressed in more than 

23 different types of tumors including prostate, brain, breast, 

kidney, pancreas, ovarian cancer, and melanoma (Figure 2).56 

CXCL12 protein levels are highest in organs that are known to 

be the common sites of metastasis including the liver, bone 

marrow, and lungs, suggesting that tumor cells may use 

chemokine-mediated trafficking patterns, which are normally 

utilized during  organogenesis, vascularization, and tissue 

regeneration.30–32,55

The CXCR4/CXCL12 axis also indirectly promotes tumor 

metastasis by mediating invasion and proliferation of tumor 

cells, and enhancing tumor-associated neoangiogenesis.61–63 

The stromal fibroblasts found within carcinomas and termed 

carcinoma-associated fibroblasts (CAFs) constitute the major 

cellular component of the tumor microenvironment. For a 

long period of time, neither the source of CAFs nor the dif-

ferences between CAFs and fibroblasts from nonneoplastic 

tissue have been defined. Recent studies have shown that 

CAFs can arise from multiple origins including resident tissue 

fibroblasts, epithelial cells, human mesenchymal stem cells, 

and HSC.64–66,67,68

Analogous to their normal counterparts, which are 

present in inflammatory environments and aid in wound 

healing through tissue remodeling and repair, CAFs pro-

mote angiogenesis and matrix degradation through elevated 

secretion of CXCL12 and matrix metalloproteinase-1 

(MMP-1).66,69 During the past 25 years, the accumulation 

of evidence supports a critical and complex role of MMPs 

in tumor development. For example, MMPs can increase 

genomic instability in normal epithelium, which may result 

in tumor formation. MMPs are the key enzymes responsible 

for degradation of the extracellular matrix, which is the 

physical barrier for cancer cell invasion.70 A recent study 

has identified CXCR4 as a CAF-associated gene, implying 

an existence of an autocrine feedback loop (Figure 2).71 The 

CXCR4/CXCL12 signaling in CAFs results in a multitude 

of cellular functions, including migration within the tumor 

microenvironment, adhesion, proliferation, and secretion 

of MMPs.72–75

A large number of studies demonstrated that CAF-derived 

CXCL12 not only stimulates carcinoma cell growth directly 

through the CXCR4 receptor displayed on tumor cells, or 

indirectly through MMP-mediated tissue remodeling, but 

also serves to recruit endothelial progenitor cells into tumors 

and thereby promotes neoangiogenesis.64,65

Moreover, CAF-mediated CXCL12 promotes an epithelial-

to-mesenchymal transition (EMT) in primary tumors.76 The 

acquisition of the EMT program is a critical process for the 

progression of cancers from local carcinomas to invasive 

malignancies, which is often associated with the loss of epi-

thelial differentiation and gain of mesenchymal phenotype. 

Recent studies have shown a molecular link between EMT 

and self-renewal and demonstrated that cancer cells under-

going EMT gain the cancer stem cell (CSC) phenotype and 

tumorigenicity.77–80

A growing body of evidence indicates that a subset of 

cancer cells referred to as CSCs play a critical role in tumor 

initiation and resistance to anticancer therapy.77 Similarly to 

normal stem cells, CSCs possess the ability to self-renew 

and to differentiate into all cell populations within the 

tumor mass.81 This stem cell concept of tumorigenesis was 

proven the first time in 1994 by John Dick et al who dem-

onstrated that CD34+CD38- acute myeloid leukemia cell 

subset is a cell population initiating the malignant disease 

in immunodeficient mice.82 Clarke et al introduced the CSC 

concept in solid tumors in 2003.83 In this study they identi-

fied CD44+CD24-/low breast cancer CSCs. As few as 100 cells 

with the CD44+CD24-/low phenotype were able to form tumors 

in mice, whereas tens of thousands of cells with alternate 

phenotypes were unable to initiate tumor growth.83 During 

the last few years, similar discoveries were made in other 

tumor types. Moreover, this population has been implicated 

to therapy resistance and tumor recurrence.84–86

Several lines of evidence suggest a link between the 

EMT and CSC characteristics in various types of can-

cer. Alterations in genes associated with developmental 

pathways such as Wnt, SHH and Notch are common in 

CSC populations, and could facilitate the EMT process. 

Analogous to differentiated somatic cells, which can be 

reset to a pluripotent stage by the process of induced dedi-

fferentiation, non-CSC tumor cells can be reprogrammed 

by the activation of developmental pathways and EMT 

programs that change their self-renewal and differentiation 

potency.79,80,85,87,88

The positive correlation between EMT and CSC prop-

erties could lead to the concept of “migrating cancer stem 

cells” as the basis of metastatic colonization.89,90 Recent 

findings demonstrated that a distinct subpopulation of 

CSCs can initiate tumor growth at secondary sites. The 

features of CSCs such as invasion, attachment-independent 

survival, and the ability to interact with micromilieu at the 

extravasation site support their involvement in metastatic 

dissemination.84,91 Moreover, recent studies have revealed 

striking similarities of the signaling pathways regulating 
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CSC and driving metastasis formation. For example, Liu 

and colleagues reported a 186-gene “invasiveness” gene 

signature (IGS) that was identif ied by comparing the 

gene expression profiles of normal breast epithelium and 

breast CSCs with CD44+/CD24-/low phenotype. Among 295 

breast cancer patients, there was a significant association 

between the IGS signature and metastasis-free survival. The 

IGS was also applied to discriminate low- and high-risk 

patients with medulloblastoma, lung, and prostate cancers, 

demonstrating the prognostic value of markers that define 

CSCs.92 More specifically, several reports demonstrated 

that CSCs are involved in metastatic dissemination in 

xenograft models of breast, pancreatic, and colorectal 

carcinoma.83,93,94

In support of the hypothesis that metastatic tumor 

cells could have both EMT and CSC phenotypes, clini-

cal studies have shown that the majority (.80%) of the 

circulating tumor cells (CTCs) in patients with metastatic 

castration-resistant prostate cancer coexpress stem cell 

marker CD133 and mesenchymal proteins including 

vimentin, N-cadherin, and O-cadherin.95 Study of CTCs 

from metastatic breast cancer patients revealed that 62% 

of the cells were positive for at least one of three EMT 

markers – Twist1, AKT2, PI3Kα – and 69% of the total 

Table 1 CXCR4 as a marker for putative cancer stem cell populations in solid tumors

Tumor type Additional CSC  
markers analyzed  
in combination  
with CXCR4

Biological functions  
of the CXCL12- 
CXCR4 axis

Methods used References

Renal N/A Clonogenicity,  
tumorigenicity, drug  
resistance

–  Analysis of the FASC sorted patient-derived cells for  
their spherogenicity and tumorigenicity;

– inhibition of CXCR4 expression by siRNA; 
– Chemical inhibition of CXCR4 functions in vitro; 
–  Combination treatment with AMD3100 and  

pazopanib, sunitinib and sorafenib

161

Prostate CD133, CD44 Spherogenicity,  
tumorigenicity,  
differentiation  
potential, drug  
resistance

–  Analysis of the FASC sorted cells from the established 
cell lines for their differentiation potential, cell  
adhesion, clonal growth, spherogenicity, and  
tumorigenicity;

–  inhibition of CXCR4 in vitro and in vivo by using  
chemical inhibitor and neutralizing antibody;

–  Combination treatment with AMD3100 and Taxotere 
(Sanofi SA) (docetaxel)

110

Colon CD133 Migration and  
metastasis

–  Analysis of the FASC sorted patient-derived cells for  
their migratory potential in vitro and metastatic  
properties in vivo

204

Pancreas CD133 Migration,  
tumorigenicity,  
drug resistance  
and metastasis

–  Analysis of the FASC sorted patient-derived cells for  
their migratory properties in vitro, tumorigenic and  
metastatic properties in vivo;

–  Analysis of the FASC sorted patient-derived cells for  
their resistance to the standard chemotherapeutic  
agent gemcitabine in vitro and in vivo

205

Glioma CD133 Clonogenicity,  
spherogenicity,  
tumorigenicity,  
differentiation  
potential, chemo- 
and radioresistance

–  Analysis of the FASC sorted patient-derived cells for  
their clonogenic properties, spherogenicity, and  
differentiation potential in vitro, and tumorigenicity  
in vivo;

–  Analysis of the FASC sorted patient-derived cells for  
their resistance to the standard chemotherapeutic  
agent temozolomide and radiation treatment

206

Gefitinib-resistant  
non-small cell lung   
cancer

N/A Spherogenicity,  
chemo- and  
radioresistance,  
tumorigenicity

–  Analysis of the FASC sorted A549/GR cells for their  
sphere forming and self-renewal capacity in vitro and 
tumorigenic properties in vivo;

–  Analysis of the FASC sorted A549/GR cells for  
their resistance to irradiation and to the standard  
chemotherapeutic agent gefitinib and cisplatin in vitro

176

Abbreviations: CXCR, CXC chemokine receptor; CXCL, chemokine (C-X-C motif) ligand; CSC, cancer stem cell; FACS, fluorescence-activated cell sorting; siRNA, small 
interfering RNA.
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CTC population were positive for the CSC marker alde-

hyde dehydrogenase (ALDH).96

Although the signals generated by the metastatic niche that 

regulate CSCs are not fully understood, recent studies pro-

vide strong evidence for the important role of the chemokine 

receptor CXCR4 for CSC maintenance, dissemination, and 

consequent metastatic colonization. The role of CXCR4 has 

been examined in the CSC context in various types of cancer 

including pancreatic, colon, renal, brain, lung, and prostate 

cancer (Table 1 and Figure 2). Moreover, Fusi et al showed that 

CTCs from patients with metastatic carcinoma or melanoma 

are positive for CXCR4 expression.97

All together, these findings demonstrate that activation 

of the CXCL12/CXCR4 signaling can be indicative of the 

metastatic CSC population and suggest that therapeutic 

modulation of the CXCR4/CXCL12 axis may be essential for 

inhibition of metastatic and tumorigenic potential of CSCs.

Regulation and biological  
effect of CXCR4
The CXCR4/CXCL12 signaling in tumor cells is regulated 

at several levels.49 First, expression of the CXCR4 and 

CXCL12 genes are regulated at the transcriptional level by 

hypoxia. Several reports suggest that low tumor oxygen-

ation and other signals from the tumor microenvironment 

such as growth factors collaborate to promote EMT associ-

ated with high invasiveness and resistance to chemo- and 

radiotherapy.98 In hypoxia, the lack of oxygen leads to the 

hypoxia inducible factor 1α (HIF1α)-dependent activation 

of the CXCR4 and CXCL12 expression.99,100 In addition, 

tumor fibroblasts and macrophages within the irradiated 

tumor niche start to produce growth factors and cytokines 

including CXCL12 which may lead to the invasive behav-

ior of CSCs.101,102 The overlapping signaling mechanisms 

that govern tumor resistance to conventional treatment and 

invasiveness could explain why, in some cases, cancer, which 

relapses after treatment, can develop into more aggressive 

metastatic disease, which is difficult to treat, and is associated 

with poor clinical prognosis.103–106

Studies of the molecular interaction between stroma 

and tumor cells suggest that CSCs can acquire resistance to 

chemo- and radiotherapy by adhesion to extracellular matrix 

or accessory cells via integrin signaling and, thus, may be 

responsible for residual disease and relapses. At the molecu-

lar level, CXCR4 is an important mediator of the interaction 

of tumor cells with extracellular matrix proteins such as lami-

nin, fibronectin, and collagen, which contributes to metastatic 

spread.107–109 Our recent study demonstrated that CXCL12/

CXCR4 signaling pathway regulates the adhesion of CD133+/

CD44+ prostate cancer progenitors to the extracellular protein 

fibronectin that is important for metastatic process. Moreover, 

the expression of α5 and β3 integrin subunits, which form 

receptors for fibronectin, are strongly upregulated in CD133+/

CD44+ progenitor cells compared to CD133-/CD44- prostate 

cancer cells.110 Despite the fact that CXCR4 does not directly 

modulate cell attachment, CXCR4 receptor engagement by 

CXCL12 plays an essential role in managing cell adhesion 

by modulation of integrin expression, FAK phosphoryla-

tion, and activation of p38 MAPK and ROCK kinases.108,111 

The disruption of the interaction of cancer cells with their 

microenvironmental milieu by CXCR4 inhibition leads to 

their sensitization to the cytotoxic therapeutic agents.112,113 

These findings are consistent with data of high CXCR4 

expression by nasopharyngeal carcinoma cells in postradio-

therapy patients.114 Moreover, elevated CXCR4 expression 

shows prognostic value for patients with renal, colorectal, 

and breast carcinoma.115–119

In addition to HIF-1α, some other transcription factors 

can influence CXCR4 transcription, including v-ets erythro-

blastosis virus E26 oncogene homolog 1 and NF-kB nuclear 

factor kappa-light-chain enhancer of activated B cells, which 

mediate CXCR4-dependent tumor invasion upon stimula-

tion with hepatocyte growth factor.37,120,121 Furthermore, a 

novel vesnarinone-responsive molecule Krüppel-like factor 

2 and histone deacetylase 3-interacting protein CREB3 were 

also shown to activate the transcription of the CXCR4 and, 

therefore, contribute to cell migration.122,123 CXCR4 expres-

sion and function are positively regulated by the developmen-

tal signaling pathways Wnt, SHH and Notch and the oncogenic 

pathways PI3K/AKT, NF-kB, and JAK/STAT that are also 

strongly implicated as CSC regulators.124–128 In turn, activation 

of the CXCL12/CXCR4 signaling may affect these pathways, 

suggesting a positive feedback loop between CXCR4 and the 

signaling routes regulating self-renewal capacity and tumori-

genicity of cancer cells.126,127,129–133 At the intracellular level, 

CXCL12/CXCR4 signaling triggers several phosphorylation 

cascades controlled by Src and AKT.

The PI3K/AKT axis serves as the central route in 

the CXCL12/CXCR4 signaling cascade.134–135 Recently, 

we showed that activation of the CXCL12/CXCR4 and 

PI3K/AKT signaling pathways is important for self-renewal 

and tumorigenicity of prostate cancer cells with stem cell 

characteristics.136,137 PI3K/AKT signaling regulates transcrip-

tion through the FOXO by phosphorylating conserved serine/

threonine residues. Transcriptionally active FOXOs affect a 

wide range of biological processes, including cell survival, 
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DNA repair, oxidative stress response, and longevity.138 

Among the members of the FOXO family, FOXO3A has 

been shown to be important for the maintenance of neural, 

hematopoietic, endothelial stem cells,139–141 and cancer stem-

like cell populations.136,137 The chromatin immunoprecipita-

tion assay demonstrated that FOXO3A binds to the CXCR4 

promoter.110 These data suggested that the CXCR4/AKT 

positive feedback system may play a role in the maintenance 

and dissemination of the prostate cancer progenitors.

In addition, CXCL12/CXCR4 signaling may promote 

tumor growth through transactivation of receptor tyrosine 

kinases such as EGFR, IGF-1R, and FGFR, which contributes 

to enhanced invasive signals and metastatic growth of breast, 

prostate, and ovarian tumors.142–144

CXCR4 has also been demonstrated to elicit intracellular 

signals through interaction with the scaffolding proteins 

independently of heterotrimeric G-protein coupling.145 For 

example, CXCR4 signaling can be modulated by β-arrestin 

that induces CXCR4 internalization and attenuates CXCR4-

mediated G protein activation. β-arrestin can be recruited 

to the CXCR4/CXCR7 heterodimeric complex resulting 

in potentiation of downstream β-arrestin-dependent cell 

signaling pathways, including ERK1/2, p38 MAPK, and 

SAPK/JNK, which enhances cell migration in response to 

CXCL12 stimulation.21,24,25,146–148

Finally, recent studies support a new view of CXCR7 as 

a signaling receptor independent of G proteins.149 CXCL12 

binding to CXCR7 activates the PI3K/AKT, PLC/MAPK, 

and protein kinase C pathways and promotes tumor growth, 

neovascularization, and dissemination.24,25,146

In summary, activation of CXCL12/CXCR4 axis may be 

critical for different aspects of tumor initiation, progression, 

metastasis, and therapy resistance, and targeting CXCR4 sig-

naling might be beneficial in cancer treatment.

Critical analysis of the potential  
for targeting the CXCL12/CXCR4  
axis in cancer management
Multiple agents are currently being developed to target 

CXCL12/CXCR4 signaling in cancer. Among these 

inhibitors is anti-CXCR4 drug AMD3100, also known as 

plerixafor (Mozobil; Sanofi SA, Paris, France), which is 

approved for stem cell mobilization in patients with non-

Hodgkin’s lymphoma and multiple myeloma, while the 

CXCL12 analog CTCE-9908 (Chemokine Therapeutics 

Corp, Vancouver, BC, Canada) is approved for clinical use 

in patients with osteosarcoma. Novel CXCR4 antagonists 

BKT140 (Emory University), POL6326 (Polyphor Ltd, 

Allschwill, Switzerland), and TG-0054 (ChemoCentryx, 

Inc, Mountain View, CA, USA), which were characterized 

as powerful human stem cell mobilizers, are currently in 

clinical trials for multiple myeloma, leukemia, and lym-

phoma. NOX-A12 (Noxxon Pharma AG, Berlin, Germany) 

is the only anticancer agent in active clinical development 

that neutralizes CXCL12 resulting in a complete block of 

CXCL12 signaling through its two receptors, CXCR4 and 

CXCR7. The anti-CXCL12 aptamer NOX-A12 is in clini-

cal trial for the treatment of chronic lymphocytic leukemia 

and multiple myeloma. CXCR4 inhibitor MSX-122 (Altiris 

Therapeutics Inc, Tucker, GA, USA) is in Phase I trials for 

advanced malignant diseases that are metastatic or unre-

sectable and that are resistant to standard therapy, while 

CXCR7-specific inhibitor CCX2066 (ChemoCentryx, Inc) 

is in preclinical studies.134,150

CXCR4 antagonist AMD3100 is the most studied 

among the agents that inhibit CXCL12/CXCR4 signaling. 

AMD3100 was initially studied as an anti-HIV agent and then 

it was discovered that this compound increases white blood 

cell counts in the blood and is able to mobilize stem cells 

from the bone marrow. This observation led to the examina-

tion of its anticancer activity.151 AMD3100 has already been 

shown to decrease metastatic potential in animal models 

for different types of tumors, including breast, ovarian and 

colorectal cancer, melanoma, and oral squamous cell carci-

noma.152–158 Similarly, blocking CXCR4 receptor function by 

a monoclonal antibody or polypeptide inhibits cancer cell 

proliferation, motility, and invasion in multiple preclinical 

models both in vitro and in vivo.110,113,159,160

The fact that CXCR4 is present in normal and cancer 

stem-like cells in various tissues suggests that this molecule 

could be essential for maintenance and viability of tumor 

progenitor cell population. Indeed, recent data suggest that 

inactivation of the CXCL12/CXCR4 axis by neutralizing 

antibody or with the CXCR4-specific small molecule antago-

nist AMD3100 inhibits glioma, renal, colon, pancreas, and 

prostate cancer progenitors as well as tumor initiating popu-

lation within gefitinib-resistant lung cancer and tamoxifen-

resistant breast cancer cells in vitro and in animal models 

(Table 1).107,161–163

Preclinical and clinical data demonstrated that tumor 

cells can be protected from the effect of ionizing radia-

tion by hypoxia, and determination of microenvironmental 

parameters such as tumor hypoxic fraction, vasculature, and 

perfusion may have a prognostic value for the response to 

radiotherapy.164–166 Moreover, low oxygen tension is a criti-

cal microenvironmental factor in regulating tumor initiating 
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cells.98,167 Hypoxia promotes expansion of glioma and colon 

CSCs and converts non-stem cancer cells into CSC popula-

tions with increased self-renewal capacity.168,169 The effects of 

reduced oxygen tension on CSCs are mediated at least in part 

through the activation of the HIF signaling pathway.167 As 

described above, CXCR4 expression is also induced under 

hypoxic stress via activation of the HIF pathway.99,100

Pharmacologic inhibition of the CXCL12/CXCR4 inter-

action by AMD3100 or neutralizing antibody prevents the 

recurrence of glioblastoma after irradiation in mice by 

inhibition of vasculogenesis.170 Preclinical studies have 

shown that radiation upregulates HIF-1 expression level and 

activity in vivo.171,172 This induces the CXCL12 gene expres-

sion and promotes the mobilization of CD11b+ monocytes 

from the BM, recruitment of these BM derived cells into 

the tumors, and development of functional tumor vascula-

ture,170,173,174 thereby supporting all remaining viable tumor 

cells. Similarly, concomitant treatment with local irradiation 

and AMD3100 induced a significant tumor growth delay and 

increased radiocurability in lung tumors by retention of BM 

derived cells.175

Another study demonstrated the role of CXCR4 in 

tumor radioresistance more definitively and showed that 

activation of CXCR4-mediated STAT3 signaling in non-

small cell lung cancer cells (NSCLC) is functionally 

crucial for the maintenance of stemness and resistance to 

radiotherapy.176 Another molecular route that can underlie 

the CXCR4-mediated radioprotection is the integrin signal-

ing pathway. Accumulating evidence suggests that CXCR4 

route enhances integrin-mediated adhesion and cooperates 

with integrin signaling in mediating chemoresistance.177–179 

In fact, CXCR4 engagement by CXCL12 induces expression 

of the integrin receptors such as α3, α5, β1, and β3 subunits, 

activation of FAK, and integrin-linked kinase, which is 

accompanied by the up-regulation of ERK1/2, JNK, and 

p38 phosphorylation.108,179–182 Previous findings showed that 

integrins might induce tumor radioresistance via activating 

SAPK/JNK, MEK1/2, PI3K/AKT, and NF-kB signaling 

pathways.183–185

Collectively, these clinical and preclinical data are con-

sistent with the CXCL12/CXCR4 pathway being a potential 

target to inhibit tumor growth and neovascularization, meta-

static dissemination, and therapy resistance. Furthermore, the 

availability of pharmacologic inhibitors impinging CXCL12/

CXCR4 signaling pathway opens novel opportunities for 

translational and clinical studies. However, important chal-

lenges remain prior to the clinical use of CXCR4 inhibitors 

in patients with solid tumors. First, CXCR4 is expressed by 

numerous types of healthy tissues.26–29,33–39,183–188 Interference 

with CXCL12/CXCR4 signaling leads to deficiencies in 

hematopoiesis and organ homeostatic functions as well as 

in tissue repair after various stresses and insults, including 

cytotoxic drugs and radiation injury. Given the ubiquitous 

expression of CXCR4 and the functional importance of 

the CXCL12/CXCR4 signaling axis, this may impede the 

use of the CXCR4-targeted therapeutic tools in the clinic. 

Clinical studies of AMD3100 as a mobilizer of HSC in 

non-Hodgkin’s lymphoma and multiple myeloma patients 

have demonstrated that AMD3100 has minimal side effects. 

However, in the clinic, AMD3100 is given to the patients 

as a daily subcutaneous injection with granulocyte colony-

stimulating factor for a limited time (1–7 days),189 whereas 

in preclinical studies for evaluating the antitumor efficacy 

of AMD3100, it is often delivered continuously via a subcu-

taneous osmotic infusion pump.110,162,190,191 In clinical study 

for HIV treatment, AMD3100 was administered as a daily 

intravenous infusion or subcutaneous injection for a period 

of 11–14 days and, despite its efficacy for the treatments 

for HIV patients, the trials were discontinued due to cardiac 

toxicity.192,193

Accumulating experimental evidence suggests that 

combinatorial strategies based on bulk tumor reduction and 

CSC-specific pathway inhibition offer a promising treat-

ment modality and are predicted to have a greater efficacy 

in tumor reduction and prevention of relapse than mono-

therapies.88,110,137 If these conditions can be met, the use of 

two types of therapy in low-dose combination can provide 

better therapeutic effects with less side-effect toxicity. 

Recent prostate tumor xenograft studies in mice showed 

that a combination of AMD3100, which targets prostate 

cancer stem-like cells, and the conventional chemothera-

peutic drug Taxotere (Sanofi SA), which targets the bulk 

tumor, is significantly more effective in eradicating tumors 

as compared to monotherapy.110,136,137,194 However, efficacy of 

CXCR4 inhibitors against CSC function in cancer patients 

remains to be determined. The ongoing clinical trials for 

CXCR4 inhibitors as chemosensitizers in acute myeloid 

leukemia and other hematological malignancies will help to 

elucidate this question.

Conclusion
Although the collective evidence from the preclini-

cal and clinical studies support the potential efficacy of 

CXCR4 inhibitors for development of innovative approaches 

to cancer treatment, several significant challenges remain 

before translation of these inhibitors into the clinic. A major 
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factor that can prevent a successful clinical use of the 

CXCR4-targeting anticancer therapy is a potential side effect 

on the stem cell compartment in normal tissues. This may 

be especially important when this treatment is combined 

with radiotherapy and other cytotoxic therapy associated 

with depletion of normal tissue progenitors. Thus, biology-

driven rational design of novel combination therapies will 

be critical for the development of low-side-effect cancer 

treatment and can be based on the synergistic antitumor 

effect of CXCR4 inhibition and conventional therapy. There 

is also a need for the evaluation of the relationship between 

CXCR4 and tumor initiating cells in cancer patients. In fact, 

evaluation of the CXCR4 and CXCL12 expression level 

may have significant prognostic value in various types of 

cancer, including glioma, prostate, breast, colon, ovarian, 

pancreatic, and lung cancer where high expression of CXCR4 

or CXCL12 predicts poor patient outcome.195–203 However, 

direct proof for stemness of CXCR4+ cells from primary 

human tumor tissues is still missing. A better understanding 

of the role of CXCR4 pathway for the maintenance of tumor 

progenitor population may be necessary for the development 

of screening tests to identify the patients who are likely to 

respond to CXCR4 inhibition. In addition, recent discovery 

of the cancer stem cell plasticity and heterogeneity can make 

the CXCR4+ tumor cell population a moving target that could 

be hard to track and eradicate.85 Nevertheless, the key role 

of CXCR4 in tumor initiation, vascularization, dissemina-

tion, and therapy resistance underscore the importance of 

CXCR4 inhibition for the optimization of current anticancer 

treatment strategies.
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