
© 2013 Ding et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

Cancer Management and Research 2013:5 367–375

Cancer Management and Research Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
367

R e v i e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/CMAR.S38294

The claudin family of proteins in human 
malignancy: a clinical perspective

Lei Ding1,2

Zhe Lu2,4

Qun Lu2,3

Yan-Hua Chen2,3

1Department of Oncology, Beijing 
Shijitan Hospital, Capital Medical 
University, Beijing, People’s Republic 
of China; 2Department of Anatomy 
and Cell Biology, 3Leo w. Jenkins 
Cancer Center, Brody School of 
Medicine, east Carolina University, 
Greenville, NC, USA; 4Department 
of Basic Medicine, Hangzhou Normal 
University, Hangzhou, People’s 
Republic of China

Correspondence: Yan-Hua Chen 
Department of Anatomy and Cell 
Biology, Brody School of Medicine, east 
Carolina University, Greenville,  
NC 27834, USA 
Tel +1 252 744 1341 
Fax +1 252 744 2850 
email cheny@ecu.edu 
 
Lei Ding 
Department of Oncology, Beijing Shijitan 
Hospital, Capital Medical University, 
Tieyilu 10, Yangfangdian,  
Haidian District, Beijing 100038,  
People’s Republic of China 
email dinglei1005@126.com

Abstract: Tight junctions, or zonula occludens, are the most apical component of the junc-

tional complex and provide one form of cell–cell adhesion in epithelial and endothelial cells. 

Nearly 90% of malignant tumors are derived from the epithelium. Loss of cell–cell adhesion 

is one of the steps in the progression of cancer to metastasis. At least three main tight junction 

family proteins have been discovered: occludin, claudin, and junctional adhesion molecule 

(JAM). Claudins are the most important structural and functional components of tight junction 

integral membrane proteins, with at least 24 members in mammals. They are crucial for the 

paracellular flux of ions and small molecules. Overexpression or downregulation of claudins is 

frequently observed in epithelial-derived cancers. However, molecular mechanisms by which 

claudins affect tumorigenesis remain largely unknown. As the pivotal proteins in epithelial 

cells, altered expression and distribution of different claudins have been reported in a wide 

variety of human malignancies, including pancreatic, colonic, lung, ovarian, thyroid, prostate, 

esophageal, and breast cancers. In this review, we will give the readers an overall picture of the 

changes in claudin expression observed in various cancers and their mechanisms of regulation. 

Downregulation of claudins contributes to epithelial transformation by increasing the paracel-

lular permeability of nutrients and growth factors to cancerous cells. In the cases of upregulation 

of claudin expression, the barrier function of the cancerous epithelia changes, as they often 

display a disorganized arrangement of tight junction strands with increased permeability to 

paracellular markers. Finally, we will summarize the literature suggesting that claudins may 

become useful biomarkers for cancer detection and diagnosis as well as possible therapeutic 

targets for cancer treatment.

Keywords: tight junctions, claudins, human cancers

Introduction to tight junctions and cell–cell 
adhesion
Cell-to-cell adhesion in epithelial cell sheets is maintained mainly through two types 

of junctions: adherens junction and tight junction. A number of studies have focused 

their attention on the transmembrane protein of the adherens junction.1,2 Only in recent 

years has the importance of tight junction proteins in epithelial cell proliferation, 

survival, apoptosis, and differentiation been recognized.

Tight junctions are involved in cell-to-cell adhesion and serve two major functions 

in epithelial cell layers: the barrier (or gate) function and the fence function. The barrier 

function of tight junctions regulates the passage of ions, water, and various macro-

molecules, even cancer cells, through paracellular spaces. Thus, the barrier function is 

relevant to edema, jaundice, diarrhea, and blood-borne metastasis. On the other hand, 
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the fence function maintains the cell polarity. In other words, 

tight junctions work as a fence to prevent the intermixing of 

molecules in the apical membrane with those in the lateral 

membrane. This fence function is highly involved in cancer 

cell biology because loss of cell polarity occurs in many types 

of cancer cells. The fence and barrier functions of the tight 

junction have a common feature of compartmentalization: 

the fence function is performed at the subcellular level and 

the barrier function is performed at the organ level. Finally, 

because of the ability of tight junction proteins to recruit sig-

naling proteins, tight junctions have also been hypothesized 

to be involved in the regulation of cell proliferation, differ-

entiation, and many other cellular functions.3,4

Introduction to claudins
Claudins were first cloned and named in 1998 by Mikio et al.5 

The name “claudin” comes from the Latin word “claudere” 

(“to close”), suggesting the barrier role of these proteins. Clau-

dins are a multigene family and encode tetraspan membrane 

proteins that are crucial structural and functional components 

of tight junctions. Claudins have important roles in regulat-

ing paracellular permeability and maintaining cell polarity in 

epithelial and endothelial cell sheets.6,7 There are currently 24 

claudin members in mammals, but claudin-13 is missing in 

humans.  Claudin members are divided into classic and non-

classic claudins based on their sequence similarity. Sequence 

similarity is determined by the alignment and phylogenetic 

tree analysis of whole-length sequences of claudins. Classic 

claudins include claudins 1–10, 14, 15, 17, and 19, and non-

classic claudins contain claudins 11–13, 16, 18, and 20–24.8 

Classic claudins exhibit a much stronger sequence homology 

than non-classic claudins. The subdivision of claudin members 

into classic and non classic groups was initially suggested from 

the sequence analysis of mouse claudin proteins. This analysis 

was subsequently extended to human claudins.7,8

In recent years, the roles of claudin proteins in human 

physiology and pathophysiology, including carcinoma devel-

opment, are just beginning to be unraveled. Several claudin 

knockout mouse models have been generated over the past 

10 years, and their diverse phenotypes clearly demonstrate 

the importance of claudin proteins in maintaining the  tissue 

integrity and homeostasis in various organs. Although 

the underlying mechanisms of claudin regulation in various 

tissues and their exact roles in normal physiology as well as 

in disease states are being elucidated, more research work 

remains to be done.9–14 In this review, we discuss the con-

ceptual framework concerning claudins and their potential 

implications in cancer. We anticipate that, in the next several 

years, our understanding of the potential role of claudins 

in the regulation of tumorigenesis will be significantly 

increased, which may, in turn, provide new approaches for 

the targeted therapy.

Role of claudins in tight junctions
Tight junctions seal the paracellular cleft of epithelia 

and endothelia and form crucial barriers between tissue 

 compartments. Tight junctions consist of integral membrane 

proteins including occludin, claudins, and tight junction-

 associated proteins, such as ZO-1. Recent studies demon-

strate the multilateral interactions between tight junction 

proteins.3,4,6 Of these molecules, claudins are responsible for 

the formation of tight junction strands and are connected to 

the actin cytoskeleton mediated by ZO-1.3,4,6

Claudins are the most important components of tight 

junctions. They form the paracellular barrier that controls 

the flux of ions and small molecules in the intercellular space 

between epithelial cells. Claudins have four transmembrane 

domains with N- and C-termini in the cytoplasm. The first 

extracellular loop consists of about 53 amino acids and the 

second one is much smaller, with about 24 amino acids. 

The N-terminal end is usually very short (four to ten amino 

acids), while the C-terminal end ranges from 21 to 63 amino 

acids and is necessary for the localization of these proteins 

in the tight junctions (see Figure 1). It is anticipated that the 

cysteines of an individual claudin can form intramolecular or 

intermolecular disulfide bonds. All human claudins (with the 

exception of claudin-12) contain a motif at the C-terminus 

that let them bind to PDZ (PSD-95/DLG/ZO-1) domains of 

scaffold proteins.15–17

Claudins are critical for sealing the epithelial sheets and 

controlling paracellular flux of ions and small molecules. 

Claudins are present in normal tissues, hyperplastic condi-

tions, benign neoplasms, and cancers that exhibit epithelial 

differentiation. Loss of claudin expression has been reported 

in several malignancies. Differential expression of various 

claudin family members in cancer can potentially be used 

to confirm the histologic identity of certain types of cancer 

and exclude others.7,9–13

The expression pattern of claudins is highly tissue-

 specific, and most tissues express multiple claudins. Claudins 

can interact with claudins from adjacent cells in a homotypic 

or heterotypic fashion to form tight junctions. Many stud-

ies suggest that the combination of claudins determines the 

selectivity and permeability of tight junctions in a given 

 tissue.6–8 Claudins can be polymerized together between 

epithelial cells to form an adhesive structure.
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Role of claudins and tight junctions 
in cancer
The function of claudins in the maintenance of normal 

epithelial cell homeostasis has been well studied; however, 

their role in the process of tumorigenesis is less clear. The 

exact biological significance of altered claudin expression 

in cancer remains largely unknown.

Cancer cells can spread from the primary site to other 

parts of the body, a process known as metastasis. Dur-

ing cancer metastasis, several important steps need to be 

undertaken. An important step in cancer progression is the 

epithelial–mesenchymal transition. During this process, 

epithelial cells downregulate cell–cell adhesion structures, 

alter their polarity, reorganize their cytoskeleton, and become 

isolated and motile.18 Tight junctions are involved in this 

cancer metastatic process. Claudin-6 decreases in breast 

invasive ductal carcinomas and is inversely correlated with 

lymph node metastasis.19 Reduced expression of claudin-7 

is correlated with higher tumor grade and locoregional and 

distant metastases, including locoregional recurrences.20 It 

has been reported that claudin-2 level is elevated in liver 

metastases. The first claudin-2 extracellular loop is essential 

for mediating tumor cell–hepatocyte interaction and the abil-

ity of breast cancer cells to form liver metastases in vivo.21 

Claudin-3 and -4 control tumor growth and metastases by 

sustaining expression of E-cadherin and limiting β-catenin 

signaling.22

The association between altered claudin expression 

and cancer has been widely reported since the discovery of 

claudins.23,24 As shown in Table 1,25–90 the level of claudin-1 

has been found to be reduced in breast cancer as well as 

in colon cancer.28,30 Claudin-7 has also been found to be 

downregulated in invasive breast cancer and in head and 

neck cancers.66,68 These reports of decreased tight junction 

protein expression in cancer are consistent with the gener-

ally accepted idea that tumorigenesis is accompanied by 

the disruption of tight junctions, a process that may play 

an important role in the loss of cohesion, invasiveness, and 

lack of differentiation observed in cancer cells. Paradoxi-

cally, other studies have shown that certain claudin proteins 

are upregulated in cancer (see Table 1).29,67 In fact, many 

published studies reported an overexpression of claudins 

in various cancers (see Table 1).35,36,56,58 For example, gene 

expression study of ovarian cancer showed that claudin-3 

and -4 were among the most highly upregulated genes in this 

cancer. Several additional reports have since confirmed the 

high expression of these two claudins in ovarian cancer. In 

addition, claudin-3 and -4 have also been reported to have an 

increased expression in other cancers, such as breast, prostate, 

and pancreatic cancers.

The loss of claudins and other tight junction proteins in 

cancer has been interpreted as a mechanism for the loss of 

cell adhesion and an important step in the progression of 

cancer to metastasis. On the other hand, as discussed previ-

ously, several claudins, including claudin-3 and -4 are often 

upregulated in many types of cancer (Table 1), suggesting that 

these proteins may have a positive effect on tumorigenesis. 

Recent research has shown that, at least in the case of ovar-

ian cells, the expression of claudin-3 and -4 may lead to an 

increase in cell invasion, motility, and survival, all of which 

are characteristics important for metastasis.91 Consistent with 

these in vitro findings is a report that claudin-4  expression 

Extracellular
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NH2

Phosphorylation sites

CPE-binding site

COOH

1

2

Figure 1 Claudin protein structure.
Notes: The claudin protein consists of four transmembrane domains and two extracellular loops (1 and 2). The N- and C-termini are located in the cytoplasm. The second 
extracellular loop has a binding site for Clostridium perfringens enterotoxin (CPe) in claudin-3 and -4. The C-terminal region contains phosphorylation sites that may be 
involved in protein–protein interactions and signal transduction.
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Table 1 Changes in claudin protein or mRNA expression in 
human tumor samples

Protein Tumor type Expression Reference

Claudin-1 Colonic  29
Squamous cell carcinoma  31
Cervical  32
Gastric  35
esophageal  36
Biliary tract  37
Keratinized (pearl)  38
Thyroid  39
Squamous cell carcinoma  
of the tongue

 40

Urothelial carcinoma  41
Hepatoblastoma  42
Squamous cell carcinoma  
of the lung

 45

Pancreatic  46
Breast  28
Colonic  30
Glioblastoma multiforme  33
Melanoma  34
Hepatocellular carcinoma  43
Adenocarcinoma of the lung  45

Claudin-2 esophageal  36
Colonic  48,49
Hepatoblastoma  51
Lung  26
Breast  47
Cervical  50
Prostate  52

Claudin-3 Gastric  35
esophageal  36
Urothelial carcinoma  41
Renal cell carcinoma  44
Breast  53
Colonic  54
Prostate  55
Ovarian  56
Pancreatic  57
Breast  47
Hepatoblastoma  51

Claudin-4 Squamous cell carcinoma  31
esophageal  36
Biliary tract  37
Squamous cell carcinoma  
of the tongue

 40

Urothelial carcinoma  41
Renal cell carcinoma  44
Breast  53
Colonic  54
Prostate  55
Ovarian  56
Gastric  58
Pancreatic  60
Thyroid  63
Lung  27

(Continued)

Table 1 (Continued)

Protein Tumor type Expression Reference

Hepatoblastoma  42
Breast  47
Gastric  59
Colonic  61
Cervical  62

Claudin-5 Adenocarcinoma of the lung  45
Pancreatic  57
Lung  27
Glioblastoma multiforme  33
Squamous cell carcinoma  
of the lung

 45

Breast  47
Claudin-6 Gastric adenocarcinoma  35

Breast (cell)  64
Claudin-7 Cervical  32

Squamous cell carcinoma  
of the tongue

 40

Urothelial carcinoma  41
Thyroid  63
Breast  67
Colonic  69,70
Gastric  73
esophageal  74
Chromophobe renal cell  
carcinoma

 76

Ovarian  78
Hepatocellular carcinoma  
(mRNA)

 79

Hepatoblastoma  42
Breast  66
Head and neck squamous  
cell carcinoma

 68

Colonic  71,72
esophageal  75
Uterus  77
Lung  25

Claudin-8 Biliary tract  37
Colonic (mRNA)  80

Claudin-9 Gastric adenocarcinoma (cell)  65
Claudin-10 Hepatocellular carcinoma  

(mRNA)
 81

Lung adenocarcinomas  82
Thyroid papillary  
(mRNA)

 83

Biliary tract  37
Claudin-11 Bladder (mRNA)  84
Claudin-12 Colonic (mRNA)  80
Claudin-16 Breast (mRNA)  90

Ovarian (mRNA)  85
Breast  86

Claudin-18 Lung adenocarcinomas  82
Pancreatic  88
Cholangiocarcinoma  88
Gastric (mRNA)  87

Claudin-23 Gastric (mRNA)  89

Abbreviation: mRNA, messenger RNA.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2013:5 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

371

The claudin family of proteins in human malignancy

in pancreatic intraductal papillary mucinous neoplasms 

was associated with a more invasive phenotype.92 Similarly, 

expression of claudin-3 and -4 was observed in advanced 

ovarian cancer but not in ovarian cystadenomas.93,94 It has 

been reported, however, that re-expression of claudin-1 in 

breast cancer cells can lead to the increased apoptosis in 

three-dimensional cultures.95 Therefore, the functions of 

claudins in cancer may be highly tissue-specific and may 

depend on the type and stage of cancer.

Several other claudin members have been reported to play 

an important role in various types of tissues; however, their 

roles in tumorigenesis are unknown. For example, CLDN13 

is a mouse-specific gene mainly expressed in tissues associ-

ated with hematopoietic function.96 Claudin-13 messenger 

RNA (mRNA) and protein are observed in colon, but they 

are undetectable in the rest of the intestines.97 Mutations in 

CLDN14 gene are known to be involved in autosomal reces-

sive deafness in humans.98 Baker et al recently reported that 

CLDN14 heterozygous mice, but not CLDN14 null mice, 

displayed several blood vessel-related phenotypes, includ-

ing abnormal distribution of basement membrane laminin 

around tumor blood vessels, increased intratumoral leakage, 

and enhanced endothelial cell proliferation.99 Patients with 

CLDN19 mutations have a high risk of progression to chronic 

renal disease.100 In human polycystic kidneys, decreased 

expression and dyslocalization of claudin-19 are noticed, 

suggesting a possible correlation between claudin-19 and 

renal disorders.101 Presently, not much is known about tis-

sue distributions or the physiological functions of claudins 

20–27. Claudin-21 and claudins 24–27 are expressed in the 

intestines, stomach, liver, and kidney.102

The mechanisms responsible for the differential expres-

sion of claudins in cancer are largely unknown; however, 

recent studies have identif ied several growth factors, 

 cytokines, and transcription factors that affect claudin 

 expression.25,103 The tumor-promoting factors, hepatocyte 

growth factor and epidermal growth factor, have been shown 

to decrease claudin-7 expression and increase claudin-1, -3, 

and -4 expressions, respectively.25,103

Critical analysis of the potential for 
targeting claudin proteins in cancer
In recent years, claudin’s potential value as a target for 

therapeutic intervention has been increasingly recognized 

regardless of its roles in tumorigenesis. This is because 

claudin proteins are expressed at the cell surface and contain 

two extracellular domains that can serve as potential target-

ing sites (Figure 1). In addition, many studies (see Table 1) 

report that some claudins are overexpressed in certain types 

of cancer while others are downregulated in different types of 

cancer, thus creating differential expression patterns between 

tumor and normal cells. Tight junction permeability is often 

higher in tumor tissues than in normal tissues, which makes 

claudins more accessible. Therefore, a therapeutic interven-

tion could be achieved.

Due to the high specificity of claudin expression patterns 

in cancer, it has been suggested that claudins may serve as 

useful molecular biomarkers for certain cancers. For example, 

claudin expression may be used as a prognostic indicator 

because low claudin-1 expression has been shown to be asso-

ciated with a poor prognosis in stage II colon  cancer.30 Clau-

din-10 expression has also been shown to be an independent 

prognostic factor for hepatocellular carcinoma recurrence 

after curative hepatectomy.81,104

It is known that claudin-3 and -4 are receptors for the 

bacterial toxin Clostridium perfringens enterotoxin (CPE). 

CPE is a single polypeptide of 35 kDa. Upon binding to its 

receptors, CPE induces cytolysis through its effects on mem-

brane permeability. The high expression levels of claudin-3 

and -4 in multiple types of cancer may provide a unique 

opportunity for anticancer therapy using CPE.  Prostate 

adenocarcinoma cells expressing claudin-3 and -4 have been 

shown to be sensitive to CPE-mediated cytolysis.55,105,106 

This CPE-mediated cytolysis was specific because prostate 

cancer cells lacking claudin-3 and -4 were unaffected by 

CPE treatment.  Similar experiments have also shown that 

breast, ovarian, and pancreatic cancer cells were sensitive to 

CPE treatment as long as these cancer cells were express-

ing claudin-3 and/or -4.53,105,107 The challenge, however, 

is that claudin-3 and/or -4 are also expressed in several 

normal human tissues, including gut, lungs, and kidneys. 

This could hinder the use of CPE for potential anti-cancer 

therapy. Therefore, whether this approach will be useful in 

the clinical setting remains to be seen.

To overcome this hurdle, it has been suggested that a 

nontoxic C-terminal CPE fragment could be delivered locally 

to normal tissues and prevent CPE toxicity during cancer 

treatment. Other potential problems with the use of CPE 

in cancer treatment include the possible immune response 

against CPE in patients receiving the treatment, the level of 

surface claudin expression, and the penetration of CPE into 

the tumor mass.53,55,105–107 Therefore, additional studies are 

required to solve these issues before CPE can be used as a 

therapeutic approach.

A study has shown that claudin peptides can be internal-

ized by specific and nonspecific pathways.108 The cellular 
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uptake of the claudin-1 peptide follows the clathrin-mediated 

endocytosis as indicated by inhibitors and respective trac-

ers for colocalization. In addition, macropinocytosis and 

caveolae-mediated endocytosis of the peptide have also been 

observed. In contrast, the claudin-5 peptide is mainly inter-

nalized via the caveolae-mediated endocytosis as evidenced 

by the colocalization with respective tracers and vesicle 

markers, whereas the nonselective macropinocytosis seems 

to be involved in a less effective manner.108

Since claudins are transmembrane proteins and contain 

two extracellular loops, they may also offer promising tar-

gets for antibody-based therapy. Antibodies that recognize 

different claudins’ extracellular loops have been produced 

and shown to specifically bind to claudins on the surface 

of the cell, providing a proof of principle for this approach. 

Besides antibody-based treatment, many small molecules 

or compounds can affect tight junction functions and, there-

fore, could potentially be used for anticancer therapy.109 For 

example, it has been reported that hydroxycamptothecin-

loaded Fe
3
O

4
 nanoparticles induce human HCC827 lung 

cancer cell apoptosis and disrupt tight junctions by internal-

izing claudin-1, -3, -4, and -7 proteins and decreasing their 

protein expressions.110 HangAmDan-B, an anti-invasive agent 

extracted from eight Korean medical animals and plants, can 

inhibit the cell migration and invasion of NCI-H460 lung 

cancer cells and tighten the tight junctions through down-

regulating claudin-1, -2, -3, and -4 at both transcriptional 

and translational levels.111 Butyrate improves the barrier 

function of intestinal epithelia and has the potential to treat 

inflammatory bowel disease. It restores the tight junctions in 

inflammatory bowel disease patients by downregulating the 

expression of claudin-1 and -2 and upregulating occludin, 

cingulin, ZO-1, and ZO-2.112

It has been suggested from the gene expression studies 

of breast and ovarian cancers56,67 that the identification of 

specific expression patterns of claudin family members could 

be used as potential biomarkers for these cancers. A cancer 

biomarker refers to a substance or process that is indicative 

of the presence of cancer in the body. Not all of the claudins 

in Table 1 are considered as biomarkers. Up until now, only 

certain claudins could be an indicative marker for diagnosis 

and disease progression. For example, claudin-7 may serve 

as an immunohistochemical biomarker in the differential 

diagnosis of chromophobe renal cell carcinoma and onco-

cytoma; claudin-4 could serve as an immunohistochemical 

biomarker in the differential diagnosis of undifferentiated 

pancreatic cancers and highly invasive pancreatic cancers; 

and the expression of claudin-10 in hepatocellular carcinomas 

can potentially serve to predict disease recurrence after cura-

tive hepatectomy.60,76,81 These findings are important because 

changes in expression patterns of claudins allow for detection, 

diagnosis, and potential treatment of drug-resistant cancers. 

Clinical trials are certainly required to establish this potential, 

but research studies on claudin functions and regulations as 

well as their roles in cancer are critically needed for provid-

ing important insight in relation to normal and neoplastic 

cellular physiology.

The fact that the expression levels of many claudin 

family members are altered in various types of cancers and 

that claudins are localized at the cell surface make claudins 

potentially attractive molecular targets for cancer therapy. 

The clinical application of using claudin-targeted therapy, 

however, will present several challenges. The most impor-

tant challenge is the systemic toxicity. Because claudins 

are expressed in the epithelia of most organs in the body, 

the toxicity issue must be addressed. The small molecules 

or synthetic compounds designed to disrupt tight junctions 

may also be a double-edged sword, because an increase in 

tight junction permeability can enhance the uptake of anti-

cancer agents, but, at the same time, it may also increase the 

nutritional uptake to promote tumor progression. Therefore, 

further studies, especially at the animal level, are needed to 

determine the toxicity issue of claudin-targeted therapy and 

to evaluate whether this approach can be applied safely and 

practically in a clinical setting.

Claudins play an indispensable role in tissue homeosta-

sis and barrier formation; our knowledge about the role of 

claudin proteins in cancer biology is, however, still limited. 

Nevertheless, with our increasing understanding of specific 

functions of claudins in various cancers, claudins may serve 

as promising tumor biomarkers as well as therapeutic targets 

in the near future.

Conclusion
Claudins are the main structural and functional proteins of 

tight junctions in epithelial cells and maintain the tissue 

homeostasis through regulating epithelial barriers, paracel-

lular transport, and signal transduction. Numerous studies 

have demonstrated the altered expression patterns of differ-

ent claudin members in a variety of diseases, particularly 

in cancers. Identifying the specific functions of claudins in 

tumorigenesis has become one of the main research focuses 

in the field of cell biology. It is still unclear what the associa-

tion between altered claudin expression and tumorigenesis is, 

despite great research efforts in the last decade. With rapid 

research advancement and newly developed technology, 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2013:5 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

373

The claudin family of proteins in human malignancy

however, the role of claudins in cancer and its clinical 

applications in cancer detection, diagnosis, and potential 

therapeutic intervention may become a valid approach in 

the near future.

Acknowledgment
This work was supported by National Natural Science 

Foundation of China (81372585) (LD); the National Natural 

Science Foundation of China (31200581) and the Foun-

dation from Hangzhou Science and Technology Bureau 

(20120633B26) to ZL, and the National Institute of Health 

grants (ES016888) to YHC.

Disclosure
The authors report no conflicts of interest in this work.

References
 1. Lampugnani MG. Endothelial cell-to-cell junctions: adhesion and sig-

naling in physiology and pathology. Cold Spring Harb Perspect Med. 
2012;2(10). pii: a006528.

 2. Liebner S, Cavallaro U, Dejana E. The multiple languages of endothelial 
cell-to-cell communication. Arterioscler Thromb Vasc Biol. 2006;26(7): 
1431–1438.

 3. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. 
Nat Rev Mol Cell Biol. 2001;2(4):285–293.

 4. Schneeberger EE, Lynch RD. The tight junction: a multifunctional 
complex. Am J Physiol Cell Physiol. 2004;286(6):C1213–C1228.

 5. Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2:  
novel integral membrane proteins localizing at tight junctions with no 
sequence similarity to occludin. J Cell Biol. 1998;141(7): 1539–1550.

 6. Markov AG. [Claudins as tight junction proteins: the molecular element 
of paracellular transport]. Ross Fiziol Zh Im I M Sechenova. 2013;99(2): 
175–195. Russian.

 7. Lal-Nag M, Morin PJ. The claudins. Genome Biol. 2009;10(8):235.
 8. Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. 

Structure and function of claudins. Biochim Biophys Acta. 2008;1778(3): 
631–645.

 9. Escudero-Esparza A, Jiang WG, Martin TA. The Claudin family 
and its role in cancer and metastasis. Front Biosci (Landmark Ed). 
2011;16:1069–1083.

 10. Ouban A, Ahmed AA. Claudins in human cancer: a review. Histol 
Histopathol. 2010;25(1):83–90.

 11. Hewitt KJ, Agarwal R, Morin PJ. The claudin gene family: expression 
in normal and neoplastic tissues. BMC Cancer. 2006;6:186.

 12. Morin PJ. Claudin proteins in human cancer: promising new targets for 
diagnosis and therapy. Cancer Res. 2005;65(21):9603–9606.

 13. Singh AB, Sharma A, Dhawan P. Claudin family of proteins and cancer: 
an overview. J Oncol. 2010;2010:541957.

 14. Ding L, Lu Z, Foreman O, et al. Inflammation and disruption of the 
mucosal architecture in claudin-7-deficient mice. Gastroenterology. 
2012;142(2):305–315.

 15. Findley MK, Koval M. Regulation and roles for claudin-family tight 
junction proteins. IUBMB Life. 2009;61(4):431–437.

 16. Will C, Fromm M, Muller D. Claudin tight junction proteins: novel 
aspects in paracellular transport. Perit Dial Int. 2008;28(6):577–584.

 17. Elkouby-Naor L, Ben-Yosef T. Functions of claudin tight junction pro-
teins and their complex interactions in various physiological systems. 
Int Rev Cell Mol Biol. 2010;279:1–32.

 18. Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition: 
a cancer researcher’s conceptual friend and foe. Am J Pathol. 2009; 
174(5):1588–1593.

 19. Xu X, Jin H, Liu Y, et al. The expression patterns and correlations of 
claudin-6, methy-CpG binding protein 2, DNA methyltransferase 1, 
histone deacetylase 1, acetyl-histone H3 and acetyl-histone H4 and their 
clinicopathological significance in breast invasive ductal carcinomas. 
Diagn Pathol. 2012;7(1):33.

 20. Sauer T, Pedersen MK, Ebeltoft K, Naess O. Reduced expression of 
Claudin-7 in fine needle aspirates from breast carcinomas correlate with 
grading and metastatic disease. Cytopathology. 2005;16(4):193–198.

 21. Tabariès S, Dupuy F, Dong Z, et al. Claudin-2 promotes breast cancer 
liver metastasis by facilitating tumor cell interactions with hepatocytes. 
Mol Cell Biol. 2012;32(15):2979–2991.

 22. Shang X, Lin X, Alvarez E, Manorek G, Howell SB. Tight junction 
proteins claudin-3 and claudin-4 control tumor growth and metastases. 
Neoplasia. 2012;14(10):974–985.

 23. Swisshelm K, Macek R, Kubbies M. Role of claudins in tumorigenesis. 
Adv Drug Deliv Rev. 2005;57(6):919–928.

 24. Oliveira SS, Morgado-Diaz JA. Claudins: multifunctional players in 
epithelial tight junctions and their role in cancer. Cell Mol Life Sci. 
2007;64(1):17–28.

 25. Lu Z, Ding L, Hong H, Hoggard J, Lu Q, Chen YH. Claudin-7 inhibits 
human lung cancer cell migration and invasion through ERK/MAPK 
signaling pathway. Exp Cell Res. 2011;317(13):1935–1946.

 26. Ikari A, Sato T, Watanabe R, Yamazaki Y, Sugatani J. Increase in 
claudin-2 expression by an EGFR/MEK/ERK/c-Fos pathway in lung 
adenocarcinoma A549 cells. Biochim Biophys Acta. 2012;1823(6): 
1110–1118.

 27. Jung JH, Jung CK, Choi HJ, et al. Diagnostic utility of expression of 
claudins in non-small cell lung cancer: different expression profiles in 
squamous cell carcinomas and adenocarcinomas. Pathol Res Pract. 
2009;205(6):409–416.

 28. Kramer F, White K, Kubbies M, Swisshelm K, Weber BH. Genomic 
organization of claudin-1 and its assessment in hereditary and sporadic 
breast cancer. Human Genet. 2000;107(3):249–256.

 29. Miwa N, Furuse M, Tsukita S, Niikawa N, Nakamura Y, Furukawa Y. 
Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway 
and its frequent upregulation in human colorectal cancers. Oncol Res. 
2001;12(11–12):469–476.

 30. Resnick MB, Konkin T, Routhier J, Sabo E, Pricolo VE. Claudin-1 is a 
strong prognostic indicator in stage II colonic cancer: a tissue microarray 
study. Mod Pathol. 2005;18(4):511–518.

 31. Ouban A, Hamdan H, Hakam A, Ahmed AA. Claudin-1 expression in 
squamous cell carcinomas of different organs: comparative study of 
cancerous tissues and normal controls. Int J Surg Pathol. 2012;20(2): 
132–138.

 32. Lee JW, Lee SJ, Seo J, et al. Increased expressions of claudin-1 and 
claudin-7 during the progression of cervical neoplasia. Gynecol Oncol. 
2005;97(1):53–59.

 33. Liebner S, Fischmann A, Rascher G, et al. Claudin-1 and claudin-5 
expression and tight junction morphology are altered in blood vessels 
of human glioblastoma multiforme. Acta Neuropathol. 2000;100(3): 
323–331.

 34. Cohn ML, Goncharuk VN, Diwan AH, Zhang PS, Shen SS, Prieto VG. 
Loss of claudin-1 expression in tumor-associated vessels correlates with 
acquisition of metastatic phenotype in melanocytic neoplasms. J Cutan 
Pathol. 2005;32(8):533–536.

 35. Resnick MB, Gavilanez M, Newton E, et al. Claudin expression in 
gastric adenocarcinomas: a tissue microarray study with prognostic 
correlation. Hum Pathol. 2005;36(8):886–892.

 36. Gyõrffy H, Holczbauer A, Nagy P, et al. Claudin expression in 
 Barrett’s esophagus and adenocarcinoma. Virchows Arch. 2005;447(6): 
961–968.

 37. Németh Z, Szász AM, Tátrai P, et al. Claudin-1, -2, -3, -4, -7, -8, and -10  
protein expression in biliary tract cancers. J Histochem Cytochem. 
2009;57(2):113–121.

 38. Morita K, Tsukita S, Miyachi Y. Tight junction-associated proteins 
(occludin, ZO-1, claudin-1, claudin-4) in squamous cell carcinoma and 
Bowen’s disease. Br J Dermatol. 2004;151(2):328–334.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2013:5submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

374

Ding et al

 39. Fluge O, Bruland O, Akslen LA, Lillehaug JR, Varhaug JE. Gene 
expression in poorly differentiated papillary thyroid carcinomas. 
 Thyroid. 2006;16(2):161–175.

 40. Bello IO, Vilen ST, Niinimaa A, Kantola S, Soini Y, Salo T. Expression 
of claudins 1, 4, 5, and 7 and occludin, and relationship with prognosis 
in squamous cell carcinoma of the tongue. Human Pathol. 2008;39(8): 
1212–1220.

 41. Nakanishi K, Ogata S, Hiroi S, Tominaga S, Aida S, Kawai T.  Expression 
of occludin and claudins 1, 3, 4, and 7 in urothelial carcinoma of the 
upper urinary tract. Am J Clin Pathol. 2008;130(1):43–49.

 42. Haid S, Windisch MP, Bartenschlager R, Pietschmann T. Mouse-
 specific residues of claudin-1 limit hepatitis C virus genotype 2a 
infection in a human hepatocyte cell line. J Virol. 2010;84(2): 
964–975.

 43. Higashi Y, Suzuki S, Sakaguchi T, et al. Loss of claudin-1 expression 
correlates with malignancy of hepatocellular carcinoma. J Surg Res. 
2007;139(1):68–76.

 44. Lechpammer M, Resnick MB, Sabo E, et al. The diagnostic and prog-
nostic utility of claudin expression in renal cell neoplasms. Mod Pathol. 
2008;21(11):1320–1329.

 45. Paschoud S, Bongiovanni M, Pache JC, Citi S. Claudin-1 and claudin-5 
expression patterns differentiate lung squamous cell carcinomas from 
adenocarcinomas. Mod Pathol. 2007;20(9):947–954.

 46. Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL, et al. Discovery of 
novel tumor markers of pancreatic cancer using global gene expression 
technology. Discovery of novel tumor markers of pancreatic cancer 
using global gene expression technology. Am J Pathol. 2002;160(4): 
1239–1249.

 47. Kim TH, Huh JH, Lee S, Kang H, Kim GI, An HJ. Down-regulation 
of claudin-2 in breast carcinomas is associated with advanced disease. 
Histopathology. 2008;53(1):48–55.

 48. Weber CR, Nalle SC, Tretiakova M, Rubin DT, Turner JR. Claudin-1 
and claudin-2 expression is elevated in inflammatory bowel disease and 
may contribute to early neoplastic transformation. Lab Invest. 2008; 
88(10):1110–1120.

 49. Aung PP, Mitani Y, Sanada Y, Nakayama H, Matsusaki K, Yasui W.  
Differential expression of claudin-2 in normal human tissues and gas-
trointestinal carcinomas. Virchows Arch. 2006;448(4):428–434.

 50. Timmons BC, Mitchell SM, Gilpin C, Mahendroo MS. Dynamic 
changes in the cervical epithelial tight junction complex and differen-
tiation occur during cervical ripening and parturition. Endocrinology. 
2007;148(3):1278–1287.

 51. Halasz J, Holczbauer A, Paska C, et al. Claudin-1 and claudin-2 dif-
ferentiate fetal and embryonal components in human hepatoblastoma. 
Hum Pathol. 2006;37(5):555–561.

 52. Soini Y. Expression of claudins 1, 2, 3, 4, 5 and 7 in various types of 
tumours. Histopathology. 2005;46(5):551–560.

 53. Kominsky SL, Vali M, Korz D, et al. Clostridium perfringens entero-
toxin elicits rapid and specific cytolysis of breast carcinoma cells 
mediated through tight junction proteins claudin 3 and 4. Am J Pathol. 
2004;164(5):1627–1633.

 54. de Oliveira SS, de Oliveira IM, De Souza W, Morgado-Díaz JA. 
Claudins upregulation in human colorectal cancer. FEBS Lett. 2005; 
579(27):6179–6185.

 55. Maeda T, Murata M, Chiba H, et al. Claudin-4-targeted therapy using 
Clostridium perfringens enterotoxin for prostate cancer. Prostate. 
2012;72(4):351–360.

 56. Hough CD, Sherman-Baust CA, Pizer ES, et al. Large-scale serial 
analysis of gene expression reveals genes differentially expressed in 
ovarian cancer. Cancer Res. 2000;60(22):6281–6287.

 57. Missiaglia E, Blaveri E, Terris B, et al. Analysis of gene expression 
in cancer cell lines identifies candidate markers for pancreatic tumori-
genesis and metastasis. Int J Cancer. 2004;112(1):100–112.

 58. Kwon MJ, Kim SH, Jeong HM, et al. Claudin-4 overexpression is asso-
ciated with epigenetic derepression in gastric carcinoma. Lab Invest. 
2011;91(11):1652–1667.

 59. Lee SK, Moon J, Park SW, Song SY, Chung JB, Kang JK. Loss of the 
tight junction protein claudin 4 correlates with histological growth-pat-
tern and differentiation in advanced gastric adenocarcinoma.  Oncology 
Rep. 2005;13(2):193–199.

 60. Michl P, Buchholz M, Rolke M, et al. Claudin-4: a new target for 
pancreatic cancer treatment using Clostridium perfringens enterotoxin. 
Gastroenterology. 2001;121(3):678–684.

 61. Ueda J, Semba S, Chiba H, et al. Heterogeneous expression of 
 claudin-4 in human colorectal cancer: decreased claudin-4 expres-
sion at the invasive front correlates cancer invasion and metastasis. 
 Pathobiology. 2007;74(1):32–41.

 62. Sobel G, Szabó I, Páska C, et al. Changes of cell adhesion and extracel-
lular matrix (ECM) components in cervical intraepithelial neoplasia. 
Pathology Oncol Res. 2005;11(1):26–31.

 63. Tzelepi VN, Tsamandas AC, Vlotinou HD, Vagianos CE, Scopa CD.  
Tight junctions in thyroid carcinogenesis: diverse expression of 
claudin-1, claudin-4, claudin-7 and occludin in thyroid neoplasms. 
Mod Pathol. 2008;21(1):22–30.

 64. Wu Q, Liu Y, Ren Y, et al. Tight junction protein, claudin-6, down-
regulates the malignant phenotype of breast carcinoma. Eur J Cancer 
Prev. 2010;19(3):186–194.

 65. Zavala-Zendejas VE, Torres-Martinez AC, Salas-Morales B, Fortoul TI, 
Montaño LF, Rendon-Huerta EP. Claudin-6, 7, or 9 overexpression in 
the human gastric adenocarcinoma cell line AGS increases its invasive-
ness, migration, and proliferation rate. Cancer Invest. 2011;29:1–11.

 66. Kominsky SL, Argani P, Korz D, et al. Loss of the tight junction 
protein claudin-7 correlates with histological grade in both ductal car-
cinoma in situ and invasive ductal carcinoma of the breast. Oncogene. 
2003;22(13):2021–2033.

 67. Nacht M, Ferguson AT, Zhang W, et al. Combining serial analysis of 
gene expression and array technologies to identify genes differentially 
expressed in breast cancer. Cancer Res. 1999;59(21):5464–5470.

 68. Al Moustafa AE, Alaoui-Jamali MA, Batist G, et al. Identification 
of genes associated with head and neck carcinogenesis by cDNA 
microarray comparison between matched primary normal epithelial 
and squamous carcinoma cells. Oncogene. 2002;21(17):2634–2640.

 69. Darido C, Buchert M, Pannequin J, et al. Defective claudin-7 regu-
lation by Tcf-4 and Sox-9 disrupts the polarity and increases the 
tumorigenicity of colorectal cancer cells. Cancer Res. 2008;68(11): 
4258–4268.

 70. Kuhn S, Koch M, Nübel T, et al. A complex of EpCAM, claudin-7, 
CD44 variant isoforms, and tetraspanins promotes colorectal cancer 
progression. Mol Cancer Res. 2007;5(6):553–567.

 71. Oshima T, Kunisaki C, Yoshihara K, et al. Reduced expression of the 
claudin-7 gene correlates with venous invasion and liver metastasis in 
colorectal cancer. Oncology Rep. 2008;19(4):953–959.

 72. Nakayama F, Semba S, Usami Y, Chiba H, Sawada N, Yokozaki H. 
Hypermethylation-modulated downregulation of claudin-7 expres-
sion promotes the progression of colorectal carcinoma. Pathobiology. 
2008;75(3):177–185.

 73. Johnson AH, Frierson HF, Zaika A, et al. Expression of tight-junction 
protein claudin-7 is an early event in gastric tumorigenesis. Am J Pathol. 
2005;167(2):577–584.

 74. Montgomery E, Mamelak AJ, Gibson M, et al. Overexpression of clau-
din proteins in esophageal adenocarcinoma and its precursor lesions. 
Appl Immunohistochem Mol Morphol. 2006;14(1):24–30.

 75. Usami Y, Chiba H, Nakayama F, et al. Reduced expression of claudin-7 
correlates with invasion and metastasis in squamous cell carcinoma of 
the esophagus. Hum Pathol. 2006;37(5):569–577.

 76. Hornsby CD, Cohen C, Amin MB, et al. Claudin-7 immunohistochem-
istry in renal tumors: a candidate marker for chromophobe renal cell 
carcinoma identified by gene expression profiling. Arch Pathol Lab 
Med. 2007;131(10):1541–1546.

 77. Li X, Li Y, Qiu H, Wang Y. Downregulation of claudin-7 potentiates 
cellular proliferation and invasion in endometrial cancer. Oncol Lett. 
2013;6(1):101–105.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/cancer-management-and-research-journal

Cancer Management and Research is an international, peer-reviewed 
open access journal focusing on cancer research and the optimal use of 
preventative and integrated treatment interventions to achieve improved 
outcomes, enhanced survival and quality of life for the cancer patient. 
The journal welcomes original research, clinical & epidemiological 

studies, reviews & evaluations, guidelines, expert opinion & commen-
tary, case reports & extended reports. The manuscript management 
system is completely online and includes a very quick and fair peer-
review system, which is all easy to use. Visit http://www.dovepress.com/ 
testimonials.php to read real quotes from published authors.

Cancer Management and Research 2013:5 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

DovepressDovepress

375

The claudin family of proteins in human malignancy

 78. Dahiya N, Becker KG, Wood WH 3rd, Zhang Y, Morin PJ. Claudin-7 
is frequently overexpressed in ovarian cancer and promotes invasion. 
PloS One. 2011;6(7):e22119.

 79. Brokalaki EI, Weber F, Sotiropoulos GC, Daoudaki M, Cicinnati VR, 
Beckebaum S. Claudin-7 expression in hepatocellular carcinoma. 
Transplant Proc. 2012;44(9):2737–2740.

 80. Grone J, Weber B, Staub E, et al. Differential expression of genes encod-
ing tight junction proteins in colorectal cancer: frequent dysregulation 
of claudin-1, -8 and -12. Int J Colorectal Dis. 2007;22(6):651–659.

 81. Cheung ST, Leung KL, Ip YC, et al. Claudin-10 expression level is 
associated with recurrence of primary hepatocellular carcinoma. Clin 
Cancer Res. 2005;11(2 Pt 1):551–556.

 82. Merikallio H, Pääkkö P, Harju T, Soini Y. Claudins 10 and 18 are 
predominantly expressed in lung adenocarcinomas and in tumors of 
nonsmokers. Int J Clin Exp Pathol. 2011;4(7):667–673.

 83. Aldred MA, Huang Y, Liyanarachchi S, et al. Papillary and follicular 
thyroid carcinomas show distinctly different microarray expression 
profiles and can be distinguished by a minimum of five genes. J Clin 
Oncol. 2004;22(17):3531–3539.

 84. Awsare NS, Martin TA, Haynes MD, Matthews PN, Jiang WG. 
Claudin-11 decreases the invasiveness of bladder cancer cells.  Oncology 
Rep. 2011;25(6):1503–1509.

 85. Rangel LB, Sherman-Baust CA, Wernyj RP, Schwartz DR, Cho KR, 
Morin PJ. Characterization of novel human ovarian cancer-specific 
transcripts (HOSTs) identified by serial analysis of gene expression. 
Oncogene. 2003;22(46):7225–7232.

 86. Martin TA, Harrison GM, Watkins G, Jiang WG. Claudin-16 reduces 
the aggressive behavior of human breast cancer cells. J Cell Biochem. 
2008;105(1):41–52.

 87. Sanada Y, Oue N, Mitani Y, Yoshida K, Nakayama H, Yasui W. Down-
regulation of the claudin-18 gene, identified through serial analysis 
of gene expression data analysis, in gastric cancer with an intestinal 
phenotype. J Pathol. 2006;208(5):633–642.

 88. Shinozaki A, Shibahara J, Noda N, et al. Claudin-18 in biliary 
 neoplasms. Its significance in the classification of intrahepatic cholan-
giocarcinoma. Virchows Arch. 2011;459(1):73–80.

 89. Katoh M, Katoh M. CLDN23 gene, frequently down-regulated in 
intestinal-type gastric cancer, is a novel member of CLAUDIN gene 
family. Int J Mol Med. 2003;11(6):683–689.

 90. Kuo SJ, Chien SY, Lin C, Chan SE, Tsai HT, Chen DR. Significant 
elevation of CLDN16 and HAPLN3 gene expression in human breast 
cancer. Oncology Rep. 2010;24(3):759–766.

 91. Agarwal R, D’Souza T, Morin PJ. Claudin-3 and claudin-4 expression 
in ovarian epithelial cells enhances invasion and is associated with 
increased matrix metalloproteinase-2 activity. Cancer Res. 2005;65(16): 
7378–7385.

 92. Tsutsumi K, Sato N, Cui L, et al. Expression of claudin-4 (CLDN4) 
mRNA in intraductal papillary mucinous neoplasms of the pancreas. 
Mod Pathol. 2011;24(4):533–541.

 93. Rangel LB, Agarwal R, D’Souza T, et al. Tight junction proteins 
claudin-3 and claudin-4 are frequently overexpressed in ovarian 
cancer but not in ovarian cystadenomas. Clin Cancer Res. 2003;9(7): 
2567–2575.

 94. English DP, Santin AD. Claudins overexpression in ovarian cancer: 
potential targets for Clostridium perfringens enterotoxin (CPE) based 
diagnosis and therapy. Int J Mol Sci. 2013;14(5):10412–10437.

 95. Hoevel T, Macek R, Swisshelm K, Kubbies M. Reexpression of the 
TJ protein CLDN1 induces apoptosis in breast tumor spheroids. Int J 
Cancer. 2004;108(3):374–383.

 96. Thompson PD, Tipney H, Brass A, et al. Claudin 13, a member of the 
claudin family regulated in mouse stress induced erythropoiesis. PloS 
One. 2010;5(9):e12667.

 97. Fujita H, Chiba H, Yokozaki H, et al. Differential expression and 
subcellular localization of claudin-7, -8, -12, -13, and -15 along the 
mouse intestine. J Histochem Cytochem. 2006;54(8):933–944.

 98. Wilcox ER, Burton QL, Naz S, et al. Mutations in the gene encoding 
tight junction claudin-14 cause autosomal recessive deafness DFNB29. 
Cell. 2001;104(1):165–172.

 99. Baker M, Reynolds LE, Robinson SD, et al. Stromal Claudin14-
heterozygosity, but not deletion, increases tumour blood leakage 
without affecting tumour growth. PloS One. 2013;8(5):e62516.

 100. Claverie-Martin F, García-Nieto V, Loris C, et al; RenalTube Group. 
Claudin-19 mutations and clinical phenotype in Spanish patients with 
familial hypomagnesemia with hypercalciuria and nephrocalcinosis. 
PloS One. 2013;8(1):e53151.

 101. Lee NP, Tong MK, Leung PP, et al. Kidney claudin-19: localization 
in distal tubules and collecting ducts and dysregulation in polycystic 
renal disease. FEBS Lett. 2006;580(3):923–931.

 102. Günzel D, Yu AS. Claudins and the modulation of tight junction 
permeability. Physiol Rev. 2013;93(2):525–569.

 103. Walsh SV, Hopkins AM, Nusrat A. Modulation of tight junction 
structure and function by cytokines. Adv Drug Deliv Rev. 2000;41(3): 
303–313.

 104. Huang GW, Ding X, Chen SL, Zeng L. Expression of claudin 10 protein 
in hepatocellular carcinoma: impact on survival. J Cancer Res Clin 
Oncol. 2011;137(8):1213–1218.

 105. Walther W, Petkov S, Kuvardina ON, et al. Novel Clostridium per-
fringens enterotoxin suicide gene therapy for selective treatment of 
claudin-3- and -4-overexpressing tumors. Gene Ther. 2012;19(5): 
494–503.

 106. Long H, Crean CD, Lee WH, Cummings OW, Gabig TG.  Expression 
of Clostridium perfringens enterotoxin receptors claudin-3 and 
claudin-4 in prostate cancer epithelium. Cancer Res. 2001;61(21): 
7878–7881.

 107. Cocco E, Casagrande F, Bellone S, et al. Clostridium perfringens 
enterotoxin carboxy-terminal fragment is a novel tumor-homing 
peptide for human ovarian cancer. BMC Cancer. 2010;10:349.

 108. Zwanziger D, Staat C, Andjelkovic AV, Blasig IE. Claudin-derived 
peptides are internalized via specific endocytosis pathways. Ann N Y 
Acad Sci. 2012;1257:29–37.

 109. Kominsky SL. Claudins: emerging targets for cancer therapy. Expert 
Rev Mol Med. 2006;8(18):1–11.

 110. Zhang G, Ding L, Renegar R, et al. Hydroxycamptothecin-loaded 
Fe3O4 nanoparticles induce human lung cancer cell apoptosis through 
caspase-8 pathway activation and disrupt tight junctions. Cancer Sci. 
2011;102(6):1216–1222.

 111. Choi YJ, Shin DY, Lee YW, et al. Inhibition of cell motility and invasion 
by HangAmDan-B in NCI-H460 human non-small cell lung cancer 
cells. Oncology Rep. 2011;26(6):1601–1608.

 112. Plöger S, Stumpff F, Penner GB, et al. Microbial butyrate and its role 
for barrier function in the gastrointestinal tract. Ann N Y Acad Sci. 
2012;1258:52–59.

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com/cancer-management-and-research-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 2: 
	Nimber of times reviewed: 


