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Abstract: Alzheimer’s disease (AD) and schizophrenia (SZ) are neurological disorders with 

overlapping symptomatology, including both cognitive deficits and behavioral disturbances. 

Current clinical treatments for both disorders have limited efficacy accompanied by dose-

limiting side effects, and ultimately fail to adequately address the broad range of symptoms 

observed. Novel therapeutic options for AD and SZ are needed to better manage the spectrum 

of symptoms with reduced adverse-effect liability. Substantial evidence suggests that activation 

of muscarinic acetylcholine receptors (mAChRs) has the potential to treat both cognitive and 

psychosis-related symptoms associated with numerous central nervous system (CNS) disorders. 

However, use of nonselective modulators of mAChRs is hampered by dose-limiting peripheral 

side effects that limit their clinical utility. In order to maintain the clinical efficacy without the 

adverse-effect liability, efforts have been focused on the discovery of compounds that selectively 

modulate the centrally located M
1
 and M

4
 mAChR subtypes. Previous drug discovery attempts 

have been thwarted by the highly conserved nature of the acetylcholine site across mAChR 

subtypes. However, current efforts by our laboratory and others have now focused on modulators 

that bind to allosteric sites on mAChRs, allowing these compounds to display unprecedented 

subtype selectivity. Over the past couple of decades, the discovery of small molecules capable 

of selectively targeting the M
1
 or M

4
 mAChR subtypes has allowed researchers to elucidate the 

roles of these receptors in regulating cognitive and behavioral disturbances in preclinical animal 

models. Here, we provide an overview of these promising preclinical and clinical studies, which 

suggest that M
1
- and M

4
-selective modulators represent viable novel targets with the potential 

to successfully address a broad range of symptoms observed in patients with AD and SZ.

Keywords: muscarinic receptors, schizophrenia, Alzheimer’s disease

Introduction
Schizophrenia (SZ) and Alzheimer’s disease (AD) are two devastating disorders of the 

central nervous system (CNS) that present clinically with cognitive impairments and 

psychotic symptoms. Psychosis is the hallmark symptom of SZ and manifests as halluci-

nations, disordered thought/speech, and delusions. While these psychotic symptoms are 

commonly associated with SZ, it has become well documented that these patients also 

experience cognitive and behavioral disturbances that are not adequately addressed by 

currently prescribed typical and atypical psychotics.1 Conversely, the most commonly 

associated symptoms of AD are cognitive in nature and include deficits in learning 

and memory. However, 50%–80% of AD patients display psychotic and behavioral 

disturbances that are correlated with poor social and functional outcomes.2 While 

these two diseases arise from separate etiologies, there is a large amount of overlap 
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in the cognitive deficits and psychotic symptoms that are 

observed. Currently available therapies for these conditions 

fail to alleviate the broad range of symptoms experienced by 

patients and are often hampered by dose-limiting side effects, 

emphasizing the need for novel therapeutics with which to 

treat these patients.

Another commonality between AD and SZ is the appar-

ent involvement of dysregulated cholinergic signaling in 

the brain.3,4 Acetylcholine (ACh) is a neurotransmitter that 

modulates neuronal function in several areas of the CNS 

associated with AD and/or SZ pathology, including the 

striatum, cortex, hippocampus, and prefrontal cortex.5 ACh 

mediates its actions via two families of receptors, termed 

the muscarinic ACh receptors (mAChRs) and the nicotinic 

ACh receptors (nAChRs). Here, we review the potential 

of mAChR modulation for the treatment of AD and SZ; 

however, modulation of nAChRs could also provide novel 

therapeutic avenues for treating these diseases (see Taly et al6 

for a comprehensive review).

The mAChR family consists of five subtypes (M
1
–M

5
) 

that can be found throughout the CNS and periphery. 

These receptors are guanosine nucleotide-binding protein 

(G-protein)-coupled receptors and can be subdivided based 

on their canonical signaling pathways. M
1
, M

3
, and M

5
 all 

signal primarily via the Gαq G-protein and induce Ca2+ mobi-

lization and inositol trisphosphate (IP
3
) production, while M

2
 

and M
4
 signal via the Gαi

 G-protein to inhibit cyclic adenosine 

monophosphate (cAMP) production. As discussed in further 

detail below, treatments that broadly augment cholinergic 

signaling have demonstrated clinical efficacy in treating the 

cognitive and behavioral deficits observed in AD and SZ 

patients. However, the clinical utility of these treatments is 

curtailed by peripherally mediated side effects. The recent 

discovery of compounds that selectively act at the M
1
 or M

4
 

receptor have suggested that these receptors may provide 

viable drug targets with which to safely and effectively treat 

AD and SZ patients.

Alzheimer’s disease
AD is the most commonly diagnosed form of dementia 

and currently affects approximately 35 million individuals 

worldwide.7 AD is a progressive neurodegenerative disease 

that is characterized by a host of cognitive deficits, includ-

ing impairments in learning and memory. In addition to the 

well-documented cognitive impairments, AD patients also 

display behavioral disturbances, including anxiety, depres-

sion, and psychosis.8 Age is the primary risk factor for AD, 

and the disease usually manifests in individuals after the age 

of 60 years. Due to an aging population, the prevalence of AD 

is predicted to rise to 66 million people by the year 2030. This 

devastating disease burdens not only the afflicted and their 

families, but also generates a global financial burden, with 

dementias costing society approximately US$604 billion in 

2010 alone.7 Given the necessity for increased attention and 

care, AD places a great burden and strain on the daily lives 

of patients, families, and caregivers.

The hallmarks of AD pathology are the accumulation of 

amyloid-beta (Aβ) peptide aggregates (neuritic plaques) and 

hyperphosphorylated tau protein (neurofibrillary tangles).9,10 

The popular amyloid cascade hypothesis posits that the 

gradual build-up of Aβ plaques leads to neuronal inflam-

mation, dysfunction, and, eventually, cell death. The two 

brain regions most critically affected by this degeneration 

are the cortex and hippocampus, both of which are involved 

in cognition, learning, and memory.11 Several lines of evi-

dence suggest that impaired cholinergic signaling plays a 

key role in mediating both the cognitive and the behavioral 

impairments observed in AD patients.12 The basal forebrain 

cholinergic system is disproportionately affected in AD 

patients, with a robust loss of cholinergic neurons, including 

those innervating the hippocampus and cortex.4,13,14 In addi-

tion, administration of nonselective muscarinic antagonists 

can produce or exacerbate cognitive deficits in animals,15 

as well as in AD patients and both young and old control 

subjects,16,17 suggesting that mAChRs can directly modulate 

cognition. The current primary treatments for AD symptoms 

are acetylcholinesterase inhibitors (AChEIs) such as donepe-

zil, tacrine, galantamine, and rivastigmine, which potentiate 

cholinergic signaling.18,19 These treatments not only provide 

improvements in cognitive symptoms associated with 

AD,20,21 but also show efficacy in treating the psychiatric 

symptoms.22,23 Unfortunately, cardiovascular and gastroin-

testinal side effects are often observed with these treatments, 

effects thought to be mediated by peripherally located ACh 

receptors. Despite this, AChEIs remain modestly beneficial 

for treating AD and other forms of dementia.24 Collectively, 

these findings highlight the importance of the cholinergic 

system in mediating the cognitive and behavioral deficits 

observed in AD patients and highlight the need to develop 

cholinergic therapeutics that can provide clinical efficacy in 

the absence of peripherally mediated side effects.

Schizophrenia
SZ is a severe and debilitating psychiatric disease that 

affects approximately 1% of the population.25 It is charac-

terized by multiple symptom clusters, including positive 
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symptoms, negative symptoms, and cognitive impairments. 

The onset of SZ symptoms usually occurs early in life (before 

30 years of age), between adolescence and young adulthood. 

There is marked variability in the symptomatology between 

individual SZ patients, and the neurobiology of the disease 

is complex. Accordingly, it has been hypothesized that SZ 

symptoms can arise as a result of numerous underlying eti-

ologies that are poorly understood.26 The hallmark psychotic 

symptoms of SZ are the positive cluster and include auditory 

hallucinations, delusional beliefs, and disorganized thoughts 

and speech. SZ patients also exhibit negative symptoms, 

including anhedonia, dysfunctional social interactions, and 

poverty of thoughts and speech, as well as cognitive distur-

bances affecting several behavioral domains, including work-

ing memory, attention, and executive function. Furthermore, 

the above-mentioned symptom groups are commonly accom-

panied by disruptions in mood and substance abuse, which 

affect 40%–80% of SZ patients.27,28 Given the vast spectrum 

of symptoms observed in SZ patients, it is important to 

develop therapeutic treatments that can provide efficacy in 

treating positive, negative, and cognitive deficits.

Although the causes of SZ remain largely unknown, 

research over the past couple of decades has focused on the 

dysregulation of signaling by monoamines such as dopamine 

and serotonin. The prevailing dopaminergic hypothesis 

attributes positive symptoms to hyperdopaminergic activ-

ity in striatal and mesolimbic pathways, while negative 

symptoms are ascribed to hypodopaminergic activity in 

the medial prefrontal cortical and mesocortical pathways.29 

Current treatments include both typical (eg, haloperidol and 

chlorpromazine) and atypical (eg, risperidone and clozapine) 

antipsychotics, which act on the dopaminergic system and 

D
2
 dopamine receptors in particular. These treatments show 

partial efficacy in reducing psychotic or positive symptoms;30 

however, they demonstrate little to no efficacy in addressing 

negative symptoms and cognitive impairments, which can 

prevent patients from participating fully and productively in 

society.31,32 Despite the beneficial effects of treating positive 

symptoms in SZ patients, up to 74% of patients on atypical 

antipsychotics discontinue use after 18 months due to adverse 

parkinsonian-like and metabolic syndrome side effects.1 

Accumulating evidence suggests that the three clusters of 

SZ symptoms cannot be ascribed solely to alterations in 

monoaminergic signaling as dysregulation of glutamatergic, 

γ-aminobutyric acid (GABA)-ergic, and cholinergic systems 

have also been reported.3,33–35 The therapeutic efficacy of 

AChEIs in ameliorating cognitive deficits in AD has led to 

the hypothesis that these same drugs could be effective as an 

adjunct medication in SZ patients. Unfortunately, the results 

from clinical trials with AChEIs in SZ patients have been 

disappointing,36 likely owing to dose-limiting effects caused 

by activation of peripheral receptors. Given the shortcom-

ings of these current therapies, it is imperative that novel 

approaches are developed to provide more comprehensive 

clinical efficacy with reduced adverse side effects.

Targeting muscarinic receptors  
for treatment of AD and SZ
The efficacy of AChEIs observed in patients with AD high-

lights the potential of cholinergic modulation in treating both 

cognitive- and psychosis-related behavioral disturbances. 

Furthermore, administration of nonselective muscarinic 

antagonists can induce cognitive deficits and psychosis in 

humans,16,37 indicating that mAChR activation may provide 

pro-cognitive and antipsychotic efficacy. Accordingly, several 

mAChR agonists have been developed and have entered clini-

cal testing with the goal of ameliorating the behavioral and 

cognitive deficits observed in numerous psychiatric diseases. 

Of these, the M
1
/M

4
-preferring agonist xanomeline was the 

only one to progress to a phase III clinical trial, where it 

was assessed for efficacy in ameliorating cognitive deficits 

observed in AD patients. While xanomeline showed a trend 

toward improving cognitive function in these patients, this 

effect did not reach statistical significance. However, this 

agonist did produce surprisingly robust and dose-dependent 

reductions in hallucinations, delusions, vocal outbursts, 

and other behavioral disturbances in these patients.38,39 The 

efficacy of xanomeline in treating psychotic and behavioral 

disturbances in AD patients led to a more recent double-

blinded, placebo-controlled outcome trial to determine if 

similar efficacy could be observed in patients with SZ. 

This study reported that xanomeline treatment produced 

robust improvements in both the positive and the negative 

symptoms of patients with SZ.40 Both the magnitude and 

the time-course of xanomeline efficacy were superior to 

those previously reported with atypical antipsychotics, with 

statistically significant effects observed after only 1 week 

of treatment. In addition, xanomeline produced statistically 

significant improvements in verbal learning and short-term 

memory, indicating efficacy in treating cognitive symptoms.40 

Unfortunately, gastrointestinal side effects were observed, 

and dose limitations have removed it from consideration for 

long-term clinical use. However, these two seminal studies 

provide strong clinical validation of mAChRs as targets for 

the treatment of both psychotic and cognitive disturbances 

in AD and SZ.
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Allosteric modulation  
of muscarinic receptors
The efficacy of AChEIs in treating AD patients, in conjunc-

tion with the efficacy of xanomeline in improving both the 

cognitive and the behavioral disturbances observed in patients 

with either AD or SZ, highlight the potential of cholinergic 

modulation in treating these diseases. However, the poorly 

tolerated gastrointestinal side effects of AChEIs and xanome-

line limit the clinical utility of these compounds.40,41 The 

adverse side effects observed with nonselective modulation 

of the cholinergic system are thought to be primarily mediated 

by peripherally located M
2
 and M

3
 receptors.42 Accordingly, 

it has been hypothesized that selective modulation of the 

M
1
, M

4
, or M

5
 subtype could maintain the clinical efficacy 

observed with nonselective cholinergic treatments without 

the adverse-effect liability. A critical obstacle in these efforts 

has been the high conservation of the orthosteric ACh-binding 

site across the five mAChR subtypes, making it difficult 

to develop subtype-selective ACh-site ligands. However, 

an alternative strategy of targeting allosteric sites that are 

distinct from the ACh-binding site has been used with suc-

cess at numerous G-protein-coupled receptors (for review, 

see Conn et al).43 By targeting less conserved sites, it has 

been possible to develop compounds with unprecedented 

subtype selectivity. Allosteric ligands can modulate receptor 

signaling via multiple mechanisms. Allosteric agonists bind 

to an allosteric site and directly cause receptor activation. 

Alternatively, positive allosteric modulators (PAMs) bind to 

allosteric sites where they have no effect alone, but increase 

the affinity and/or efficacy of endogenous agonists. Because 

allosteric modulators do not directly activate the receptor, 

but instead potentiate activation by orthosteric ligands, they 

maintain the temporal and spatial signaling of cholinergic 

circuits. In some instances, molecules can act as both an 

allosteric agonist and an allosteric potentiator, indicating that 

these mechanisms of receptor regulation are not exclusive 

in nature.44 As discussed below, the discovery of subtype-

selective M
1
 and M

4
 agonists and modulators have greatly 

advanced our understanding of the importance of these recep-

tors and emphasize the potential utility of targeting M
1
 and 

M
4
 in the treatment of AD and SZ.

Targeting M1 muscarinic receptors 
for cognitive symptoms observed 
with AD and SZ
The M

1
 mAChR subtype is the most predominantly 

expressed mAChR subtype in the CNS and is expressed in 

several brain regions implicated in the regulation of  cognitive 

processes, including the striatum, prefrontal cortex, and 

hippocampus.45,46 Many of the studies examining the role of 

the M
1
 receptor in the CNS have utilized M

1
 knockout (KO) 

mice that do not express the M
1
 receptor. Interestingly, these 

M
1
-deficient mice display increased amphetamine-induced 

hyperlocomotion and dopamine neurotransmission,47 indicat-

ing that M
1
 modulation may have antipsychotic potential. 

However, the majority of studies have focused on the role of 

M
1
 in regulating cognitive processes. N-methyl-D-aspartate 

(NMDA) receptors play a critical role in regulating synaptic 

plasticity, and disrupted NMDA-receptor neurotransmis-

sion is thought to underlie the cognitive deficits observed 

in numerous psychiatric diseases. M
1
 mAChRs have been 

demonstrated to potentiate NMDA-receptor signaling in the 

hippocampus and cortex,48,49 brain areas intimately associated 

with learning and memory. In addition, M
1
 KO mice displayed 

reduced hippocampal long-term potentiation, a mechanism 

heavily implicated in learning and memory. Behaviorally, 

M
1
 KO animals display deficits in several medial prefrontal 

cortex-dependent cognitive tasks, including non-matching-

to-sample, win-shift radial arm maze, and social discrimi-

nation tasks.50 Finally, studies in mice exhibiting AD-like 

Aβ plaque pathologies found that deletion of M
1
 increased 

amyloidogenic processes, suggesting that M
1
 may play a role 

in regulating AD disease progression.51 Collectively, these 

studies provided key rationale to pursue compounds target-

ing the M
1
 mAChR for the treatment of cognitive symptoms 

observed in neuropsychiatric diseases.

Numerous M
1
-selective compounds have been discov-

ered and subsequently tested in preclinical animal models 

of  cognition (see Table 1 for complete list). A breakthrough 

came with the discovery of the first-generation M
1
 mAChR 

allosteric agonist AC-42. This compound was found to bind 

to an allosteric site and displayed M
1
-selective functional 

activity when assessed at muscarinic subtypes in vitro.52 

However, this compound does not possess the physiochemi-

cal properties necessary for in vivo use.53 Subsequent 

optimization produced two analogs of AC-42 (AC-260584 

and 77-LH-28-1), which maintained M
1
 selectivity and pos-

sessed properties suitable for use in animal models. Both 

AC-260584 and 77-LH-28-1 displayed antipsychotic and 

cognition-enhancing efficacy in pre-clinical models.54–56 

Unfortunately, the efficacy of AC-260584 was confounded by 

nonselective effects on dopaminergic, adrenergic, and sero-

tonergic receptors.57 Another early allosteric  agonist, TBPB 

(1-(1’-(2-methylbenzyl)-1,4’-bipiperidin-4-yl)-1H-benzo[d]

imidazol-2(3H)-1), also exhibited impressive selectivity for 
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Table 1 Antipsychotic and pro-cognitive effects of M1 and M4 selective modulators

Receptor Mode of action Ligand In vivo efficacy Species

M1 Agonist AC-260584 increased retention of platform location in Morris water maze56 Mouse
increased novel object recognition54 Mouse

77-LH-28-1 Increased hippocampal cell firing55 Rat
TBPB Reversed amphetamine-induced hyperlocomotion58 Rat

Reversed apomorphine-induced disruption of prepulse inhibition59 Rat
Reversed amphetamine-induced disruption of cued fear conditioning59 Rat

vU0357017 Reversed scopolamine-induced disruption of contextual fear conditioning61 Rat
enhanced acquisition of contextual fear60 Rat

vU0364572 enhanced spatial learning in Morris water maze60 Rat
enhanced acquisition of contextual fear60 Rat

GSK1034702 Reversed nicotine abstinence-induced impairment of episodic memory67 Human
PAM BQCA Reversed scopolamine-induced disruption of contextual fear conditioning68 Mouse

increased wakefulness and inhibited delta sleep68 Rat
Enhanced cerebral blood flow68 Rat
Decreased deficits in reversal learning in Tg2576 mice (AD model)69 Mouse
Increased mPFC neuronal firing69 Rat
Reversed time-induced disruption of Y-maze object recognition72 Rat
Reversed scopolamine-induced memory deficit in spontaneous alternation task71 Rat

M1/M4 Agonist Xanomeline Decreased behavioral disturbances38,39 Human
M4 PAM vU0152099 Reversed amphetamine-induced hyperlocomotion86 Rat

vU0152100 Reversed amphetamine-induced hyperlocomotion86 Rat
LY2033298 Reversed apomorphine-induced disruption of prepulse inhibition of the acoustic  

startle reflex84

Rat

Decreased conditioned avoidance responding84 Rat
Decreased conditioned avoidance responding87 Mouse
Reversed amphetamine-induced hyperlocomotion88 Mouse

Abbreviations: AD, Alzheimer’s disease; BQCA, benzyl quinolone carboxylic acid; mPFC, medial prefrontal cortex; M1, muscarinic acetylcholine receptor subtype 1; 
M4, muscarinic acetylcholine receptor subtype 4; PAM, positive allosteric modulator; TBPB, 1-(1’-(2-methylbenzyl)-1,4’-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-1.

M
1
 mAChRs and potentiated NMDA receptor currents in 

CA1 hippocampal cells.58 Moreover, additional pre-clinical 

studies with TBPB demonstrated efficacy in reducing 

antipsychotic-like behaviors and in reversing scopolamine-

impaired acquisition of contextual fear.59  Studies in cell lines 

also demonstrated that TBPB promoted a  non-amyloidogenic 

pathway and decreased Aβ production,  indicating that M
1
 

modulation may have efficacy in the  treatment of both symp-

tomatic and pathologic features of AD.58 More recently, the 

M
1
-selective allosteric agonist VU0357017 was discovered, 

which displayed improved potency via binding to a novel 

allosteric site on the M
1
 mAChR. VU0357017 significantly 

blocked scopolamine- impaired contextual fear condition-

ing and enhanced spatial and contextual fear learning.60,61 

Interestingly, recent studies suggest that many M
1
 allosteric 

agonists, including  77-LH-28-1 and VU0357017, may act in 

a ‘bitopic’ manner, simultaneously binding at both allosteric 

and orthosteric sites.62–66 In addition to the confounding 

issue of bitopic binding, some M
1
 allosteric agonists display 

‘signal bias’ or context-dependent pharmacology and dif-

ferentially activate various downstream signaling pathways 

such as Ca2+ mobilization and β-arrestin activation.60 A recent 

clinical study utilizing the M
1
-selective allosteric agonist 

GSK1034702 demonstrated pro-cognitive efficacy in a 

nicotine abstinence model of episodic memory impairment 

in smokers,67 providing exciting evidence that M
1
-selective 

activation can provide pro-cognitive benefits in humans. Col-

lectively, these preclinical and clinical findings with allosteric 

agonists highlight the potential utility of M
1
-selective activa-

tion in treating cognitive deficits observed with numerous 

CNS disorders.

Another approach extensively studied in recent years 

involves the development of PAM compounds that bind to 

allosteric sites on the M
1
 mAChR and indirectly promote 

activity by enhancing the affinity and/or efficacy of the 

endogenous ligand ACh. The first subtype-selective M
1
 PAM 

to be characterized was benzyl quinolone carboxylic acid 

(BQCA);68 BQCA exhibited high selectivity with no activity 

at mAChR subtypes M
2
–M

5
 and induced up to a 129-fold 

leftward shift in ACh potency at the M
1
 mAChR.68,69 In brain 

slice electrophysiology studies, BQCA enhanced excitatory 

postsynaptic currents in medial prefrontal cortical neurons,69 

an area critical for higher cognitive, learning, and memory 

functions.70 In pre-clinical animal studies, BQCA reversed 
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scopolamine-impaired contextual fear conditioning and 

rescued medial prefrontal cortex-dependent discrimination 

reversal learning deficits in a transgenic mouse model of 

AD.68,69 Additionally, recent studies demonstrated that BQCA 

was effective in reversing memory deficits in Y-maze object 

recognition and spontaneous alternation tasks in rats.71,72 The 

discovery and characterization of BQCA exemplified the 

promising potential for allosteric modulators to selectively 

target M
1
 mAChRs, and has since provided a basis for further 

development of similar M
1
 PAMs.73 Recent drug discov-

ery efforts in our group have yielded novel M
1
-selective 

PAMs VU0405652 (ML169) and VU0456940, both of 

which potentiate M
1
-mediated non-amyloidogenic amyloid 

precursor protein (APPsα) processing, suggesting disease-

modifying potential in AD.74,75 Collectively, these studies 

provide evidence supporting the therapeutic potential of 

selectively targeting M
1
 mAChRs in the treatment of AD and 

SZ. However, continued development and characterization 

of M
1
-selective compounds is needed to fully elucidate the 

potential of M
1
-modulation in mediating symptomatic and 

disease-modifying efficacy in AD and SZ.

Targeting M4 muscarinic receptors 
for psychotic symptoms observed 
with AD and SZ
Recent evidence suggests that modulation of the M

4
 receptor 

may provide a novel avenue for the development of anti-

psychotic drugs. The psychotic symptoms associated with 

SZ are thought to be intimately associated with hyperactive 

dopaminergic signaling in striatal and mesocortical pathways. 

Clinically prescribed typical and atypical psychotics show 

efficacy in reducing psychosis and exert their effects primar-

ily via antagonizing the D
2
 dopamine receptor. Nonselective 

mAChR agonists can reduce striatal dopamine release,76 

while administration of nonselective mAChR antagonists 

can induce psychosis in humans37 and disrupt sensorimotor 

gating in the preclinical prepulse inhibition rodent model.77 

Conversely, the nonselective mAChR agonist BuTAC ([5R-

(exo)]-6-[4-butylthio-1,2,5-thiadiazol-3-yl]-1-azabicyclo-

[3.2.1]-octane) shows an antipsychotic profile when tested 

in numerous preclinical animal models. Administration 

of BuTAC reduces apomorphine-induced climbing and 

apomorphine-induced disruptions of prepulse inhibition78,79 

and reduces conditioned avoidance responding in wild-type, 

but not M
4
 KO mice.80 Collectively, these results suggest that 

activation of mAChRs, and M
4
 in particular, may provide 

a novel strategy for treating psychotic symptoms in AD 

and SZ.

As mentioned above, clinical trials for xanomeline yielded 

the striking finding that administration of the  M
1
/M

4
-preferring 

agonist significantly reduced  psychosis-related symptoms in 

both AD and SZ patients.38–40 The M
4
 receptor is highly 

expressed in the striatum, hippocampus, and neocortex,45,46 

suggesting that this mAChR subtype is ideally located to 

modulate dopaminergic signaling. In support of this hypoth-

esis, M
4
 KO mice exhibit a hyperdopaminergic phenotype 

that is resistant to mAChR agonist-induced attenuation of 

dopamine levels.76,81 Selective deletion of M
4
 mAChRs 

on D
1
 dopamine receptor-expressing neurons resulted in 

increased locomotor activity and behavioral sensitization to 

psychostimulants.82 Additionally, the antipsychotic efficacy 

of xanomeline in preclinical animal models is attenuated 

in animals in which this subpopulation of M
4
 receptors 

is deleted.83 These findings support the hypothesis that 

M
4
 mAChRs represent a viable novel drug target for the 

treatment of psychosis in SZ, AD, and other neurological 

disorders.

Two novel M
4
-selective compounds, VU10010 and 

LY2033298, represented a breakthrough when they were 

described in 2008.84,85 VU10010 is a potent M
4
-selective 

PAM that increases affinity/efficacy of ACh to promote M
4
 

mAChR activation. In brain slices, VU10010 selectively 

potentiated mAChR-mediated reductions in glutamatergic, 

but not GABAergic, signaling in hippocampal neurons, indi-

cating a key role for M
4
 in regulating hippocampal function, 

and possibly in modulating cognition. Though these findings 

were major advances in validating the concept of selective M
4
 

PAMs at a cellular and molecular level, VU10010 does not 

possess physiochemical properties suitable for in vivo dosing 

(displaying a high log P-value of 4.5), limiting the utility of 

this tool compound.85 Subsequent optimization of VU10010 

led to the discovery of VU0152100 and VU0152099, both 

of which possessed improved chemical and pharmacokinetic 

characteristics making them suitable for use in rodent models. 

Both compounds possess log P-values a full order of mag-

nitude less lipophilic than VU10010, resulting in improved 

solubility and affording homogeneous dosing solutions in 

multiple vehicles acceptable for in vivo studies.86 Additionally, 

VU0152100 and VU0152099 exhibited substantial systemic 

absorption and brain penetration following intraperitoneal 

administration.86 Both VU0152100 and VU0152099 effec-

tively reversed amphetamine-induced hyperlocomotion, 

demonstrating antipsychotic-like activity in preclinical 

models. LY2033298, a structurally distinct M
4
-selective PAM, 

was similarly efficacious in several preclinical models of 

psychosis, including conditioned avoidance responding and 
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apomorphine-impaired prepulse inhibition.84,87,88 Together, 

these preliminary efforts suggest that the antipsychotic effects 

of xanomeline may be primarily due to M
4
 mAChR activation. 

The development of M
4
-selective PAMs has proven to be very 

fruitful in substantiating the efficacy in targeting M
4
 mAChRs 

for the potential treatment of the positive symptoms of SZ. In 

addition, preliminary studies suggest that selective activation 

may enhance cognitive domains of learning and memory. 

However, further in vivo characterization of M
4
 is required 

to elucidate the therapeutic potential of M
4
 modulation in 

treating the cognitive impairments and psychotic symptoms 

associated with SZ and AD.

Summary
The recent discovery of novel allosteric agonists and modula-

tors of M
1
 and M

4
 mAChRs have further validated the approach 

of targeting these muscarinic subtypes in the treatment of 

cognitive and behavioral impairments present in AD and SZ. 

Despite the fact that most discovery efforts are still in the 

preclinical phase of development, there are now several tool 

compounds that continue to provide important findings, fur-

thering our fundamental understanding of the role of mAChRs 

and these debilitating neuropsychiatric diseases. Data from 

clinical trials demonstrating the efficacy of xanomeline in AD 

and SZ patients have created intense interest in the pursuit of 

highly selective M
1
 and M

4
 activators to ultimately provide 

novel therapeutic options with minimal adverse side effects.
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