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Abstract: Here, we investigated in diabetic mice the therapeutic effect of monocyte 

chemoattractant protein-1 (MCP-1), locally delivered by an electrospun scaffold, on transplanted 

islets. This therapeutic scheme is expected to exert a synergistic effect to ameliorate hypergly-

cemia and its associated nephrotic disorders. The cumulative amount of MCP-1 released from 

the scaffold in vitro within a 3-week window was 267.77±32.18 ng, without a compromise 

in bioactivity. After 8 weeks following the transplantation, the islet population stimulated by 

MCP-1 was 35.14%±7.23% larger than the non-stimulated islet population. Moreover, MCP-1 

increased concentrations of blood insulin and C-peptide 2 by 49.83%±5.29% and 43.49%±9.21%, 

respectively. Consequently, the blood glucose concentration in the MCP-1 group was significantly 

lower than that in the control group at week 2 post-surgery. MCP-1 also enhanced the tolerance 

of sudden oral glucose challenge. The rapid decrease of blood creatinine, urine creatinine, and 

blood urea nitrogen suggested that the recovery of renal functions compromised by hypergly-

cemia could also be attributed to MCP-1. Our study shed new light on a synergistic strategy to 

alleviate hyperglycemia and nephrotic disorders in diabetic patients.
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Introduction
Despite decades of scientific endeavor, diabetes has remained a leading disease in the 

US that inflicts millions of patients.1 Moreover, chronic diabetes is believed to be the 

culprit for several other illnesses.2 For example, diabetes frequently compromises renal 

function, prompting a need for kidney transplantation.3 To that end, a comprehensive 

strategy to combat diabetes as well as its complications is in urgent need. In type I 

diabetes, pancreatic β-cells are destructed by abnormal autoimmunity, leading to the 

loss of insulin secretion and consequently to hyperglycemia.4 To clinically recoup the 

lost capability of insulin production, islet transplantation has been widely used but 

suffers mixed outcomes of therapeutic effectiveness.5 In conventional transplantation 

surgery, harvested islets are freely injected into the intrarenal capsule and start to secrete 

insulin thereafter. Clinical observations have revealed that a number of challenges have 

been associated with this means of islet transplantation.6 For example, despite limited 

availability of islets, the poor survival rate mandates that a large population of islets 

must be pooled from multiple donors.7 A number of factors could account for the poor 

survival rate after islet transplantation, such as local inflammation.8,9
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Tissue engineering scientists have made tremendous 

progress on rebuilding a great variety of functional tissues 

using a wide range of biomaterials and nanofabrication 

technology.10–15 In light of previous research, we successfully 

developed an electrospun scaffold-assisted delivery of islets 

to enhance the control of hyperglycemia and associated neph-

rotic disorders in diabetic mice.16 The study demonstrated that 

the islet population in the scaffold-assisted delivery group 

outgrew its peer in the freely injected delivery group as early 

as week 4 after surgery, and sustained this advantage through 

week 12. Consequently, functional readouts such as insulin 

secretion saw an unequivocal improvement, which effectively 

drove down the blood glucose level in diabetic mice. In addi-

tion, boosted functional outputs of transplanted islets arrested 

the spiral deterioration of renal functions, as evidenced by a 

suppressed level of creatinine in both blood and urine samples. 

Monocyte chemoattractant protein-1 (MCP-1), a prominent 

immunomodulatory protein, has garnered a growing interest 

in the tissue engineering community, in that it plays a regu-

latory role in a variety of tissue regenerations.17–21 Previous 

research suggests that MCP-1 sees a temporary spike in local 

tissues after islet transplantation and that it helps to recoup 

compromised renal functions lost to hyperglycemia.16,22 In 

particular, recent findings suggest that local MCP-1 in islets 

can engage the immune system by targeting dendritic cells 

and, potentially, T-cells to inhibit diabetes.23 Therefore, these 

findings prompted us to hypothesize that local stimulation of 

islets and renal tissues by MCP-1 released from a scaffold 

would exert a synergistic effect on alleviating hyperglycemia 

and associated nephrotic disorders in diabetic mice. In this 

study, we engineered a drug-eluting electrospun scaffold 

composed of polycaprolactone (PCL) and poliglecaprone 

(PGC) to locally deliver MCP-1.

Methods
The fabrication and morphological 
characterizations of electrospun scaffolds
The scaffold was electrospun as previously described.16 

Briefly, PGC (Advanced Inventory Management, Mokena, 

IL, USA) and PCL (Absorbable Polymers, Birmingham, AL, 

USA) were used as received. Both polymers were dissolved in 

1,1,1,3,3,3-hexafluoro-2-propanol (Sigma-Aldrich, St Louis, 

MO, USA) to achieve a total concentration of 12% (weight/volume  

[w/v]) (weight ratio of 1:3). For drug-eluting scaffolds (DESs), 

recombinant MCP-1 (Peprotech, Rocky Hill, NJ, USA) was 

added to the dissolved polymer solution (2 µg/mL). Then, 

0.5 mL of the solution was electrospun at a feeding rate of 

3 mL/hour to a collection board distanced at 25 cm at a voltage 

of 30 kV. Retrieved scaffolds were desiccated in vacuum for 

24 hours. For non-eluting scaffolds (NESs), the solution absent 

of MCP-1 was electrospun under the same conditions.  Scaffold 

samples (1 cm × 1 cm) were sputter-coated by gold and studied 

using a scanning electron microscope.

In vitro pharmacokinetic study  
of McP-1 release
To study the release profile of MCP-1 from the scaffold, DESs 

(diameter =1.6 cm) were incubated in Prigrow II medium 

supplemented with heat-inactivated fetal bovine serum to 

a final concentration of 10% and penicillin/streptomycin 

(Applied Biological Materials Inc., Richmond, BC, Canada) 

at 37°C and 5% CO
2
 for up to 3 weeks. The supernatant was 

collected every week for enzyme-linked immunosorbent 

assay (ELISA) assay (R&D Systems, Minneapolis, MN, 

USA) per manufacturer’s protocol. NESs were incubated 

under the same conditions as a control.

To assess the bioactivity of released MCP-1, a chemotaxis 

assay was performed (EMD Millipore, Billerica, MA, USA) 

per manufacturer’s protocol. Human CD14+ monocytes 

(Applied Biological Materials) were seeded into each migra-

tion chamber (1 × 105 cells/chamber). The supernatant from 

the medium in which DESs or NESs had been incubated for 

3 weeks was used for samples. Medium containing MCP-1 

(2 µg/mL) was used as positive control, and medium without 

MCP-1, as negative control.

The creation of mouse insulin I 
promoter–luciferase (MIP-luc) transgenic 
mice and the islet transplantation
Shanghai Changzheng Hospital approved the animal study 

protocol, and ensured the animal welfare throughout the study. 

The MIP-luc transgenic mice (in a C57BL/6 background) 

whose transgene contained an MIP promoter fragment lead-

ing to the expression of the firefly luciferase (MIP-luc) were 

generated as reported before.24,25 Previous research demon-

strated that β-cells from MIP-luc mice can be visualized 

using bioluminescent imaging, and their mass is correlated 

with the bioluminescent signal.26 Each hemizygous MIP-

luc transgenic mouse received one dose of streptozotocin 

(50 mg/kg; Sigma Aldrich, St Louis, MO, USA) by intra-

peritoneal injection every 2 days for a total of five doses. The 

dosage was based on previous study16 to induce diabetes and 

a gradual renal deterioration before the islet transplantation. 

Mice were considered diabetic if the blood glucose concen-

tration exceeded 400 mg/dL for more than two consecutive 

days without fasting. DESs and NESs (1 mm × 1 mm) were 
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 sterilized in 70% ethanol followed by an extensive rinse 

in sterile phosphate buffered saline. Harvested islets were 

seeded on respective scaffolds (100 islet  equivalents/ scaffold) 

and incubated for 3 hours at 37°C with 5% CO
2
 prior to 

the surgery. All mice were anesthetized by vaporized 2.5% 

isoflurane via inhalation. Islets on respective scaffolds were 

surgically placed under the kidney capsule. All mice were 

sacrificed 8 weeks after the surgery.

The in vivo growth of transplanted islets
Xenogen IVIS 200 imaging system (Xenogen Corporation, 

Alameda, CA, USA) was used to capture bioluminescent 

optical images as previously described.24 Briefly, after a 

4-hour fast, MIP-luc mice were anesthetized with vapor-

ized isoflurane. Mice were positioned on their sides on the 

imaging stage to capture an initial image. Each mouse then 

received 15 mg/mL D-luciferin in sterile phosphate buff-

ered saline (150 mg/kg) via intraperitoneal injection, and a 

 bioluminescent image was captured (exposure time =1 min) 

at 14 minutes post-injection. Image processing and quanti-

fication of bioluminescence were carried out using Living 

Image® (Xenogen Corporation) software, version 2.05.

Measurements of blood insulin,  
c-peptide 2, blood glucose,  
and oral glucose tolerance test
Each mouse underwent a blood withdrawal from the tail 

vein immediately before the surgery (week 0) and then on 

weeks 2, 4, and 8 post-surgery before the euthanasia. No 

fasting was imposed before blood withdrawals. A rat insulin 

ELISA kit with mouse insulin standards (Crystal Chem Inc., 

Chicago, IL, USA) and serum C-peptide 2 assayed with a 

rat/mouse C- peptide 2 ELISA kit (EMD Millipore) were 

used to measure the insulin and C-peptide 2 levels as per 

manufacturers’ protocols. Blood glucose was measured by 

OneTouch® Ultra® (LifeScan/Johnson and Johnson, Milpitas, 

CA, USA) glucometer. The oral glucose tolerance test (OGTT) 

was carried out 8 weeks after the surgery. After a 16-hour fast, 

blood samples were collected from the tail vein as the baseline 

glucose level (0 minutes). Thereafter, the glucose solution in 

sterile water (100 mg/mL) (Sigma-Aldrich) was administered 

to each mouse by oral gavage (2 g/kg). Blood glucose levels 

were measured in blood samples collected at 30, 60, and 

120 minutes after the glucose challenge, as described above.

The evaluation of renal function  
following the islet transplantation
Blood and urine samples were collected immediately before 

the implantation (week 0) and on weeks 2, 4, and 8 after the 

surgery. Blood creatinine (Abcam, Cambridge, MA, USA), 

blood urea nitrogen (Bio Scientific Corp, Austin, TX, USA), 

urine creatinine (Abcam), and urine albumin (Abnova, Walnut, 

CA, USA) were assayed following manufacturers’ protocols.

Data analysis
Student’s t-test and analysis of variance were used where appli-

cable (α=0.05). Images were processed with ImageJ (National 

Institutes of Health, Bethesda, MD, USA) software.

Results
Physical characterizations of scaffolds
Electrospun scaffolds composed of various polymers and/

or proteins have been extensively explored as drug-delivery 

vehicles for tissue engineering purposes.27–29 In light of 

previous research, we here successfully constructed DESs 

carrying MCP-1 for local delivery. Both DESs and NESs 

demonstrated a highly porous microstructure composed of 

randomly distributed fibers on the microscale (Figure 1). 

Figure 1 The morphological characterization of non-eluting scaffolds (A) and McP-1 drug-eluting scaffolds (B) by scanning electron microscope. The introduction of McP-1 
into the scaffold did not cause a morphological change of electrospun fibers.
Abbreviation: McP-1, monocyte chemoattractant protein-1.
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No morphological difference was observed between the two 

scaffolds, suggesting that the incorporation of MCP-1 did 

not lead to a structural change. This lack of morphological 

change would rule out the possibility that the difference of 

biological readouts came from changes of environmental 

cues conferred on transplanted islets. The MCP-1 from DESs 

witnessed a rapid release within the first week and a reduced 

momentum in the next 2 weeks (Figure 2A). By the end of 

week 3, the DES had released a total of 267.77±32.18 ng 

MCP-1 into the medium, while no MCP-1 was detected in 

the NES group. Also, MCP-1 released from the scaffold 

retained its bioactivity (Figure 2B). This rapid release in the 

first week would be beneficial for the overall success of islet 

transplantation because it would quickly elevate the local 

MCP-1 concentrations for a maximal therapeutic effect. The 

sustained release through week 3 ensured that local tissues 

would consistently be stimulated by MCP-1 from the DES 

scaffold. Thereafter, local tissues are expected to compen-

sate the exhausted MCP-1 from DESs as an immunological 

consequence of the islet transplantation.22

The in vivo growth of transplanted islets
Prior research demonstrated that the strength of the biolu-

minescent signal is positively associated with the mass of 

transplanted islets, establishing that it was a quantitative 

and noninvasive way to measure the islet proliferation.24 

Previously, we demonstrated NESs provide a more favorable 

microenvironment that ultimately translates into an accelerated 

proliferation than freely injected islets.16 To that end, in this 

study, we specifically focused on whether MCP-1 released 

from the DESs could further enhance the proliferation of islets 

than that released from NES. The islet population in the DES 

group started to outgrow its peer in the NES group as early as 

week four and maintained this proliferative advantage through 

week 8 (Figure 3). At week 4, the bioluminescent signal strength 

of the islet population in the DES group was (38.73±2.82) × 103 

photons/second, whereas the strength in the NES group was 

(29.35±3.01) × 103 photons/second. At week eight, the strength 

in the DES group grew to (40.89±3.35) × 103 photons/second, 

whereas that in the NES group was (30.26±2.99) × 103 

photons/second. The islet population in the DES group was 

significantly larger at both week 4 (P=0.0078) and week 8 

(P=0.0102). However, no difference was observed between the 

two groups at week 2. These results suggested that the local 

delivery of MCP-1 might not have translated into a marked 

increase of islet proliferation in the initial stage but might have 

contributed to the long-term proliferation.

The functional outputs  
of transplanted islets
Both blood insulin and C-peptide 2 concentrations saw a 

sustained difference between the DES and NES groups from 

week 2 after the surgery (Figure 4). The insulin concentra-

tions in the DES and NES groups were 272.34±38.94 pg/mL 

and 173.45±37.21 pg/mL,  respectively, at week 2. By week 

8, the insulin  concentrations were 377.91±49.34 pg/mL in 

the DES group and 252.22±40.11 pg/mL in the NES group. 

Correspondingly, the C-peptide 2 concentrations were 

49.23±6.97 pM in the DES group and 32.11±4.56 pM in the 

NES group at week 2. By week 8, the C-peptide 2 concentra-

tions were 69.29±6.82 pM in the DES group and 48.29±8.22 

pM in the NES group.

At week 2, the blood glucose levels were 228±31 mg/dL 

in the DES group and 321±37 mg/dL in the NES group, 

showing a significant difference (P=0.0098) (Figure 5A). 

However, this difference disappeared by week 4, when the 

blood glucose levels in both groups fell into the physiological 

range. On the other hand, the OGTT result clearly showed 
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that mice in the DES group possessed a stronger capability 

to tolerate glucose challenge (Figure 5B). At 30 minutes after 

the oral gavage, blood glucose levels in mice from the DES 

and NES groups were 352±35 mg/dL and 475±58 mg/dL, 

respectively, showing a significant difference (P=0.0012).

The blood glucose level in mice from the DES group was 

consistently lower than that in the NES group throughout 

the 120-minute period. These results substantiated that the 

increased insulin production due to the stimulation of MCP-1 

from DESs successfully translated into an accelerated return 

of blood glucose levels into the physiological range and a 

greater capacity to withstand sudden glucose challenges.

renal protein concentrations  
after the islet transplantation
A significant difference of blood creatinine, urine creati-

nine, and blood urea nitrogen concentrations were observed 

between the DES and NES groups at week 2. Specifically, 

the blood creatinine concentrations were 0.94±0.15 mg/dL 

in the DES group and 1.56±0.15 mg/dL in the NES group 

(Figure 6A). The urine creatinine concentrations were 

145±12 mg/dL in the DES group and 178±13 mg/dL in the 

NES group (Figure 6B). The blood urea nitrogen concentra-

tions were 47±9 mg/dL in the DES group and 67±8 mg/dL in 

the NES group (Figure 7A). However, no difference in urine 

albumin was observed between the two groups (Figure 7B). 

These results suggest that MCP-1 accelerated the recovery 

of renal functions following the local delivery. The disap-

pearance of a difference by week 4 could be attributed to the 

exhausted source of MCP-1 in the DESs and the increased 

MCP-1 secretion by local renal tissues in response to the 

islet transplantation.

Discussion
The tissue-engineered microenvironment could exert a pro-

found influence on individual cells and their functions.30–32 
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In our research, this tissue-engineered scaffold was supposed 

to confer a favorable microenvironment for islet cells to 

adhere, proliferate, and ultimately produce insulin to rein in 

the hyperglycemia. In previous research, we demonstrated that 

the NES increased the islet proliferation and insulin  production 

in vitro with no cytotoxic effects observed, suggesting that 

the degradation of scaffolding materials posed no threat to 

the population.16 The lack of morphological change of fibers 

in DESs guaranteed that the optimal performance attained by 

NESs in previous research would not be compromised.

It should be noted that tissue engineered scaffolds are 

supposed to degrade over time to allow the growth of native 

tissues and the deposition of native extracellular matrix.33–35 

Both PGC and PCL are widely used biodegradable suture 

materials for various tissue-engineering purposes, without 

cytotoxicity, and both demonstrated an excellent in vivo 

biocompatibility to promote the growth and functional output 

of transplanted islets.10–16

To further enhance the therapeutic effect of our elec-

trospun scaffold, we focused an investigative spotlight on 

MCP-1 in this study. MCP-1 is an immunomodulating factor 

that mediates a wide range of biological events, ranging from 

the regeneration of vascular tissues to local inflammation in 

renal tissues in diabetic patients.17,19 Prior research has even 

proposed that the level of MCP-1 be used as a clinical indica-

tor of renal inflammation caused by diabetes.36–38

Interestingly, a recent study discovered that local 

MCP-1 was able to inhibit diabetes, possibly by engag-

ing dendritic cells and T-cells in islets, although the exact 

underlying mechanism remains elusive.23 A rapid release of 

MCP-1 is believed to contribute to the acceleration of the 

therapeutic regeneration of diseased or injured tissues and 

angiogenesis.39,40 However, previous research suggests that 

a prolonged high level of inflammation is detrimental to the 

tissue regeneration and functional recovery.37,38 Therefore, a 

rapid yet temporary release of MCP-1 from the DES might 

be a desired scheme to kick start the functional recovery of 

local tissues without causing unnecessary stress. It should 

be noted that administered MCP-1 is rapidly distributed to 

various organs and injured tissues, and features a transient 
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half-life in blood circulation.40 Also, MCP-1 is produced by 

a variety of tissues under both physiological and pathologi-

cal conditions, rendering it impossible to discriminate native 

MCP-1 from the administered one.41,42

A satisfactory recovery of insulin secretion is a critical 

benchmark for the success of this bioengineering strategy, 

because it would return the blood glucose concentration to 

a physiological level, thus relieving other organs from the 

biological stress caused by hyperglycemia. The injection of 

insulin into diabetic patients to control the blood glucose level 

has been a popular clinical therapy. But, unfortunately, it 

could cause a variety of complications, including hypoglyce-

mia, hyperglycemia, and seizure. To that end, the reestablish-

ment of an in vivo native-like biological insulin-production 

mechanism through islet transplantation was developed. 

In this therapeutic scheme, C-peptide, a byproduct with no 

known functions during the native production of insulin by 

the pancreas, is an important and convenient clinical indica-

tor of the production of endogenous insulin. Consequently, 

a correlated presence of C-peptide evidences the therapeutic 

effectiveness of transplanted islets. The results that both 

insulin and C- peptide 2 levels in the DES group were higher 

than those in the NES group at week 2 suggests that DESs 

enhanced the functional output of transplanted islets and thus 

would potentially improve the overall therapeutic effective-

ness of the islet transplantation.

Consistent hyperglycemia is the culprit for the various 

complications in diabetic patients, particularly the loss of 

renal functions.43 So an effective management of blood glu-

cose is critical to rescue failing kidneys in diabetic patients. 

In our previous research, we showed that the improved 

islet functions due to the use of scaffolds helped to rein in 

blood glucose level faster than the traditional means of islet 

transplantation.16 In the present study, we demonstrated that 

the incorporation of MCP-1 into the scaffold could further 

pronounce this advantage in regulating blood glucose. The 

OGTT result spoke to the fact that transplanted islets pos-

sessed a stronger blood glucose regulatory capacity in the 

face of a sudden spike of blood glucose, evidencing the 

long-term benefits afforded by the DES.

According to American Diabetes Association, diabetic 

patients who suffer failing kidneys frequently undergo 

kidney transplantation to recoup critical renal functions. 

Unfortunately, kidneys are extremely limited at best, and 

out of sight at worst. For the cohort of diabetic patients, an 

alternative strategy to simultaneously restore insulin produc-

tion and renal functions is of great significance. Our previous 

research showed that blood MCP-1 level spiked after islet 

transplantation, probably due to enhanced immune response 

to the transplanted islets.16 In that study, the spike of the 

MCP-1 level correlated to improved functional outputs of 

transplanted islets and renal tissues, which prompted us to 

further investigate the therapeutic role of MCP-1 in renal 

functions in diabetes. We later discovered that MCP-1 via 

intraperitoneal injection would accelerate the recovery of 

renal functions compromised by diabetes. The half-life 

of injected MCP-1 in the blood circulation was extremely 

short because MCP-1 would rapidly accumulate into various 

organs, which might explain the late onset of therapeutic 

effect.40 In addition, the fact that cells in various tissues could 

secrete MCP-1 further complicates the task to tease out the 

relationship between MCP-1 and renal function recovery in 

a diabetic context.41,43 These challenges prompted us to func-

tionalize the scaffold to locally deliver MCP-1 in the hope of 
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Figure 7 Blood urea nitrogen (A) and urine albumin (B) levels. The concentration of blood urea nitrogen in the Des group was reduced to the physiological range by week 2, 
while no difference of urine albumin concentrations between Des and Nes groups was observed.
Note: *statistical difference between the groups (n=7 in the Des group; n=6 in the Nes group).
Abbreviations: Des, drug-eluting scaffold; Nes, non-eluting scaffold.
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enhancing the therapeutic effect. We found that MCP-1 from 

DESs accelerated the recapitulation of renal functions, but 

this advantage would soon diminish. This phenomenon might 

be attributed to the activation of a native immunoregulatory 

mechanism, because an artificially increased level of MCP-1 

would induce an overwhelming immune response that might 

be detrimental to a functional recovery. All of the four renal 

proteins returning to physiological range demonstrated that 

the DESs accelerated renal function recovery without intro-

ducing cytotoxic effects.

Islet transplantation is currently the gold standard clinical 

solution to recoup lost insulin secretion in diabetic patients. We 

previously proved that the employment of an electrospun scaf-

fold could promote the islet proliferation and functional output, 

in particular, the insulin secretion. In addition, we discovered 

an active role of MCP-1 in recouping renal functions lost to 

diabetes.16  In this present study, we further explored a syner-

gistic strategy to simultaneously enhance the functional output 

of transplanted islets as well as the recovery of renal functions. 

Our results confirmed that the local delivery of MCP-1 from 

a DES enhanced the insulin secretion of transplanted islets 

despite islet proliferation being only moderately increased. This 

increased insulin secretion successfully drove down the blood 

glucose to the physiological range within 2 weeks. Moreover, 

renal functions were swiftly recouped within 2 weeks. These 

increased functions could be attributed to the local stimulation 

of MCP-1. Our study offered a synergistic bioengineering 

strategy to simultaneously manage blood glucose and recoup 

compromised renal functions due to hyperglycemia.
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