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Abstract: Genomic deoxyribonucleic acid (DNA) is under constant threat from endogenous 

and exogenous DNA damaging agents. Mammalian cells have evolved highly conserved DNA 

repair machinery to process DNA damage and maintain genomic integrity. Impaired DNA repair 

is a major driver for carcinogenesis and could promote aggressive cancer biology. Interestingly, 

in established tumors, DNA repair activity is required to counteract oxidative DNA damage that 

is prevalent in the tumor microenvironment. Emerging clinical data provide compelling evidence 

that overexpression of DNA repair factors may have prognostic and predictive significance in 

patients. More recently, DNA repair inhibition has emerged as a promising target for anticancer 

therapy. Synthetic lethality exploits intergene relationships where the loss of function of either 

of two related genes is nonlethal, but loss of both causes cell death. Exploiting this approach 

by targeting DNA repair has emerged as a promising strategy for personalized cancer therapy. 

In the current review, we focus on recent advances with a particular focus on synthetic lethality 

targeting in cancer.
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Introduction
Genomic deoxyribonucleic acid (DNA) is at risk of damage from endogenous metabolic 

byproducts, spontaneous base modifications, and exogenous sources such as ultraviolet 

(UV) light, ionizing radiation, and chemical agents. Unrepaired DNA damage is a 

major source of potentially mutagenic lesions that drive carcinogenesis. To promote 

genomic stability, mammalian cells have evolved highly conserved DNA damage 

sensor mechanisms that can initiate: 1) induction of apoptosis to eliminate heavily 

damaged cells; 2) transcriptional response, which causes changes in the transcriptional 

profile that may promote cell survival; 3) DNA damage tolerance; 4) activation of 

DNA damage checkpoints and modulation of cell-cycle progression to allow time for 

DNA repair; and/or 5) initiation of DNA repair to restore genomic stability.

DNA repair pathways are so essential that germline mutations within DNA repair 

genes are associated with cancer predisposition syndromes such as hereditary non-

polyposis carcinoma coli (HNPCC) or breast cancer susceptibility protein (BRCA)-

deficient breast and ovarian cancer syndromes.1,2 In addition, polymorphic variants that 

confer suboptimal DNA repair capacity could also influence cancer susceptibility and 

prognosis.3,4 Furthermore, the anticancer activity of chemotherapy (such as alkylating 

agents and platinum compounds) and radiotherapy is to a large extent directly related 

to their ability to induce DNA damage. The DNA repair capacity of cancer cells to 

recognize and repair chemo/radiotherapy-induced damage is therefore also an  important 
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mechanism for therapeutic resistance that negatively impacts 

upon clinical outcomes.5 Pharmacological inhibition of DNA 

repair may increase cytotoxicity of anticancer agents, reverse 

treatment resistance and improve therapeutic efficacy.6 

Recent evidence indicates that inhibitors of DNA repair also 

offer the opportunity to target genetic differences that exist 

between normal and tumor tissue.7,8

In the current review, we provide an overview of major 

DNA repair pathways in mammalian cells. We will then focus 

on the emerging DNA repair drug targets for personalized 

cancer therapy.

DNA repair pathways
DNA repair pathways operate in mammalian cells to 

maintain genomic integrity (Figure 1). Loss of efficiency of 

one or more DNA repair mechanisms, whether by germline 

inheritance or sporadic mutation, accelerates the rate of 

accumulation of additional mutations by 100–1,000 times, 

with selective pressure favoring those mutations that drive 

carcinogenesis – the “mutator phenotype”.9,10

Direct repair
A number of mechanisms exist to directly reverse certain 

DNA-damage lesions in single-step processes. Direct reversal 

of the oxidative lesion O6-methylguanine is carried out by the 

suicide enzyme methylguanine methyltransferase (MGMT) 

via an active site Cys145 that acts as a methyl recipient, 

followed by rapid ubiquitin-induced degradation. MGMT 

expression is one of several factors governing response to 

alkylating chemotherapy agents.11,12 The 2-oxoglutarate/iron-

dependent dioxygenases, alkylated DNA repair protein alkB 

homolog 2 (ABH2) and alkylated DNA repair protein alkB 

homolog 3 (ABH3) also repair various alkylation adducts, 

including 1-methyladenine and 1-ethyladenine, by oxidative 

dealkylation. ABH2 preferentially acts on double-stranded 

DNA, possibly in the vicinity of replication forks, whereas 

ABH3 is involved in single-stranded DNA and ribonucleic 

acid (RNA) repair.11 ABH2 and ABH3 knockout mice are 

viable with no cancer phenotype, although ABH2-deficient 

mice do spontaneously accumulate 1-methyladenine adducts 

and are hypersensitive to exogenous alkylating agents.13 

UV-induced damage such as cyclobutane pyrimidine dim-

ers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts 

(6-4PPs) are repaired via photolyases: 50–55 kDa flavo-

proteins that contain chromophoric groups (flavin adenine 

dinucleotides) that become activated when illuminated with 

visible or near-UV light, allowing transfer of an electron to 

the lesion to destabilize the interpyrimidine bonds.14

Base excision repair
Base excision repair (BER) is responsible for detection 

and repair of damage caused by a number of mechanisms, 

including alkylation, oxidation, ring saturation, single-strand 

breaks (SSBs), and base deamination. Although complex, 
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Figure 1 Types of DNA damage and DNA repair pathways. 
Abbreviation: DNA, deoxyribonucleic acid.
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with at least two subpathways (short patch and long patch), 

BER generally proceeds via: 1) recognition and removal of 

a damaged base by a DNA glycosylase to form an apurinic/

apyrimidinic (AP) site intermediate, 2) cleavage of the phos-

phodiester backbone 5′ to the AP site by AP endonuclease 1 

(APE1), 3) removal of the 5′ sugar fragment, 4) incorporation 

of the correct base by a DNA polymerase, and 5) sealing 

of the strand break by a DNA ligase (Figure 1).14–21 Given 

the wide range of substrate lesions and potential mutagenic 

sequelae of failed repair, several BER gene mutations have 

been linked to human disease, including autosomal recessive 

familial adenomatous polyposis (MYH mutation), primary 

immunodeficiency disorders (uracil DNA glycosylase muta-

tion), and neurological disorders (mutations in auxiliary 

genes such as aprataxin, tyrosyl-DNA phosphodiesterase 

1, or polynucleotide kinase 3′-phosphatase). Furthermore, 

large numbers of single-nucleotide polymorphisms in BER 

genes have been identified, with variable effect on repair 

capacity and pathological consequences (reviewed in Wilson 

et al).22

SSB repair
SSB repair (SSBR) is most accurately considered a BER-

related pathway, given the similarity of substrates and shared 

protein members. SSBR repairs single-strand discontinuities 

arising from a variety of sources, including reactive oxygen 

species (ROS), base deamination, and BER intermediates. 

It also repairs breaks introduced by DNA topoisomerase 

1 (topo I) activity, which transiently introduces a DNA 

nick to relax DNA during transcription and replication, 

but which can fail to reseal the nick if in close proximity 

to polymerases or other DNA lesions.23,24 SSBR requires 

effective surveillance and damage detection, for which 

PARP1 (poly[ADP-ribose] polymerase 1) is believed to 

play an essential role. On detecting an SSB, PARP1 rapidly 

becomes bound and poly(ADP-ribosyl)ated, protecting the 

nick ends from undesirable recombination and allowing the 

recruitment of the molecular scaffold protein X-ray repair 

cross-complementing protein 1 (XRCC1) for ongoing repair. 

As with BER, end processing follows damage recognition and 

may be undertaken by a large range of proteins (depending 

upon the termini damage present), each of which requires 

interaction with XRCC1 for efficient activity. ROS-related 

damage often results in 3′-phosphate and 3′-phosphoglyco-

late modifications, which are processed by polynucleotide 

kinase (PNK) 3′-phosphatase (PNKP) and APE1 respec-

tively. Topo I-associated SSBs require processing by TDP1 

(tyrosyl-DNA phosphodiesterase 1), whereas 5′-adenosine 

monophosphate-SSBs resulting from abortive DNA ligase 

activity at existing SSBs are processed by aprataxin. Repair 

can then proceed via short- or long-patch gap filling and 

end ligation as in the classical BER pathway.25 SSBR may 

also play a role in replication-associated damage repair.25,26 

When the replication machinery encounters an unrepaired 

SSB, fork collapse occurs, with the creation of a one-ended 

double-strand break (DSB) on one chromatid, and an SSB 

on the other. The DSB is processed by components of the 

homologous recombination (HR) pathway to allow RAD51-

mediated template switching and reformation of the repli-

cation fork. Without repair, the associated SSB would be 

converted to a further DSB on replication fork restart, and 

hence would represent an irrevocably unrepairable lesion. 

SSBR end-processing and long-patch BER are probably 

involved in replication-coupled SSBR, as highlighted by 

the transcriptional activation of the critical SSBR enzyme 

XRCC1 by replication-associated transcription factors, such 

as forkhead box protein M1 (FOX M1) and E2F-1.27,28

Nucleotide excision repair
Nucleotide excision repair (NER) recognizes and repairs 

base lesions associated with distortion of the DNA helical 

structure, including UV-induced photoproducts not elimi-

nated by direct repair, and an array of bulky adducts induced 

by various exogenous chemical agents. Two subpathways of 

NER exist: global genome NER (GG-NER) and transcrip-

tion-coupled NER (TC-NER). TC-NER removes lesions 

from the transcribed DNA strand of transcriptionally active 

genes when encountered by RNA polymerase II, restoring 

transcriptional activity and preventing apoptosis. GG-NER 

performs this process with poor efficiency, instead removing 

lesions on non-transcribed strands and transcriptionally inert 

genes to avoid replication fork stalling and chromosomal 

breakages.29 In GG-NER, damage recognition is sensed by 

various proteins, including the xeroderma pigmentosum 

(XP), complementation group C (XPC)-RAD23B complex 

(helix distortions), UV-damaged DNA-binding protein 1 

(DDB1), and UV-damaged DNA-binding protein 2 (DDB2) 

(UV damage), and XPA (unknown substrate).30 In TC-NER, 

recognition is mediated by stalling of RNA polymerase 

II at a damaged site. Recognition factor binding in both 

pathways is associated with localized distortion to allow 

repair factor access to the damaged site. Transcription fac-

tor IIH (TFIIH), a nine-subunit complex including the DNA 

helicases XP complementation group B (XPB) and XP 

complementation group D (XPD), is recruited to unwind 

the DNA local to the damaged site. Dual incision around 
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the lesion is performed by structure-specific endonucleases 

XP complementation group G (XPG) (3′ incision) and the 

excision repair  cross-complementing group 1 (ERCC1)-XP 

complementation group F (XPF) complex (5′ incision), 

resulting in cleavage of a 24–29 nucleotide fragment. In com-

mon with BER and mismatch repair (MMR), proliferating 

cell nuclear antigen (PCNA) is then recruited to coordinate 

DNA polymerase repair synthesis and DNA ligase nick 

joining.29 Given the critical role NER plays in repairing UV-

induced damage, it is unsurprising that mutation within NER 

genes can lead to UV hypersensitivity. XP is an autosomal 

recessive syndrome that manifests as photosensitivity, neu-

rological abnormalities, and predisposition to skin and other 

cancers. XP is characterized by marked clinical and genetic 

heterogeneity, with causative mutations falling into one of 

seven complementation groups that span many NER factors. 

Different mutations in the same NER genes can give rise to 

alternative phenotypes that do not include cancer predisposi-

tion, namely Cockayne syndrome (variable UV sensitivity, 

premature aging, and physical and mental retardation) and 

trichothiodystrophy (TTD; variable UV-sensitivity, prema-

ture aging, ichthyosis, brittle hair, and short stature).31 This 

heterogeneity may result from the bifunctionality of NER 

factors. For example, the XPD complementation group is 

associated with several disease-specific mutations that may 

cause XP, combined Cockayne syndrome and XP, or TTD. 

When the causative mutation is associated with XP, the NER 

function of TFIIH is deficient, correlating with a phenotype of 

severe UV-sensitivity and cancer predisposition. TFIIH also 

has a role in transcriptional initiation of RNA polymerase II, 

in which the helicase subunits (XPB and XPD) unwind the 

DNA at the promoter region to allow transcription complex 

access. XPD mutations affecting this function may have 

normal NER (non-UV-sensitive TTD), or defective CPD but 

intact 6-4PP repair (UV-sensitive TTD), accounting for the 

reduced malignancy risk.

MMR
MMR recognizes and repairs errors introduced during rep-

lication. DNA polymerases possess 3′-5′ exonuclease activ-

ity to excise incorrectly paired bases in newly synthesized 

DNA. Failure of this proofreading process leads to mispair 

persistence, forming a substrate for MMR. MMR also 

recognizes and repairs insertion/deletion loops (IDLs), par-

ticularly within microsatellite DNA – hence, “microsatellite 

instability” is recognized as a hallmark of MMR failure.32,33 

If microsatellite instability manifests within tumor sup-

pressor genes, it can produce frame-shift mutations that 

contribute to carcinogenesis – a common feature of certain 

cancers, including colorectal, endometrial, ovarian, and 

gastric cancer (reviewed in Li).34 MMR error recognition is 

initiated by heterodimers of MSH (Escherichia coli MutS 

homolog) ATPases. MutSα comprises MSH2 and MSH6, 

and recognizes base mismatches and small 1-2 nucleotide 

IDLs. MutSβ, comprising MSH2 and MSH3, binds to larger 

IDLs of up to 16 nucleotides. Loss of MSH2 results in the 

absence of both MMR subpathways, and hence cancer pre-

disposition in preclinical models35 and in the clinical setting 

(as HNPCC).36 Once bound to the DNA substrate, the MutS 

heterodimer recruits MutLα, a heterodimer comprised of 

MutL homolog 1 (MLH1) and PMS2, homologs of the E. coli 

ATPase MutL. MLH1 is critical to MMR, with deletion or 

promoter methylation producing a comparable phenotype to 

MSH2 mutation.37,38 The MutS/MutL complex functions as a 

sliding clamp, undergoing an ATP-dependent conformational 

change that results in release from the mismatch site fol-

lowed by translocation in both directions from the mismatch. 

Translocation continues until a strand break is encountered, 

such as the 3′ terminus of the leading strand, or the 5′ or 3′ 
termini of Okazaki fragments (200–1,000 nucleotide lag-

ging strand fragments generated and later ligated during 

replication). Exonuclease-1 (EXO1) is loaded at the strand 

break and degrades the strand back towards the mismatch 

site, allowing repair using the parent strand template by the 

high fidelity DNA polymerase δ (Polδ). DNA ligase I seals 

the gap.33,34

Non-homologous end joining
Along with HR repair, non-homologous end-joining is one of 

the two major pathways that exist for repair of DSBs. Non-

homologous end joining (NHEJ) essentially involves processing 

of the terminal nucleotides to allow end ligation, in a manner 

that restores molecular integrity but may not maintain sequence 

fidelity. Damage recognition in NHEJ is performed by the 

Ku70/Ku80 heterodimer, which binds to the DSB ends with 

high affinity, possibly tethering the broken ends together. Ku 

binding recruits and activates the DNA-dependent protein kinase 

DNA-PKcs, forming the DNA-PK complex that phosphorylates 

other repair proteins including XRCC4-like factor (XLF, also 

known as Cernunnos), Werner syndrome helicase (WRN), DNA 

ligase IV (LIG4), and XRCC4.  Additionally, DNA-PK is able 

to autophosphorylate, allowing NHEJ regulation. DNA end-

processing prepares damaged terminal nucleotides for ligation. 

Dependent on the nature of the damage, this may require variable 

combinations of repair factors.  Damaged DNA overhangs can 

be removed by nucleases such as Artemis, while other factors 
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such as WRN, PNK, and aprataxin and PNK-like factor also 

have roles. Nucleotide incorporation by DNA polymerases λ 

and µ replaces nucleotides cleaved during end-processing in 

a non-template dependent manner, and represents a significant 

source of error in the pathway. Once processed, ends are ligated 

by the LIG4/XRCC4/XLF complex.39–41

NHEJ is able to resolve a large variety of DNA DSB 

damage, and is thought to be the major pathway for DSB 

repair in eukaryotes, occurring throughout the cell cycle. 

Accurate repair in NHEJ is likely if the DSB possesses fully 

complementary single-stranded ends. In the absence of com-

plementary ends, repair is dependent on annealing of short 

microhomologous sequences (four or fewer nucleotides) 

within the overhanging ends, which leads to the introduction 

of potentially mutagenic deletions or insertions.42 NHEJ also 

has a critical role in V(D)J recombination to recombine the 

variable region in B-cell and T-cell receptors – in this context, 

low fidelity is beneficial to maximize diversity.43

Microhomology-mediated  
end joining
The observation that NHEJ can proceed in the absence of 

key factors, including DNA-PKcs and Ku, without signifi-

cant input from the HR pathway, has led to the theory that at 

least one backup NHEJ pathway exists.44 It appears that this 

pathway functions when classical NHEJ fails, either due to 

enzymatic deficiency or failure to interact at certain DNA 

lesions. This alternate mechanism, known as microhomology-

mediated end joining (MMEJ), is reliant on the annealing of 

microhomologous regions of 5–25 base pairs. To uncover 

these microhomologies, binding of the NHEJ heterodimer 

Ku and the HR factor RAD51 must be inhibited, possibly 

by members of the PARP family, to allow 5′-3′ nucleolytic 

resection by the MRN complex (MRE11-RAD50-NBS1). 

During this process, replication protein A (RPA) binds to 

the single-stranded DNA ends to prevent self-complemen-

tization. Once microhomologous regions are uncovered, the 

DNA overhangs anneal. End processing proceeds as required, 

via XRF-ERCC1 flap cleavage and polymerase-mediated 

gap-filling. Ligation appears to involve DNA ligase I (LIG1) 

and III (LIG3).42,45 Unlike NHEJ, MMEJ is always associ-

ated with sequence loss and is therefore always mutagenic. 

Indeed, microhomologies can frequently be demonstrated at 

chromosome breakpoints in human cancer cells.45

Single-strand annealing
Like MMEJ, single-strand annealing also involves 3′ end 

resection to uncover homologous regions that can anneal 

directly under RAD52 control. The size of homologous repeat 

sequences utilized in single-strand annealing (such as ∼300 bp 

Alu repeats) requires more extensive end resection creating a 

large flap. Flap removal is catalyzed by RAD1/RAD10 nucle-

ases, under SAW1/SLX4 (single-strand annealing weakened 

1/structure-specific endonuclease subunit 4) guidance, result-

ing in a large deletion event. Significant sequence diversity 

within repeat elements probably suppresses this pathway to 

a relatively minor role in DSB repair.40,46–60

HR
HR utilizes a homologous DNA sequence as a template 

for DNA synthesis and gap filling to ensure error-free 

repair.40,46–60 For this reason, HR is the predominant mecha-

nism for DSB repair during cellular replication. Cell cycle 

control is exerted by a dependence on cyclin-dependent 

kinase activity, which is upregulated in S and G2 phases, 

although high levels in M phase are associated with HR sup-

pression due to concurrent BRCA2 phosphorylation. HR is 

also suppressed during G1, when use of the homologous chro-

mosome as a template would result in loss of heterozygosity. 

Pathway choice for DSB repair is probably also guided by 

the repair substrate. Two-ended DSBs formed by fracture of 

a duplex molecule can generally be accurately repaired by 

simple end ligation via the NHEJ pathway, which in mam-

malian cells is the predominant mechanism of repair of this 

type of damage.61 Conversely, one-ended DSBs occurring 

when a replication fork encounters an SSB or distorting 

base lesion require template-guided repair to prevent inap-

propriate annealing leading to large-scale rearrangements or 

insertions/deletions.

In general, HR requires: 1) damage recognition, 

2) end resection mediated by the MRN complex, 

3) RAD51-dependent homology-directed strand invasion and 

repair synthesis, 4) dissociation from the template strand, and 

5) end ligation. The classical model is synthesis-dependent 

strand annealing, which occurs at two-ended DSBs. Follow-

ing damage recognition, 3′ strand resection coordinated by 

the MRN complex occurs on both fractured strands. MRN 

interacts with CtIP (also known as RBBP8 [retinoblastoma 

binding protein 8]) to promote end resection and generate 

3′ single-strand DNA overhangs. These are bound by the 

protective RPA to prevent self-annealing. RAD51 binds the 

DNA ends, in combination with associated proteins including 

BRCA2, RAD52, RAD54, RAD54B, and the RAD51 paral-

ogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3). 

The resultant nucleoprotein filament invades the sister chro-

matid or homologous chromosome to search for homologous 
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regions to form heteroduplex DNA. Polymerase η catalyzes 

3′ extension of the invading strand using the sister strand as 

a template. The non-template DNA strand is displaced into 

a D-loop, with a Holliday junction forming at the crossover 

between the hetero- and homoduplex DNA. This junction can 

slide along the DNA in either direction (“branch migration”), 

facilitated by numerous proteins (WRN, BLM, p53, RAD54, 

BLAP75, MSH2/MSH6) via mechanisms that are yet to be 

elucidated. Branch migration results in strand dissociation 

upon reaching the terminus of the invading strand. Once 

released, the newly synthesized strand anneals beyond the 

original breakpoint, where it is bound by RPA and RAD52 

to coordinate recruitment of factors involved in end process-

ing (eg, XPF/ERCC1 for flap removal), gap filling (by DNA 

polymerases) and end ligation (by DNA ligases). The repaired 

strand can then be used as a template for DNA synthesis on 

the non-invading strand. As a result, sequence information is 

copied from the template region into the breakpoint (“gene 

conversion”), potentially resulting in loss of heterozygosity. 

An alternative model theorizes the formation of a double 

Holliday junction through simultaneous strand invasion by 

both DSB 3′ ends, possibly as a mechanism for DSB repair 

during meiosis. Strand dissociation in this model requires 

cleavage at the Holliday junction. Depending on the orienta-

tion of cleavage, this might result in a crossover event, which 

could account for the large-scale sequence exchanges that 

can be demonstrated in meiotic cells.

It is now thought that the primary repair substrates for HR 

are one-ended DSBs formed by replication fork collapse at 

the site of an unrepaired SSB or base lesion. Repair of such 

lesions occurs by the break-induced replication pathway, 

which initially proceeds in a similar manner to two-ended 

DSB repair, with 3′ resection creating an overhang which 

invades the sister chromatid and anneals to a homologous 

region in a RAD51-mediated mechanism. Cleavage of the 

single Holliday junction restores the replication fork, allow-

ing replication to continue. Dependent on the orientation of 

Holliday junction cleavage, this mechanism can result in 

the leading strand template becoming ligated to the newly 

synthesized lagging strand, resulting in a sister chromatid 

exchange.

Evidence to support replication fork collapse as the 

primary substrate for HR is based upon comparison of the 

recombination products formed following repair of induced 

SSBs and spontaneous recombination events. Restriction 

endonuclease-induced two-ended DSBs result in short 

tract gene conversion events, consistent with the synthesis-

dependent strand annealing model of HR described above. In 

contrast, camptothecin exposure induces one-ended DSBs by 

stabilizing DNA–topo-I interactions to prevent re-ligation of 

topo I-induced SSBs, thus leading to replication fork collapse. 

Repair of camptothecin-induced damage results in sister 

chromatid exchanges and long tract gene conversions. Simi-

larly, impaired repair of SSBs in XRCC1- or PARP1-deficient 

cells, or following PARP inhibitor exposure, increases one-

ended DSB formation, associated with increased formation of 

γH2AX and RAD51 foci – markers of HR activity.8,62 Sponta-

neous recombination outcomes are more similar in spectrum 

to failed SSBR or camptothecin-related repair products than 

to those formed during the repair of endonuclease-induced 

two-ended DSBs, suggesting that replication fork collapse 

forms the primary repair substrate for HR.62

Crosslink repair
A number of DNA repair mechanisms play a role in the repair 

of interstrand crosslinks (ICLs), a highly toxic form of dam-

age that can stall and collapse replication forks, potentially 

leading to DNA rearrangement, mutation, or cell death. 

ICLs are cytotoxic at densities as low as 40 per cell, because 

they cause DNA distortion and prevent strand dissociation, 

impacting upon DNA synthesis and replication.63

Fanconi anemia (FA) is an autosomal recessive condi-

tion associated with predisposition to acute myelogenous 

leukemia and other malignancies, progressive bone marrow 

failure, short stature, and developmental delay. Fourteen 

complementation groups have been identified, with evidence 

suggesting that an FA core complex containing Fanconi ane-

mia, complementation group A (FANCA), FANCB, FANCC, 

FANCE, FANCF, FANCG, and FANCL localizes to DNA 

damage and activates FANCD2, which in turn co-localizes 

with BRCA1. Recent studies also implicate XPF mutations 

in FA.64,65 Given that FA is associated with hypersensitivity to 

crosslinking agents, it is believed that the genetic basis may be 

a defect in ICL repair, although much of the pathway remains 

to be elucidated. The covalent link of the ICL causes local-

ized DNA distortion and prevents replication-mediated DNA 

unwinding, leading to replication fork stalling. This is rec-

ognized by FANCM and associated proteins, which recruits 

the FA core complex and other repair proteins, including 

FANCD2-FANCI. The FA core complex possesses ubiquitin 

ligase activity, which monoubiquitinates FANCD2-FANCI, 

allowing interaction with Fanconi-associated nuclease 1 

(FAN1) and DNA polymerase ν (Polν, POLN). FAN1 has 

5′-3′ exonuclease and 5′-flap endonuclease activity, causing 

DNA cleavage (known as “unhooking”) alongside the ICL,  

converting the stalled replication fork into a one-ended DSB on 
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the sister chromatid. A number of other nucleases may medi-

ate DNA cleavage 3′ to the ICL, including MUS81-EME1,  

XPF-ERCC1, and SLX1-SLX4, thus excising the damaged 

region. PCNA is recruited, coordinating a switch to trans-

lesion synthesis (TLS) involving REV1 and DNA poly-

merase ζ to extend the nascent strand beyond the ICL site.66 

Subsequently, the 3′ strand of the sister chromatid DSB is 

reintegrated into the homologous duplex, forming a double 

Holliday junction, and replication is restarted via HR in a 

RAD51-dependent manner.67–70

DNA damage tolerance mechanisms
Unrepaired lesions (particularly bulky adducts, intercalations, 

crosslinks, and helix distortions) can block progression of the 

replication fork. DNA damage tolerance mechanisms allow 

the replication machinery to bypass these lesions prior to 

repair. This allows replication to proceed without affecting 

the viability of dividing cells, but can increase the risk of 

propagating mutations to the daughter population.71

The DNA polymerase-mediated TLS pathway may pro-

ceed by one of two models. In polymerase-switching TLS, 

fork progression is stalled when the replicative helicase 

encounters a DNA lesion. This triggers the recruitment of 

specialized TLS polymerases that insert one or more nucle-

otides opposite the damaged base before the replicative poly-

merase is “switched” back into the replication machinery. 

The alternative “gap-filling” TLS model involves reinitiation 

of replication downstream from the damage lesion, result-

ing in a single-strand gap that is filled by one of the TLS 

polymerases. Polymerases that have been implicated in TLS 

include Polν, Polθ (A family polymerases), Polζ (B family 

polymerase), Polβ, Polλ, Polµ, and terminal deoxynucleoti-

dyl transferase (X family polymerases), Polη, Polκ, Polι, and 

Rev1 (Y family polymerases). Polymerase choice may be 

damage-specific: for example, Polη may bypass UV-induced 

CPDs, whereas Rev1 may function in AP site bypass.72 TLS 

fidelity is polymerase-specific, highly variable, and may be 

an important source of genomic instability and susceptibility 

to cancer and other diseases.73

The HR pathway may also play a role in bypassing unre-

paired lesions during replication, via a subpathway known as 

template switching. In this mechanism, the stalled daughter 

strand invades the sister chromatid in an HR-mediated 

mechanism to utilize the complementary parent strand as a 

template for synthesis, creating a Holliday junction that is 

resolved prior to resumption of replication. An alternative 

HR-related model is that of fork regression. The presence 

of a single-strand base lesion blocks replication on one 

parent strand, whilst replication persists on the complemen-

tary strand beyond the point of damage. Regression of the 

replication fork allows transient annealing of the daughter 

strands into a Holliday intermediate (“chicken foot” struc-

ture), providing an alternative template for synthesis across 

the damaged region.74,75

Global DNA damage response
The cellular DNA damage response involves activation of cell 

cycle checkpoints to induce a cell cycle arrest while repair 

mechanisms, transcriptional modulation, and/or apoptotic 

pathways are activated. DNA damage is detected by sensor 

proteins, which may overlap with specific repair pathway 

damage sensors. Checkpoint-specific sensors include: ataxia 

telangiectasia mutated (ATM), which primarily detects DSBs; 

ataxia telangiectasia and Rad3 related (ATR), which detects 

UV-induced and other damage; and RAD17-replication factor 

C (RFC complex) in conjunction with the RAD9-RAD1-

HUS1 (9-1-1) complex, which can detect multiple damage 

types. Damage sensors interact with a wide range of media-

tor proteins, including BRCA1, MDC1 (mediator of DNA 

damage checkpoint 1), 53BP1 (p53 binding protein 1), and 

Claspin, which are required for downstream activation of 

Chk1 (activated downstream from ATR signaling) and Chk2 

(activated downstream from ATM signaling). Chk1 and -2 

kinases phosphorylate the phosphotyrosine phosphatases 

Cdc25A, -B, and -C, leading to their inactivation. As a result, 

the Cdc phosphatases are unable to dephosphorylate the 

cyclin-dependent kinases that promote cell cycle transition: 

Cdk2, which promotes the G1/S transition, and Cdc2 phos-

photyrosine, which promotes the G2/M transition.

Three main checkpoints exist: G1/S, intra-S phase, and 

G2/M. The G1/S checkpoint is activated by damage that 

prevents initiation of replication, via the ATM-Chk2-Cdc25A 

or ATR-Chk1-Cdc25A pathways, and is maintained by Chk1 

or Chk2-mediated phosphorylation of p53, which leads to 

p21-mediated inactivation of Cdk2. The intra-S phase check-

point is activated by replication fork stalling, and is probably 

initiated both by the specialized checkpoint sensors (via 

inactivation of the S phase promoters cyclin E/Cdk2) and by 

various repair proteins such as the MRN complex (MRE11/

RAD50/NBS1) and BRCA1. Activation by the latter group 

of sensors is thought to also activate a second pathway via 

phosphorylation of SMC1 (structure and maintenance of 

chromosomes 1) and SMC3 (structure and maintenance of 

chromosomes 3), which promotes recombination repair to 

recover stalled or collapsed replication forks. The G2/M 

checkpoint, which prevents initiation of mitosis in the 
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presence of DNA damage, operates via the ATM and ATR-

mediated to regulate G2/M transition via inactivation of 

Cdc25C/Cyclin B.14 Maintenance of the G2/M arrest requires 

transcriptional repression of Cdc2 and Cyclin B expression, 

mediated via activation of p53 and p21.

Activation of p53 plays an important role in apoptotic 

signaling. It has been implicated in activation of the intrinsic 

apoptosis pathway by shifting the balance of the multifunc-

tional B-cell lymphoma-2 (Bcl-2) family away from Bcl-2 

survival signaling towards induction of proapoptotic factors 

such as Bax and PUMA (p53 upregulated modulator of 

apoptosis), which contribute to caspase cascade activation.76 

Furthermore, p53 has been linked to activation of Fas and 

DR5/KILLER death receptors, which activate the extrinsic 

apoptosis pathway that also contributes to caspase-mediated 

cell death.77

Clinical implications of DNA  
repair in cancer
Alterations in expression of DNA repair may influence cancer 

biology and influence aggressive phenotypes. Germ-line 

polymorphism of the POLB gene (rs3136797) encoding a 

Polβ variant with a low catalytic activity has been recently 

shown to induce cellular transformation and may be asso-

ciated with increased cancer susceptibility.78 About 30% 

of human tumors appear to express Polβ variant proteins 

(such as K289M or I260M) which can induce cellular trans-

formation in vitro, associated with an aggressive mutator 

phenotype.79

Overexpression of DNA repair factors may promote cell 

survival in established tumors. For example, ROS generated 

during increased metabolic activity in cancer cells generate 

DNA damaging lesions such as AP sites, oxidative base dam-

age, DNA SSBs, and DNA DSBs. If unrepaired, such DNA 

lesions could be deleterious to the cancer cell. Moreover, 

hypoxic and acidic tumor microenvironments can promote 

further oxidative stress in cancer cells. Although ROS 

scavenging systems (such as glutathione and thioredoxin, 

superoxide dismutases, catalases, and peroxidases) do oper-

ate in cancer cells, capacity is limited, eventually leading 

to ROS-induced DNA damage. Therefore cancer cells also 

utilize the DNA repair machinery to process DNA damag-

ing lesions and maintain cellular survival. Clinical evidence 

supports the hypothesis that overexpression of DNA repair 

factors may have prognostic and predictive significance in 

patients (reviewed in Abbotts and Madhusudan).21

Taken together, this evidence suggests that targeting DNA 

repair is a valid anticancer strategy. A detailed discussion is 

beyond the scope of this article, as several recent comprehen-

sive reviews are available.80–83 Here, we focus on the current 

status of PARP inhibitors in cancer therapy.

The most advanced class of DNA repair inhibitors to date 

are PARP inhibitors, which disrupt the BER-related SSBR 

pathway. PARP1 senses and binds to DNA strand breaks, 

catalyzing (auto-) poly(ADP-ribosyl)ation of target proteins 

to induce localized chromatin relaxation and assembly of an 

XRCC1-LIG3-PNKP repair complex. A number of potential 

PARP inhibitors have been identified, usually with nonspeci-

ficity within the PARP family due to high sequence homology 

at the active site. In vitro and in xenograft models, PARP 

inhibitors have been demonstrated to potentiate the action of 

a wide variety of damaging agents, including platinums, the 

alkylating agents temozolomide and cyclophosphamide, the 

nucleoside analogue gemcitabine, the topoisomerase inhibitor 

irinotecan, and ionizing radiation.84,85 Several PARP inhibi-

tors have entered the clinical setting in Phase I–III studies in 

combination with various chemotherapeutic agents, although 

results have been mixed (reviewed recently by Davar et al).86 

For example, the Pfizer compound rucaparib (AG-014699; 

Pfizer, Inc., New York, NY, USA) has been evaluated in 

Phase I and II in combination with temozolomide in malig-

nant melanoma, demonstrating successful PARP inhibition 

at a tissue level and probable anticancer activity, but sig-

nificant myelosuppression causing dose-limiting toxicity.87 

Similar toxicity has been noted with olaparib (AZD2281; 

AstraZeneca, London, UK) in combination with paclitaxel, 

carboplatin, or cisplatin and gemcitabine in Phase III trials 

in gastric cancer.88  Myelosuppression or other dose-limiting 

toxicities have not been noted with iniparib (BSI-201; 

Sanofi, Paris, France), which has been evaluated at Phase 

II in metastatic triple-negative breast cancer in combination 

with gemcitabine and carboplatin. A significantly improved 

median overall survival was demonstrated compared with 

gemcitabine and carboplatin alone, without increased 

toxicity. However, a Phase III trial failed to meet co-primary 

endpoints of overall and progression-free survival,89 and after 

further disappointing results in a Phase III non-small-cell 

lung cancer trial, iniparib has been suspended from further 

development.90 It should be noted that doubts have been raised 

about iniparib’s ability to inhibit PARP activity. Although 

initially believed to noncompetitively inhibit PARP1 by 

association with the DNA binding domain, more recent 

studies have failed to demonstrate target inhibition.91 A good 

safety profile was also observed with veliparib (ABT-888; 

Abbott Laboratories, Abbott Park, IL, USA) in combination 

with temozolomide. This was associated with positive early 
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results in metastatic colorectal and BRCA-deficient breast 

cancers, although in advanced melanoma the combination 

was associated with poor response and no progression-free 

or overall survival improvement. Many additional Phase I 

and II trials are  currently underway, in combination with a 

variety of agents, including carboplatin, 5-fluorouracil and 

oxaliplatin, cisplatin and paclitaxel, topotecan, gemcitabine, 

and radiotherapy (reviewed in Davar et al).86 Other PARP 

inhibitors, including orally bioavailable agents, are currently 

also under Phase I investigation.86,92

The data presented above suggest that the clinical util-

ity of PARP inhibitors in combination with chemotherapy 

may be limited in tumors in view of narrow therapeutic 

index. However, evolving preclinical and clinical evidence 

provides compelling data that DNA repair inhibitor use 

could be targeted more effectively by utilizing a synthetic 

lethality strategy.

Synthetic lethality
Synthetic lethality exploits inter-gene relationships where the 

loss of function of either of two related genes is nonlethal, 

but loss of both causes cell death. This offers the potential to 

specifically target cancer cells through inhibition of a gene 

known to be in a synthetic lethal relationship with a mutated 

tumor suppressor gene.93

PARP1 inhibition in BRCA deficiency
The best-characterized synthetic lethality relationship is 

between BRCA mutation and PARP1 inhibition.94–96 PARP1 

plays a role in the BER-related pathway of SSBR. Inhibition 

of SSBR is associated with accumulation of DSBs, which 

can be exploited in a subset of cancers possessing defects 

in DSB repair. BRCA1 and -2 have long been identified as 

tumor suppressors, being mutated in an inherited cancer 

predisposition that increases susceptibility to breast and 

ovarian tumors.97 Both BRCA gene products have a role 

in the HR DNA repair pathway.98 In BRCA-deficient cells, 

loss of effective HR leads to DSB persistence and cell 

death (Figure 2). As heterozygosity at a BRCA allele is 

associated with effective HR, DSB accumulation induced 

by PARP  inhibition specifically occurs only in tumor cells 

with acquired BRCA−/− homozygosity.7,8 Furthermore, loss 

No PARP inhibition PARP inhibition

Normal or BRCA+/−
repaired by HR

BRCA−/−
repaired by BER

BRCA−/−
unrepaired by HR

SSB
formation

BER inhibited
SSB converted to DSB

BER+/
HR+

BER+/
HR+

BER+/
HR−

BER+/
HR−

BER+/
HR−

Normal or BRCA+/−
repaired by BER

Figure 2 Synthetic lethality in BRCA−/− cells upon PARP inhibition. PARP inhibition leads to SSBs. During replication SSBs get converted to DSBs. BRCA−/− cells are deficient 
in HR and hence unable to repair DSBs. DSB accumulation leads to cell death. In cells where PARP is proficient, SSBs are repaired by BER irrespective of BRCA status. There 
is no DSB generation, and cells continue to survive.
Abbreviations: BeR, base excision repair; BRCA, breast cancer susceptibility protein; DSB, double-strand break; HR, homologous recombination; PARP, poly[ADP-ribose] 
polymerase 1; SSB, single-strand break.
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of BRCA2 function has been linked to hyperactivation of 

PARP1 (an observation replicated in loss of other HR factors), 

enhancing the cytotoxic effect.99

PARP inhibition has been hypothesized to cause persis-

tence of endogenously generated SSBs, inducing collapse of 

replication forks and formation of lethal DSBs.100 However, 

the exact mechanism of PARP inhibition has not been fully 

elucidated. Because of its role in the related SSBR pathway, 

PARP1 has occasionally and erroneously been described as 

essential for BER, although knockdown models have dem-

onstrated this to be inaccurate. Unlike many BER factors, 

PARP1 is not essential for viability, nor is it required for repair 

of BER substrates such as alkylation damage – in actuality, 

PARP1 has been demonstrated to reduce BER kinetics.101 

Interestingly, the mode of PARP1 inactivation may impact 

the biological consequences. For example, small interfering 

RNA (siRNA)-mediated PARP1 knockdown does not induce 

significant cytotoxicity in BRCA-deficient cells,7 while small 

molecule inhibition induces SSB accumulation after alkylat-

ing agent treatment and is well documented to be synthetically 

lethal in BRCA-deficient cells.101 This is probably because the 

BER intermediate single-strand nick is a substrate for transient 

PARP1 binding, hence accounting for slowed BER kinetics in 

the presence of PARP1. In this model, PARP inhibitor binding 

may trap PARP1 onto an SSB, whether formed spontaneously, 

exogenously, or by BER.102 As a result, downstream repair 

(whether by SSBR or BER) is prevented, leading to toxic 

DSBs during replication.103 Phase I and II trials of PARP inhib-

itors have demonstrated favorable efficacy and limited toxic-

ity in BRCA-related breast and ovarian cancers.104 An initial 

Phase I study of olaparib in a cohort enriched for BRCA1/2 

mutation carriers demonstrated evidence of in vivo anti-PARP 

activity (using PARP activity measurement in peripheral 

blood mononuclear cells and the surrogate marker of γH2AX 

induction, which accumulates at DSBs) and evidence of 

response in 40% BRCA carriers.96 This led to Phase II trials in 

breast or ovarian cancer associated with BRCA1/2 mutation, 

demonstrating further favorable data suggesting antitumor 

efficacy in this cohort.105,106 Phase III trials in BRCA-mutated 

ovarian cancer are currently planned.107,108 Likewise, Phase II 

investigation of rucaparib in BRCA1/2-mutated breast or 

ovarian cancer demonstrates PARP activity inhibition and 

evidence of tumor response.109 The oral PARP1/2 inhibitor 

niraparib (MK4827; Merck & Co, Inc., Whitehouse Station, 

NJ, USA) has also been evaluated at Phase I to possess an 

acceptable safety profile and probable antitumor activity.110 

“BRCAness” refers to a subset of breast cancers, including 

“triple negative” (estrogen-, progesterone-, and HER2 [human 

epidermal growth factor receptor 2]-negative) and “basal phe-

notype” cancers, that possess molecular and histopathological 

similarity to BRCA-deficient tumors, which have been suc-

cessfully targeted in vitro by PARP inhibition.111,112 Similarly, 

high-grade serous/undifferentiated ovarian cancers (HGSOC) 

are commonly associated with somatic or epigenetic loss 

of BRCA1/2.113 Phase II investigations of olaparib in these 

cohorts initially suggested that there may be a role for PARP 

inhibition in HGSOC,114 although Phase III development was 

terminated after it was deemed unlikely that reported progres-

sion-free survival would translate to an overall benefit.115 It 

should be noted that BRCA deficiency does not translate to 

PARP inhibitor response in all patients, and resistance may 

be a significant problem in future development. Two groups 

independently described the deletion of a previously identified 

BRCA2 mutation in PARP inhibitor-resistant cancer cells that 

led to restoration of the open reading frame, and hence HR 

proficiency.116,117 Furthermore, in BRCA1-deleted cells, loss 

of expression of the HR protein 53BP1 appears to partially 

restore HR competency and abrogate the ATM-dependent 

checkpoint response, limiting the resultant cell cycle arrest 

triggered by DSB accumulation after DNA damaging agent 

exposure.118

Alternative synthetic lethality  
partners for BeR
The discovery of the synthetic lethality relationship between 

PARP1 and BRCA suggests that other tumor-specific defects 

in DSB repair factors may be therapeutically targeted by 

PARP inhibition. Germline mutations in the HR protein 

RAD51D have been identified as conferring susceptibility 

to ovarian cancer and may offer a target for PARP inhibitors 

in a small subset of women.119 Recent evidence suggests 

single agent cytotoxicity of PARP inhibitors in cells with 

reduced expression of ATM, the checkpoint activator that is 

activated by DSBs.120,121 Similar results have been observed 

in cells deficient in expression of the HR protein MRE11,122 

and following in vitro downregulation of Artemis or LIG4, 

both of which function within the NHEJ pathway.123,124 Other 

potential synthetic lethality partners in PARP inhibition 

identified on a high-throughput siRNA screen include the 

DSB-induced checkpoint activator ATR, and a variety of 

factors that have been associated with bypass of stalled rep-

lication or transcription forks, including PCNA, DDB1, and 

XAB2 (XPA-binding protein 2).125 Conversely, SSBR factors 

other than PARP1 are potential synthetic lethality partners in 

DSB repair loss, as observed by the cytotoxicity induced by 

inhibitors of ATM or DNA-PKcs following knockdown of 
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the BER protein XRCC1.126 Given its critical role in BER, 

targeting APE1 also presents a promising alternative. Sultana 

et al121 recently demonstrated that novel small molecule APE1 

inhibitors are able to induce AP site accumulation, DSBs, cell 

cycle arrest, and cytotoxicity in BRCA2- or ATM-deficient 

cells. The synthetic lethality relationship between HR and 

APE1 was confirmed by cytotoxicity observed following 

ATM inhibitor exposure in APE1−/− cells.121

In addition to targeting tumors harboring germline 

defects in HR, Seo et al highlighted a possible treatment 

strategy in sporadic tumors by demonstrating that inhibition 

of APE1 DNA repair function induces targeted cytotoxic-

ity in cell lines cultured in acidic environments.127 Tumor 

microenvironments are commonly acidic and have been 

associated with upregulation of BER proteins, including 

APE1. Conversely, other DNA repair mechanisms, includ-

ing HR, are often downregulated under such conditions.128,129 

Identification of tumors with BER upregulation and HR 

depletion may therefore offer an opportunity to exploit syn-

thetic lethality through APE1 inhibition.

Recent evidence suggests that relationships between 

BER and non-HR DNA repair pathways may hold potential 

for synthetic lethality. For example, 8-oxoguanine base 

lesions, which are induced by metabolic ROS and can cause 

mutagenic GC→TA transversions if unrepaired, may be 

processed by both BER and MMR. Mutations in the MMR 

genes MLH1 or MSH2 are implicated in HNPCC and some 

sporadic colorectal cancers. SiRNA inhibition of the BER 

constituent DNA polymerases β/γ have been demonstrated 

to be selectively lethal in MLH1/MSH2 mutant cell lines, 

suggesting a synthetic lethality relationship.130 It remains to 

be established whether additional factors such as APE1 may 

have a role in this capacity.

Phosphatase and tensin homolog 
mutation as a synthetic lethality target
Phosphatase and tensin homolog (PTEN) is a negative regu-

lator of the anti-apoptotic PI3K/Akt pathway. In addition to 

its inositol phosphatase function, PTEN has recently been 

implicated in the maintenance of genomic integrity.131–136 

On the basis of evidence supporting an HR defect associ-

ated with PTEN mutation,  Mendes-Pereira et al38 tested for 

synthetic lethality in HCT116 colorectal tumor cells trans-

fected with a PTEN-mutant cDNA clone. Homozygosity 

for PTEN mutation was associated with a 20-fold increase 

in sensitivity to PARP inhibitors, which was replicated in a 

panel of commonly cultured tumor cell lines and in mouse 

xenografts. Ectopic expression of wild type PTEN into a 

PTEN-deficient prostate cancer cell line abrogated this effect, 

as did induced expression of a PTEN phosphatase domain 

mutant, suggesting that PTEN’s influence over HR lies out 

with its phosphatase function. Ectopic expression of RAD51 

in a PTEN-deficient cell line was also able to overcome PARP 

inhibitor sensitivity, supporting the proposed link between 

PTEN mutation and reduced RAD51 expression. Similar 

results were demonstrated in endometrioid endometrial carci-

noma, in which PTEN is mutated in up to 80% of patients.137 

In primary PTEN−/− mouse astrocytes, reduced transcription 

of the RAD51 paralogs was associated with sensitivity to 

PARP inhibition,138 while PTEN disruption in colorectal can-

cer cells resulted in reduced MRE11 accumulation at DSBs 

that is also associated with PARP inhibitor sensitivity.139 In 

lung cancer cells, PTEN deficiency potentiated the synergistic 

effect of olaparib and cisplatin combination treatment,140 

while rucaparib sensitized PTEN-deficient prostate cancer 

cells to ionizing radiation,141 with both reports highlighting 

delayed DSB repair kinetics as a likely mechanism.

In the clinical setting, there is anecdotal evidence of suc-

cessful targeting of PTEN deficiency with PARP inhibitor. 

Forster et al142 have presented a case study of usage of the 

PARP inhibitor olaparib in a patient with platinum- responsive 

metastatic endometrioid endometrial adenocarcinoma. 

Treatment was initiated following development of brain 

metastases, on the basis of previous sensitivity with plati-

num agents, which are highly effective in HR deficiency. 

A partial response on magnetic resonance imaging was 

noted at 10 weeks, followed by a progression-free survival 

of 8 months. Tumor biopsy demonstrated PTEN mutation 

with wild type BRCA1 and -2 status.142

However, there is not a consensus regarding the syn-

thetic lethality relationship between PTEN deficiency and 

PARP inhibition. In studies on PTEN-null prostate139 and 

lung143 cancer cells, no enhanced DNA damaging agent or 

PARP inhibitor sensitivity was observed. Furthermore, in a 

Phase I trial in BRCA mutation carriers and sporadic can-

cer, PTEN status did not correlate with antitumor activity 

of niraparib.144

Although PARP inhibitor-induced synthetic lethality in 

PTEN loss has been most widely studied, a recent report from 

Mereniuk et al145 provides evidence that other proteins within 

the SSBR pathways may also be valid targets. A forward 

transfection screen of nearly 7,000 siRNAs was performed 

using A549 lung cancer cells stably depleted of the BER end-

processing enzyme PNKP. This screen identified PTEN as a 

potential synthetic lethal partner, a result then validated by: 1) 

repeat siRNA downregulation of PTEN in PNKP-null MCF7 
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(Michigan Cancer Foundation-7) breast cancer cells; and 2) 

PNKP inhibitor exposure in PTEN-null HCT116  (colorectal) 

and PC3 (prostate) cancer cells. Furthermore, PNKP inhibitor 

treatment in PTEN-deficient cells is associated with accumu-

lation of DSBs, increased apoptosis, and reduced clonogenic 

survival in a manner analogous to published reports of PARP 

inhibition in BRCA mutation. The authors hypothesize that 

PTEN loss is associated with strand-break accumulation 

that may require PNKP-mediated end processing for repair. 

Although a mechanism for strand breakage is not presented, 

sensitivity to PNKP inhibitor could not be abrogated by ecto-

pic RAD51 expression in PTEN-null PC3 cells, in keeping 

with previous reports that synthetic lethality in this cell line 

is not mediated via RAD51 loss.

Developing biomarkers for synthetic  
lethality response
BRCA mutation, although an excellent marker of HR 

deficiency, comprises a small subset of breast and ovarian 

patients. Identification of other synthetic lethality relation-

ships is ongoing, as described above. A number of individual 

DNA repair proteins may therefore be informative regarding 

HR deficiency and synthetic lethality response (reviewed in 

Martin et al).130 An alternative approach to identify patients 

who may benefit from PARP (or BER) inhibition is to use 

gene expression profiles that predict responsiveness. While 

data regarding PARP inhibitor response is currently limited, 

there is a large body of evidence related to anthracycline 

or platinum sensitivity. As both classes are associated with 

DSB induction (via intercalation/topoisomerase inhibition 

and crosslink formation, respectively), it may be predicted 

that response to such agents would also equate to PARP 

inhibitor response. By correlating DNA repair gene expres-

sion microarray data with anthracycline sensitivity in 

triple-negative breast cancer146 and platinum sensitivity in 

epithelial ovarian cancer,147 two groups have been able to 

develop “BRCAness gene signatures” which reproducibly 

predict treatment response. In the ovarian cancer study, this 

was further analyzed in BRCA2-mutated pancreatic cancer 

cell clones to predict for RAD51 foci formation as a marker 

of HR, and for sensitivity to PARP inhibition. Independently, 

RAD51 foci formation in tumor samples has been developed 

as a functional assay for HR status.148 Primary cultures of epi-

thelial ovarian cancer cells from ascitic fluid can be assessed 

for γH2AX and RAD51 foci, which correlate with in vitro 

response to the PARP inhibitor.

Assays have also been developed for monitoring effective 

PARP inhibition on treatment. In multiple clinical trials, PARP 

activity in peripheral mononuclear blood cells (measured as 

cellular levels of poly[ADP]-ribose polymers detected by 

immunofluorescence or enzyme-linked immunosorbent 

assay) has been used as a marker of effective inhibition.149,150 

Surrogate markers, such as comet assay assessment of DNA 

damage level, or DSB estimation by RAD51 or γH2AX foci 

after treatment, have also been used.151 However, it is impor-

tant to note that Phase II studies of olaparib have indicated 

that the maximum tolerated dose, determined by conventional 

dose escalation, may induce a better clinical response than 

the lowest effective PARP inhibitory dose.105,106

Conclusion
DNA repair mechanisms play an essential role in promoting 

genomic stability. Defective DNA repair may predispose to 

cancer. On the other hand, impaired DNA repair capacity 

in cancer cells may influence a favorable response to che-

motherapy and radiotherapy. Recent evidence demonstrates 

that overexpression of DNA repair factors has prognostic 

and predictive significance in cancer patients. More recently, 

DNA repair has emerged as a new area for anticancer drug 

discovery. Use of DNA repair inhibitors in combination 

with chemotherapy or radiotherapy can increase cancer 

cell killing, although combination strategies can lead to 

profound normal tissue toxicity. The strategy of synthetic 

lethality to exploit interrelationships between DNA repair 

pathways appears to bypass many problems associated 

with combination strategies. The recent success of PARP 

inhibitors in BRCA-deficient breast and ovarian cancer 

clearly suggests that additional factors within DNA repair 

are likely to be promising synthetic lethality targets in the 

future and have the potential to transform the therapeutic 

landscape in cancer.
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