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Abstract: Gold nanoparticles (Au NPs) are used in many fields, including biomedical appli-

cations; however, no conclusive information on their potential cytotoxicity and genotoxicity 

mechanisms is available. For this reason, experiments in human primary lymphocytes and 

murine macrophages (Raw264.7) were performed exposing cells to spherical citrate-capped 

Au NPs with two different nominal diameters (5 nm and 15 nm). The proliferative activity, 

mitotic, apoptotic, and necrotic markers, as well as chromosomal damage were assessed by 

the cytokinesis-block micronucleus cytome assay. Fluorescence in situ hybridization with 

human and murine pancentromeric probes was applied to distinguish between clastogenic and 

aneuploidogenic effects. Our results indicate that 5 nm and 15 nm Au NPs are able to inhibit 

cell proliferation by apoptosis and to induce chromosomal damage, in particular chromosome 

mis-segregation. DNA strand breaks were detected by comet assay, and the modified protocol 

using endonuclease-III and formamidopyrimidine-DNA glycosylase restriction enzymes showed 

that pyrimidines and purines were oxidatively damaged by Au NPs. Moreover, we show a size-

independent correlation between the cytotoxicity of Au NPs and their tested mass concentration 

or absolute number, and genotoxic effects which were more severe for Au NP 15 nm compared 

to Au NP 5 nm. Results indicate that apoptosis, aneuploidy, and DNA oxidation play a pivotal 

role in the cytotoxicity and genotoxicity exerted by Au NPs in our cell models.

Keywords: Au nanoparticles, cytotoxicity, aneuploidy, oxidative DNA damage, micronuclei, 

particle size

Introduction
Evidence has emerged for the important role of physicochemical properties in control-

ling the cellular uptake and toxicity of nanoparticles in a biological system. In vitro 

uptake of gold nanoparticles (Au NPs) depends on the particle physical dimensions, 

suggesting that size and shape can mediate particle–cell interactions, receptor recycling 

rates and exocytosis.1 Au NPs enter the cells via a clathrin-mediated endocytosis and 

are exocytosed by a size-dependent relationship.2 It is also known that 10–100 nm 

gold particles can enter or exit cells via wrapping, even in the absence of clathrin- or 

caveolin-coated vesicles.3 However, the toxicity of Au NPs, as well as of others such as 

silver NPs, might not correlate with the level of uptake but cell-type and the size can 

play a role.4,5 In fact, 20 nm citrated Au NPs resulted as more toxic than 14 nm ones in 

ovarian hamster’s cells but not in bronchial and kidney derived cell cultures.4  However, 

even if it is recognized that the cell type plays a role in the uptake of Au NPs, the size is 

not involved: differently sized Au NPs displayed a similar uptake in epithelial (A549 and 

NCIH441) and in endothelial (HDMEC and hCMEC) cells, but endothelial cells were 

shown to internalize a higher amount of Au NPs than epithelial ones.6,7 Despite these 
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indications, it remains unclear how the physicochemical 

properties of NPs change when the exposure occurs in a 

biological system. In fact, it is known that different serum 

proteins form protein coronas, which significantly modulate 

NPs behavior.8 The cellular environment contains a variety 

of proteins rapidly adsorbing onto the surface of NPs and 

forming a protein corona which defines the NPs biological 

identity, altering size, aggregation state, surface chemistry, 

uptake and ion release.9 The alteration of these physicochemi-

cal properties can result in increasing or protecting from 

NPs toxicity. Since Au NPs are used in medical applications, 

such as photothermal therapy,10 and are often administered 

intravenously, the adsorption of blood proteins onto their 

surface is one of the most relevant and studied parameters. 

Blood is a complex human-derived proteome and contains 

other tissue subsets of proteins,11 which potentially interact 

with NPs changing their physicochemical characteristics and 

their biological identity. For example, NPs size and surface 

chemistry can mediate plasma and serum protein adsorption 

to Au NPs and their biological responses and/or uptake by 

macrophages.12,13 From the different proteins accumulation 

patterns, observed as a result of differently sized and surface-

charged Au NPs administered intravenously to rats, Hirn et al 

concluded that the alterations of the Au NPs surface area, 

determined by the size of the particles, are the main mecha-

nism determining Au NPs accumulation in various organs and 

tissues.14 Size-dependent tissue distribution of Au NPs was 

observed upon intravenous administration in mice and size-

dependent alterations occurred in vivo in the hepatic tissue 

of exposed rats.15,16 In contrast, monodispersed Au NPs did 

not exert a higher acute effect compared to their agglomer-

ates, when using pulmonary inflammation as a marker for 

toxicity after intratracheal instillation in rats.17 Furthermore, 

the model organism Drosophila melanogaster showed DNA 

fragmentation and significant concentration-dependent and 

size-independent modulation of expression levels of the genes 

involved in stress stimuli (hsp70 and hsp83), DNA damage 

(p53) and apoptosis pathway (Dark, Dronc, and Dredd) upon 

ingestion of Au NPs.18

To study the toxic mechanisms of Au NPs, we assessed 

the cytotoxic and genotoxic responses induced by Au NPs 

in human peripheral blood lymphocytes (PBL) and murine 

macrophages Raw264.7, by differentiating clastogenic and 

aneuploidogenic effects, DNA strand breaks and oxidative 

DNA damage. Cell viability was determined by methylthi-

azol tetrazolium (MTT) assay, and the proliferative activity, 

 cytotoxicity, mitotic, apoptotic and necrotic markers, as 

well as the chromosomal damage induced by Au NPs, were 

assessed by the cytokinesis-block micronucleus cytome 

assay. To distinguish between clastogenic and aneuploido-

genic effects, we performed the fluorescence in situ hybrid-

ization (FISH) with human and murine pancentromeric 

probes. Single cell DNA strand breaks were detected by 

comet assay, and the oxidative DNA damage induced by Au 

NPs was investigated applying the modified comet protocol 

with endonuclease-III (EndoIII) and formamidopyrimidine-

DNA glycosylase (Fpg) enzymes. In addition, the data were 

further analyzed taking into account the mass concentrations 

and the theoretically calculated number of Au NPs used. 

To verify whether size is the factor that regulates the toxic 

responses of Au NPs, we also exposed Raw264.7 cells to Au 

NPs with different nominal diameters (5 nm and 15 nm) at 

increasing exposure times and increasing absolute numbers 

of Au NPs.

Material and methods
au NPs synthesis and characterization
Au NPs of two different sizes (5 nm and 15 nm) were 

prepared and characterized at the Joint Research Centre of 

the European Commission (Ispra, Italy) as a suspension of 

98.5 mg/L (total Au content) in citrate buffer, as previously 

reported.19,20 Particles were characterized by three different 

techniques, dynamic light scattering, centrifugal particle 

sedimentation (CPS), and scanning transmission electron 

microscopy (STEM), and the zeta potential was determined 

by Zetasizer ZS-Nano (Malvern Instruments, Worcestershire, 

UK). To assess if NPs aggregate, their size distribution in 

the as-synthesized state and following dispersion in com-

plete culture medium (9.85 µg/mL) was measured using the 

DC24000UHR centrifuge (CPS Instruments, Oosterhout, 

the Netherlands). The size and shape of the Au NPs was also 

evaluated using STEM images obtained using a FEI Nova 

nanolab microscope (FEI, Eindhoven, the  Netherlands). The 

inductively coupled plasma-mass spectrometry  technique 

(ICP-MS, 7700 series, Agilent Technologies Inc., Santa Clara, 

CA, USA) was used to assess the presence of  dissolved ions in 

the Au NPs suspensions after removal of all solid particulate 

material by ultrafiltration (10 kDa Amicon filters, 20 minutes, 

room temperature, 1,500× g).

cell culture
We drew 4–6 mL of blood from two healthy volunteers 

by venipuncture in Li-heparin vials, according to standard 

 procedure. The donors were chosen according to the follow-

ing criteria: young age, nonsmokers, without pharmacological 

treatments for at least 3 weeks before donation and without 
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any radiological examination performed within the previous 

3 months. The PBL were cultured as previously described.21

Raw264.7 cells were purchased from the Istituto 

Zooprofilattico of Brescia (Italy). The cells were cultured in 

MEM (minimal essential medium) (CELBIO, Milan, Italy) 

 supplemented with 10% fetal bovine serum (CELBIO), 1% 

penicillin/streptomycin (CELBIO), and 1% L-glutamine 

(CELBIO). The cell cultures were maintained in a humidified 

atmosphere (5% CO
2
) at 37°C.

au NP exposure
After 24 hours of seeding, the cell cultures were treated 

either with different mass concentrations (0.1, 1, 10, and 

100 µg/mL) or with increasing absolute numbers (1×109, 

1×1010, 1×1011) of 5 nm and 15 nm Au NPs. The tested 

samples were prepared by diluting suitable aliquots of Au 

NPs stock solutions in complete culture medium. The num-

ber of Au NPs within each mass concentration dose and the 

tested number of Au NPs were determined by the following 

formula:

 N
V

v

M m V

d

V M m

d
NP

NP

sample sample= =
⋅ ⋅ ⋅

⋅ ⋅
=

⋅
⋅

⋅
⋅6 6

3 3ρ π ρ π
 (1)

where, v
NP

 = volume of a nanoparticle = ⋅ ⋅ = ⋅ ⋅4 3 1 63 3/ /r dπ π  

(r = nanoparticle radius; d = nanoparticle diameter), 

V
NP

 = total volume of nanoparticles in the sample 
= = ⋅ ⋅( / ) ( ) /M M m VNP sampleρ ρ  and M

NP
 = mass of nano-

particles in the sample  volume = V
sample

 ⋅ M ⋅ m (ρ= specific 

mass or density expressed as g/cm3; m= molar mass expressed 

as g/mol; M= molarity; V
sample

 = sample volume). For Au NPs 

nanoparticles: m=197 g/mol and ρ=19.3 g/cm3.

cell viability
Cytotoxicity was assessed by MTT assay. Subconfluent 

Raw264.7 cells were grown in 96-well plates and exposed 

to Au NPs suspensions for 2 hours and 24 hours. PBL were 

treated at the same conditions of adherent Raw264.7 cells. 

PBL were collected in sterile tubes and resuspended in 0.5 mL 

complete MEM; erythrocyte lysis buffer (155 mM NH
4
Cl, 

10 mM KHCO
3
, 1 mM Na

2
EDTA, pH 7.4; 3.5 mL/tube) was 

added, and after 90 seconds cells were collected by centrifug-

ing (3,000 rpm, 5 minutes). PBL were washed in 3.5 mL of 

complete medium and then pelleted (3,000 rpm, 5 minutes). 

The pellet was resuspended in 3.5 mL complete MEM and 

100 µL of the cell suspension was pipetted in each well of 

a 96-well plate. Hydrogen peroxide (10 µM H
2
O

2
) was used 

as positive control.

After 2 hours and 24 hours of exposure of Raw264.7 and 

PBL to Au NPs, 10 µL of a 5 mg/mL MTT solution was added 

to each well (nine wells for each condition). After 3 hours at 

37°C, Raw264.7 medium was replaced by 100 µL of dimethyl 

sulfoxide (DMSO) and mixed thoroughly to dissolve the 

formazan crystals; to PBL in suspension, 100 µL of DMSO 

was added without discarding the medium. To limit potential 

interactions due to the presence of residual NPs that could 

interfere with the assay, blanks without cells were used to 

detect the absorption of Au NPs themselves. Absorbance was 

measured at 570 nm (630 nm background) and cell viability 

was determined as the percentage of the blanks subtracted to 

the corresponding percentage of the exposed cells.

cytokinesis-block micronucleus 
cytome assay
The cytokinesis-block micronucleus cytome (CBMN Cyt) 

assay after whole blood treatments was performed accord-

ing to the procedure described by Migliore et al,21 while the 

CBMN Cyt assay on Raw264.7 was performed according to 

Migliore et al.22 The exposure to Au NPs lasted for 48 hours. 

Mitomycin C (0.1 µg/mL; MMC, Kyowa Hakko Kogyo Co, 

Chiyoda, Tokyo, Japan) was used as positive control. As 

described by Fenech, 500 cells were scored to evaluate the 

percentage of mono-, bi- and multinucleated cells, and the 

cytokinesis block proliferation index (CBPI) was calculated 

as an index of cytotoxicity by comparing the distribution of 

mono-, bi-, and multinucleated cells in the treated and con-

trol cells.23 The CBPI indicates the average number of cell 

cycles per cell during the period of exposure to cytoB, and is 

used to calculate cell proliferation. The number of apoptotic, 

necrotic, and mitotic cells per 500 cells was also evaluated. 

The genotoxic potential of Au NPs was evaluated by scoring 

the binucleated/micronucleated cells frequency as number of 

1,000 binucleated cells containing one or more micronuclei 

(MN). Finally, on these 1,000 binucleated cells other para-

meters such as nucleoplasmic bridges (NPB), a biomarker 

of DNA misrepair and/or telomere end-fusions, and nuclear 

buds (NBUD), a biomarker of elimination of amplified DNA 

and/or DNA repair complexes, were also scored.

For PBL, data were reported as mean of four independent 

experiments (from two donors) ± standard error of the mean 

(SEM); for Raw264.7 cells, results were plotted as mean of 

three independent experiments (two replicates each) ± SEM.

FIsh
Cells to perform FISH were prepared and spotted onto 

CBMN Cyt slides as  previously described.24 Samples 
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exposed for 48 hours to 0.1 µg/mL, 1 µg/mL, and 10 µg/mL  

of Au NPs, and to positive (0.1 µg/mL MMC, clastogen) 

and negative controls, were classified as centromere posi-

tive or centromere negative based on the presence or on 

the absence of centromeres in MN. Data were reported as 

mean of four independent experiments (from two donors) 

± SEM; for Raw264.7 cells, results were plotted as mean 

of three independent experiments (two replicates each) 

± SEM.

comet assay and oxidative DNa damage
DNA damage was measured using the alkaline comet assay as 

described by Di Bucchianico et al.24 The percentage of total DNA 

fluorescence in tail in a total of 100 randomly selected cells per 

sample (two replicates, each with 50 cells/slide) was used as a 

measure of the amount of primary DNA damage. Ten micro-

molar H
2
O

2
 was used as positive control. Three independent 

experiments were performed for both 2- and 24-hour treatments. 

Analysis was carried out by using a Comet Image Analysis 

System, version 5.5 (Kinetic Imaging, Nottingham, UK).

To determine the presence of oxidized pyrimidine and 

purine bases, EndoIII and Fpg were used as previously 

described.24 Three independent experiments were performed 

for both 2- and 24-hour treatments. To determine the number 

of enzyme-sensitive sites, the difference between the value of 

the percent DNA fluorescence in tail obtained after digestion 

with each enzyme and with the buffer only was calculated.

Results
characterization of au NPs
The characterization of Au NPs was previously reported by 

Coradeghini et al and is summarized in Table 1.20 UV-vis 

spectrophotometry of Au NPs showed different  absorption 

peaks at 508 nm and 520 nm wavelengths, consistent with 

their different diameters. A good agreement was found 

between the results of electron microscopy and CPS 

 measurements. The CPS analysis was also used to measure 

the size distribution of 5 nm and 15 nm Au NPs in culture 

medium. Results showed that .70% of the 5 nm and 15 nm 

Au NPs are monodispersed, even after being resuspended 

in complete MEM for 72 hours at 37°C. The concentration 

of ions released from the Au NPs suspension, measured by 

ICP-MS up to 72 hours in complete medium, was for both 

sizes of Au NPs below the limit of detection of the instru-

ment (,1 ppb).

cell viability
Cell viability was evaluated in PBL and Raw264.7 by MTT 

assay, a standard in vitro test already optimized to study NP 

toxicity.25 In PBL, 100 µg/mL of 5 nm Au NPs showed more 

severe cytotoxicity after 2 hours of exposure (Figure 1), while 

15 nm Au NPs exerted no signs of cytotoxicity. The 24-hour 

treatments showed a significant decrease in cell viability for 

both NPs, and in the presence of 15 nm Au NPs the effect 

was dose dependent.

In Raw264.7 cells (Figure 1), the cell viability decreased 

in a dose-dependent manner after 2 hours of exposure to 

5 nm Au NPs, and the same was observed after 24 hours of 

exposure to both 5 nm and 15 nm Au NPs. Interestingly, at 

2 hours of exposure, the smallest NPs showed higher cyto-

toxicity in both macrophages and lymphocytes.

cytotoxicity and cytostasis
PBL proliferation, measured as CBPI, decreased in a dose-

dependent manner following exposure to Au NPs (Table 2); 

5 nm Au NPs showed a more effective antiproliferative 

activity than 15 nm Au NPs, which in contrast was the 

most effective at the highest tested dose (100 µg/mL). In 

PBL, significant antimitotic and apoptotic activities were 

observed after exposure to both Au NPs, but the most severe 

apoptotic effect was seen after exposure to 10 µg/mL and 

100 µg/mL 15 nm Au NPs. The necrotic index increased 

for both Au NPs in a dose-dependent manner; the expo-

sure to 5 nm Au NPs showed higher necrotic effect than 

Table 1 au NP characterization

Au NP  
nominal size

STEM DLS in native solution CPS in native solution CPS in MEM

Mean ± SD  
(nm)

Mean ± SD  
(nm)

PDI Z-pot  
(mV)

Mean  
(nm)

Half-width  
(nm)

PDI Mean  
(nm)

Half-width  
(nm)

PDI

5 nm 3.3±1.7 7.1±2.1 0.097 -26±11 6.6 2.2 1.37 3.4 1.5 5
15 nm 12.0±1.0 17.0±4.7 0.028 -30±12 12.9 1.7 1.04 7.4 1.3 2.3

Notes: Mean size distribution ± sD of 5 nm and 15 nm au NPs measured in native solution by sTeM, Dls, and cPs. PDI and Z-potential values are also included. Values 
are expressed as mean of three measurements for Dls and cPs, and for sTeM analysis of at least 300 NPs. The mean size distribution of 5 nm and 15 nm au NPs 
obtained by cPs was measured in MeM after 72 hours of incubation at 37°c. Z-potential measurements of the as-synthesized au NPs were performed at the physiological 
ph range of 6.5–7.5.
Abbreviations: au NP, gold nanoparticle; cPs, centrifugal particle sedimentation; Dls, dynamic light scattering; MeM, minimal essential medium; PDI, polydispersity index; 
sD, standard deviation; sTeM, scanning transmission electron microscopy; Z-pot, Z-potential.
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15 nm Au NPs, but 15 nm Au NPs was the most effective 

at 100 µg/mL.

In Raw264.7 cells, proliferation decreased after expo-

sure to both Au NPs, and the effect was dose dependent in 

the presence of 5 nm Au NPs. The clearest low-dose effect 

was seen following exposure to 5 nm Au NPs. Although 

no significant dose-response was observed, the highest 

dose (100 µg/mL) of 15 nm Au NPs resulted in illegible 

slides because of the lack of morphologically undamaged 

cells (Table 2). Concentration-dependent decrease in the 

mitotic index was noticed, and the inhibition of cell divi-

sion occurred more significantly in macrophages exposed 

to 15 nm Au NPs. The apoptotic index was significantly 

increased at the highest 5 nm and 15 nm Au NPs con-

centrations, and in a dose-dependent manner with 15 nm 

Au NPs. While 15 nm Au NPs induced a dose-dependent 

effect, 5 nm Au NPs increased the necrotic index at all 

tested concentrations.
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Figure 1 cell viability, evaluated by MTT assay, in PBl and raw264.7 after 2 hours and 24 hours of exposure to 5 nm and 15 nm au NPs.
Notes: PBl following 24 hours treatment with au NP 15 nm showed a dose-effect relationship (P=0.01). raw264.7 following 2 hours treatment with 5 nm au NPs showed 
a dose-effect relationship (P=0.04) as well as after 24 hours treatment to 5 nm and 15 nm au NPs (P=0.03 and P=0.016, respectively). Data show the percent of viable cells 
normalized to untreated control (±seM, n=9). Statistically significant differences from the C- were determined by student’s t-test (*P,0.05; **P,0.01; ***P,0.001).
Abbreviations: au NP, gold nanoparticle; c+, positive control (10 µM hydrogen peroxide); c-, negative (untreated) control; h, hours; MTT, methylthiazol tetrazolium; 
PBl, peripheral blood lymphocytes; seM, standard error of the mean.

Table 2 cytostasis and cytotoxicity evaluated by cBMN cyt assay

CBPI Mitotic index Apoptotic index Necrotic index

PBL Raw264.7 PBL Raw264.7 PBL Raw264.7 PBL Raw264.7

c- 1.88±0.02 1.85±0.04 6.5±0.1 5.6±0.2 0.7±0.1 1.7±0.2 0.2±0.2 0.9±0.3
c+ 1.17±0.13*** 1.41±0.06*** 0.3±0.2*** 2.3±0.6*** 4.7±0.3*** 4.6±0.5*** 2.5±0.4*** 4.0±0.4
au NP 5 nm
 0.1 µg/ml 1.55±0.02*** 1.62±0.06** 3.9±0.2*** 4.0±0.4*** 1.2±0.2* 2.0±0.5 1.6±0.3*** 3.4±0.4***
 1 µg/ml 1.54±0.05*** 1.62±0.05** 4.6±0.6** 3.9±0.4*** 1.9±0.5** 1.2±0.3 2.4±0.3*** 2.1±0.5**
 10 µg/ml 1.47±0.02*** 1.57±0.05** 4.4±0.3*** 3.6±0.3*** 1.6±0.2** 1.8±0.5 2.6±0.2*** 2.9±0.2***
 100 µg/ml 1.36±0.05*** 1.51±0.07*** 2.8±0.4*** 3.1±0.4*** 1.8±0.4** 2.6±0.2*** 3.0±0.6*** 4.3±0.6***
au NP 15 nm
 0.1 µg/ml 1.70±0.03* 1.68±0.04** 4.9±0.5** 3.7±0.3*** 1.5±0.1** 1.7±0.1 0.6±0.2* 1.4±0.2*
 1 µg/ml 1.57±0.02*** 1.61±0.01*** 4.0±0.6*** 2.8±0.2*** 1.9±0.2** 2.3±0.3* 0.9±0.1** 1.7±0.3**
 10 µg/ml 1.56±0.05*** 1.60±0.04*** 3.5±0.3*** 2.5±0.2*** 3.5±0.3*** 2.8±0.4** 1.6±0.2*** 2.5±0.3***
 100 µg/ml 1.34±0.04*** Toxic 1.1±0.6*** Toxic 9.1±0.2*** Toxic 3.7±0.6*** Toxic

Notes: cBPI and mitotic (cytostasis), apoptotic, and necrotic (cytotoxicity) indices scored by cBMN cyt assay. cBPI of PBl exposed to 5 nm and 15 nm au NPs decreased 
with a dose-dependent relationship (P=0.027 and P=0.02, respectively) as well as for raw264.7 exposed to 5 nm au NPs (P=0.04). Dose-dependent decrease in the mitotic 
index was observed in PBl exposed to 15 nm au NPs (P=0.029) and in raw264.7 exposed to 5 nm and 15 nm au NPs (P=0.033 and P=0.05, respectively). Both PBl and 
raw264.7 exposed to 15 nm au NPs showed dose-dependent apoptotic index increase (P=0.049 and P=0.05, respectively); the necrotic index induced a dose-dependent 
effect in PBl exposed to 5 nm and 15 nm au NPs (P=0.016 and P=0.03, respectively) and in raw264.7 exposed to 15 nm au NPs (P=0.017). 100 µg/ml 15 nm au NPs 
resulted in illegible slides. Statistically significant differences from the control were determined by the Student’s t-test (*P,0.05; **P,0.01; ***P,0.001). Data represent the 
mean ± seM. PBl: n=4; raw264.7: n=6.
Abbreviations: au NP, gold nanoparticle; c+, positive control (0.1 µg/ml MMc); c-, negative (untreated) control; cBMN cyt, cytokinesis-block micronucleus cytome; 
cBPI, cytokinesis block proliferation index; MMc, mitomycin c; PBl, peripheral blood lymphocytes; seM, standard error of the mean.
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chromosomal damage
The results of MN, NPB, and NBUD frequencies are sum-

marized in Table 3. The frequency of MN in PBL increased 

dose-dependently up to 3.8-fold and 6.9-fold after exposure 

to 5 nm and 15 nm Au NPs, respectively, while the number 

of MN increased up to 3.2-fold and 11.9-fold when Raw264.7 

were treated with 5 nm and 15 nm Au NPs; 15 nm Au NPs 

showed a dose-dependent relationship in Raw264.7. In both 

cell types, a more severe MN induction was observed after 

treatment with 15 nm Au NPs. Chromosome rearrange-

ments, detected as NPB formation, were more pronounced 

in PBL than in Raw264.7. Furthermore, in PBL following 

5 nm Au NPs exposure and for both sets of Au NPs delivered 

to Raw264.7, the ratio NPB/MN showed that the lowest 

dose (0.1 µg/mL) exhibited higher chromosome breakage 

than 100 µg/mL. The frequencies of NBUD, biomarker of 

amplified DNA elimination, increased more in lymphocytes 

than in macrophages exposed to 5 nm Au NPs, while after 

exposure to 15 nm Au NPs the macrophages were more 

sensitive than lymphocytes.

Taken together, these data indicate that 15 nm Au NPs 

induced more significant chromosomal damage than 5 nm 

Au NPs.

FIsh analysis
The exposure to Au NPs induced significant increase in 

 centromere-positive MN formation in both cell types, indi-

cating the induction of chromosome segregation anomalies 

rather than clastogenic effects (Figure 2). Both the Au NPs 

induced higher chromosome loss in PBL than in Raw264.7; 

however, in PBL the lowest dose of 5 nm Au NPs showed 

minor, but still signif icant, aneuploidogenic effects. 

Raw264.7 cells showed no significant aneuploidogenic 

events at the lowest 5 nm Au NPs dose, while 15 nm Au NPs 

induced linear dose-dependent effects.

DNa strand breaks
Figure 3 shows the data obtained evaluating the Au NPs-

induced DNA damage by the comet assay. Significant 

increase in DNA migration was detected after 2 hours and 

24 hours of exposure in both cell types, and the increase 

was dose dependent with the exception of PBL exposed for 

24 hours to 5 nm Au NPs.

PBL were more sensitive to 5 nm and 15 nm Au NPs 

than Raw264.7: at 100 µg/mL, in fact, a 3.6-fold and 

2.7-fold increase in DNA damage was observed following 

24 hours of exposure to 5 nm Au NPs in PBL and Raw264.7, 

respectively. Accordingly, when exposed to 15 nm Au NPs 

for 24 hours, PBL were more sensitive than Raw264.7, pre-

senting respectively up to 4.7-fold and 2.7-fold increases in 

DNA strand breaks. Interestingly, at 2 hours of exposure, 

PBL were more sensitive to 5 nm Au NPs than 15 nm Au 

NPs, while after 24 hours of exposure to the highest doses, 

the opposite was observed.

Oxidative DNa damage
By using the repair enzymes EndoIII and Fpg, the oxi-

dative DNA damage was investigated at 2 hours and 

Table 3 genotoxicity evaluated by cBMN cyt assay in PBl and raw264.7 cells exposed to increasing mass concentrations of au NPs

MN NPB NBUD

PBL Raw264.7 PBL Raw264.7 PBL Raw264.7

c- 3.25±0.75 2.3±0.5 0.5±0.5 1.2±0.4 0±0 0.5±0.5
c+ 43.3±7.2*** 32.4±5.6*** 14.4±0.8*** 13.4±1.0** 2.8±0.5*** 7.0±1.5***
au NP 5 nm
 0.1 µg/ml 5.0±1.4 5.1±1.1 2.2±0.5** 1.8±0.5 1.5±0.5** 1.3±0.6
 1 µg/ml 7.0±2.0 4.5±1.2 2.2±0.2** 1.4±0.8 4.3±0.3*** 1.0±0.8
 10 µg/ml 8.5±0.35* 5.4±1.4 2.0±0.4** 1.4±0.8 2.5±0.4*** 2.0±0.8
 100 µg/ml 12.5±0.35** 7.4±1.1** 3.2±0.6** 1.8±0.4 6.7±0.9*** 1.3±0.4
au NP 15 nm
 0.1 µg/ml 9.2±1.2* 17.5±1.5** 2.0±0.5** 4.2±1.2* 0.5±0.5 5.5±0.5***
 1 µg/ml 12.5±0.5** 25.0±2.0*** 2.8±0.7** 4.8±0.5* 2.5±0.5*** 7.0±1.0***
 10 µg/ml 14.3±1.2** 27.5±2.5*** 2.8±1.0** 4.8±0.8* 5.5±0.7*** 7.5±1.5***
 100 µg/ml 22.4±2.3*** Toxic 3.2±1.5** Toxic 12±1*** Toxic

Notes: MN, NPB, and NBUD frequencies scored by cBMN cyt assay after exposure of PBl and raw264.7 to increasing mass concentrations of au NPs (0.1–100 µg/ml). 
In PBl, 5 nm and 15 nm au NPs induced dose-dependent effect in MN (P=0.0014 and P=0.03, respectively), NPB (P=0.012 and P=0.033; respectively), and NBUD frequency 
(P=0.05 and P=0.02, respectively). MN frequency of raw264.7 exposed to 15 nm au NPs showed a dose-dependent relationship (P=0.05). Statistically significant differences 
from the control were determined by the student’s t-test (*P,0.05; **P,0.01; ***P,0.001). Data represent the mean ± seM (PBl: n=4; raw264.7: n=6).
Abbreviations: au NP, gold nanoparticle; c+, positive control (0.1 µg/ml mitomycin c); c-, negative (untreated) control; cBMN cyt, cytokinesis-block micronucleus 
cytome; MN, micronuclei; NBUD, nuclear buds; NPB, nucleoplasmic bridges; PBl, peripheral blood lymphocytes; seM, standard error of the mean.
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24 hours exposure, and oxidized pyrimidines were 

detected in both cell systems by the presence of EndoIII 

sensitive DNA sites (Figure 4). Compared to PBL, at  

2 hours of exposure Raw264.7 were particularly suscep-

tible, showing a dose-dependent pyrimidines oxidation 

in the presence of 15 nm Au NPs; interestingly, the 5 nm 

Au NPs treatments were the less damaging to Raw264.7 

and most harmful to PBL. After 24 hours of treatment, 

in both cell types the two Au NPs induced oxidized 

pyrimidines in a dose-dependent way; Raw264.7 were 

more sensitive than PBL (4.2-fold and 7.8-fold increases 

in Raw264.7 and 2.9-fold and 3.3-fold increases in PBL 

at the highest dose following 5 nm and 15 nm Au NPs, 

respectively).

Raw264.7 were more sensitive in detecting oxidized 

purines by Fpg restriction enzyme: 5 nm Au NPs at 2 hours of 

exposure induced a 4.8-fold increase in Raw264.7 and 3.9 in 

PBL. Similarly, after 24 hours of exposure, in Raw264.7 the 

purines oxidation increased 4.1-fold, while in PBL the increase 

was up to 1.5-fold. At 2 hours of exposure to 15 nm Au NPs, 

purines oxidation was up to eight times higher in Raw264.7 and 

up to four times higher in PBL compared to negative control, 

while at 24 hours of exposure the oxidative damage was up to 

seven times higher in Raw264.7 and 2.3 times in PBL.
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Figure 2 FIsh analysis in PBl and raw264.7 after exposure to 5 nm and 15 nm au NPs.
Notes: Using pancentromeric probes applied to the cBMN cyt slides, the centromeric spots were analyzed and the exposure of raw264.7 to 15 nm au NPs showed dose-
dependent (P=0.01) aneuploidogenic events. Data are shown as mean ± seM (PBl: n=4; raw264.7: n=6). student’s t-test: *P,0.05; **P,0.01; ***P,0.001.
Abbreviations: au NP, gold nanoparticle; c+, positive control (MMc 0.1 µg/ml); c-, negative (untreated) control; cBMN cyt, cytokinesis-block micronucleus cytome; 
FISH, fluorescence in situ hybridization; h, hours; MN C+, micronuclei centromere +ve; MN c-, micronuclei centromere -ve; PBl, peripheral blood lymphocytes; seM, 
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comparison between mass 
concentrations and numbers of au NPs
Data obtained by mass concentration exposure indicate that 

the particle size plays a role in determining cytotoxicity and 

genotoxicity. However, the same mass concentration of 

5 nm and 15 nm Au NPs corresponds to different absolute 

particle numbers. Consequently, if mass concentrations are 

expressed as theoretically calculated numbers of Au NPs, 

MTT assay excludes a size-dependent effect on the cell 

viability (Figure S1). Following this approach, by MTT the 

same theoretical number of Au NPs showed cytotoxic effects 

on PBL and Raw264.7 independently of the dimension. 

To further evaluate the importance of size in determining 

cytotoxicity, CBPI was analyzed taking into account the 

number of Au NPs theoretically calculated from the given 

mass concentrations and showed size-independent antipro-

liferative effects (Figure S2A and B). In contrast, in both cell 

types the more severe MN induction was observed after the 

treatments with 15 nm Au NPs either considering the given 

mass concentrations (Table 3) or the theoretically calculated 

particle numbers (Figure S2C and D).

To verify these indications, exposures to Raw264.7 cells 

were carried out by controlling the effective number of Au 

NPs, ranging from 1×109 to 1×1011, that corresponds to dif-

ferent mass concentrations (Au NP 5 nm: from 0.00126 to 

0.126 µg/mL; Au NP 15 nm: from 0.034 to 3.4 µg/mL). 

By MTT the size-independent effects exerted by absolute 

numbers of 5 nm and 15 nm Au NPs on the viability of 

Raw264.7 cells, both after 2 hours and 24 hours of exposure, 

were confirmed (Figure 5). CBMN Cyt showed that Au NPs 
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Figure 4 Oxidative DNA damage evaluated using the enzyme-modified comet assay in PBL and Raw264.7.
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decreased the proliferation of Raw264.7 cells without sta-

tistically significant size effect, while significant differences 

in genotoxicity and especially in MN induction were found 

(Table 4). In fact, MN frequencies after exposure to 15 nm 

Au NPs showed a dose-dependent relationship and differed 

significantly from 5 nm Au NPs. NPB and NBUD increased 

in a particle number-dependent way, but only the response 

obtained with the highest 15 nm Au NPs dose differed sig-

nificantly from the negative control, and the effects of 15 

nm Au NPs were more severe than the damage induced by 

5 nm Au NPs.

Discussion
Our results suggest that Au NPs of different size (5 nm and 

15 nm) can induce inhibition of cell proliferation mediated 

by apoptosis, as well as chromosomal damage, aneuploido-

genic events, DNA strand breaks, pyrimidines and purines 

oxidative lesions in human PBL and in a murine macrophage 

cell line. The chromosomal damage was more severe in 

Raw264.7 macrophages exposed to 15 nm Au NPs, and over-

all both Au NPs induced dose-dependent genotoxic effects. 

Aneuploidy was induced irrespective of the Au NPs size, 

and the lymphocytes showed a relatively higher percentage 

of chromosome mis-segregation than macrophages. PBL 

showed higher DNA strand breaks than Raw264.7, while 

the macrophages were more sensitive to pyrimidines and 

purines oxidation.  Moreover, our data allowed a correlation 

between the cytotoxic mechanisms assessed with the tested 

mass concentration and the absolute number of Au NPs, 

showing a size-independent relationship. The size of Au NPs, 

on the other hand, played an important role in determining 

genotoxic effects in PBL and Raw264.7 cells.

Recent reports on the reactivity of Au NPs focused 

on their effects on biocompatibility, uptake, toxicity, and 

mutagenic effects.26–30 However, in general, there is a lack of 

conclusive information on the size as the key factor for Au 

NPs cytotoxicity and genotoxicity, and on the relationship 

between size, mass concentration and the absolute particle 

number.

The cytotoxicity of Au NPs on A549 and NCIH441 cell 

lines was described, suggesting that the presence of sodium 

citrate can affect the cell viability and proliferation rather than 

the size of the particles, which appears to have no effect on 

active Au NPs endocytosis.6 Accordingly, it was shown that 

not the size of the Au NPs, but the amount of citrate on the 

Table 4 Proliferation and genotoxicity evaluated by cBMN 
cyt assay in raw264.7 cells exposed to an absolute number of 
au NPs

CBPI MN NPB NBUD

c- 1.810±0.017 2.3±0.3 1.0±0.4 0.8±0.4
c+ 1.295±0.046*** 28.7±2.4*** 5.8±0.8** 6.2±0.6***
au NP 5 nm
 1×109 1.681±0.005** 4.3±0.7 1.0±0.4 0.8±0.4
 1×1010 1.673±0.013** 3.7±0.3*,a 1.3±0.4 1.2±0.2
 1×1011 1.661±0.014** 4.7±0.3**,a 1.5±0.3a 1.0±0.4a

au NP 15 nm
 1×109 1.678±0.005** 6.3±0.6** 1.3±0.2 1.3±0.2
 1×1010 1.672±0.011** 6.0±0.5**,b 2.0±0.4 1.8±0.4
 1×1011 1.665±0.021** 9.3±1.2**,b 2.3±0.2*,b 2.3±0.2*,b

Notes: cBPI, MN, NPB, and NBUD frequencies scored by cBMN cyt assay after 
raw264.7 cells exposed to absolute au NPs numbers. MN frequency in raw264.7 
exposed to 15 nm au NPs showed a dose-dependent relationship (P=0.008), as well 
as the NPB after exposure to 5 nm and 15 nm au NPs (P=0.05 and P=0.02). Dose-
dependent NBUD formation was scored in the presence of 15 nm au NPs (P=0.008). 
Statistically significant differences from C- were determined by the student’s t-test 
(*P,0.05; **P,0.01; ***P,0.001), as well as the differences between respective 
tested conditions (aP,0.05 versus 15 nm au NPs; bP,0.05 versus 5 nm au NPs). 
Data represent the mean ± seM (n=6).
Abbreviations: au NP, gold nanoparticle; c+, positive control (0.1 µg/ml 
mitomycin c); c-, negative (untreated) control; cBMN cyt, cytokinesis-block 
micronucleus cytome; MN, micronuclei; NBUD, nuclear buds; NPB, nucleoplasmic 
bridges; PBl, peripheral blood lymphocytes; seM, standard error of the mean.
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particle surface impaired the viability of the endothelial cells 

HDMEC and hCMEC, which, in addition, exhibited different 

uptake behavior for citrate-stabilized gold nanoparticles.7 

In contrast, the uptake of Au NPs coated with nucleic acid 

and polyethyleneimine into mammalian cells demonstrated 

that changes in the nanoparticle size can lead to significant 

differences in the number of molecules delivered per cell.31 

Furthermore, the uptake efficiency and the intracellular 

localization of Au NP-peptide conjugates was shown being 

directly dependent on the peptide itself, and the intracellular 

destination was shown to be further determined by Au NP 

size.32 Au NPs size-dependent bioaccumulation and (eco) 

toxicity has been demonstrated by metallothionein induction, 

increased activities of catalase, superoxide dismutase and 

glutathione S-transferase by three sizes of citrated-coated 

Au NPs (5, 15, 40 nm) in Scrobicularia plana, indicating 

the activation of response to oxidative stress.19

Results obtained exposing Balb/3T3 cells to the same 

citrate-stabilized 5 nm and 15 nm Au NPs here inves-

tigated revealed cytotoxic effects, measured by colony 

forming efficiency, for 5 nm Au NPs but not for 15 nm Au 

NPs.20 Coradeghini et al showed also that the changes in 

cytoskeleton structure of Balb/3T3 cells resulted in pro-

nounced modification of the cell shape and reduction in the 

expression and degradation of the clathrin heavy chain, but 

without significant effects in the expression of caveolin.20 

Citrate-stabilized Au NPs (20 nm) influenced cell cycle 

pathways in human embryonic lung fibroblasts, reducing 

the expression of critical checkpoint proteins and causing 

oxidative stress and alteration of genes associated with 

genomic stability and DNA repair.33 Citrate-stabilized Au 

NPs downregulated, in a size-dependent manner, cellular 

responses induced by  interleukin 1-beta both in vitro in 

THP-1 human leukemia monocytic macrophages and in vivo 

in C57BL/6 male mice.34

Nevertheless, the size dependency of adverse effects in 

human blood is not linear.35 Studies with human blood cells 

showed that 30 nm Au NPs induced concentration-dependent 

effects on hemolysis, reactive oxygen species generation, and 

platelet aggregation.36 In addition, studies in mice showed 

that the bioaccumulation and toxicity of differently sized 

(5 nm, 10 nm, 30 nm, and 60 nm) PEG-coated Au NPs was 

not size dependent.37

In conclusion, both the literature and the results  presented 

in this study demonstrate no clear correlation between the 

cytotoxicity of differently sized Au NPs and the equiva-

lent spherical diameter. We found that at early time points 

(2 hours), the highest mass concentration of 5 nm Au 

NPs showed a more severe cytotoxicity both in PBL and 

Raw264.7 compared to the corresponding doses of 15 nm 

Au NPs. However, taking into account the theoretically cal-

culated numbers of Au NPs corresponding to the different 

tested mass concentrations, it was not possible to conclude 

that 5 nm Au NPs induced higher cytotoxicity than 15 nm 

Au NPs. These indications were further confirmed by experi-

ments carried out in Raw264.7 cells with a fixed absolute 

number of differently sized Au NPs.

In addition to size, other physicochemical properties 

of NPs, such as surface charge, are proposed to be critical 

determinants of their toxic potential.38,39 For instance, the 

evaluation of differently charged Au NPs (neutral, positively, 

and negatively charged) in a human keratinocyte cell line 

(HaCaT) showed that the cell morphology was disrupted in 

a dose-dependent way by all three NPs: the surface charge 

was the major determinant of the cellular processes, with 

the charged NPs inducing cell death through apoptosis and 

neutral Au NPs through necrosis.40 However, as highlighted 

in this paper, the cell type also plays an important role in 

activating apoptosis: PBL, in fact, showed higher apoptotic 

responses than Raw264.7 macrophages.

Interestingly, considering both the mass concentrations 

and the absolute number of Au NPs, from our study it is 

clear that the size of Au NPs plays an important role in 

determining genotoxic mechanisms, although in a nonlinear 

manner. Both cell systems were more sensitive to 15 nm Au 

NPs than to 5 nm Au NPs, as evaluated through the differ-

ent biomarkers of chromosomal damage (MN, NPB, and 

NBUD). The evaluation of the genotoxic effects in Raw264.7 

cells, based on the absolute numbers of Au NPs, confirmed 

nonlinear size-dependent chromosomal damage. However, 

this result cannot explain the time-dependent primary DNA 

damage, as the 5 nm Au NPs were the most harmful both in 

PBL and in Raw264.7 macrophages. In addition, the low-

est dose of 5 nm Au NPs showed in both cell types minor 

aneuploidogenic effects compared to 15 nm Au NPs, and the 

more clastogenic behavior at low doses was consistent with 

the described NPB/MN ratio, which provides an important 

fingerprint for distinguishing the genotoxic mechanisms of 

different clastogenic and aneuploidogenic agents.41

To date, few genotoxicity studies have been performed 

with Au NPs. Although minor focal inflammatory changes 

occurred after a single instillation of 2 nm, 20 nm, and 200 

nm Au NPs into the lung of male adult Wistar rats, geno-

toxicity was not observed as assessed by the erythrocyte 

micronucleus test and the comet assay.42 In addition, 2 nm, 

20 nm, and 200 nm Au NPs failed to induce MN formation in 
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human blood and did not damage DNA in the liver and lung 

of exposed adult male Wistar rats.43 The dosing, however, was 

limited by the stability of the gold suspensions, and Downs 

et al stated that the results would have looked different upon 

increasing the gold doses.43

Au NPs capped with sodium citrate or polyamidoamine 

dendrimers interacted with hepatocytes HepG2 and periph-

eral blood mononuclear cells, and exhibited in vitro cyto- and 

genotoxicity even at low concentrations.44 In zebrafish Danio 

rerio exposed to low doses of 12 nm and 50 nm Au NPs, 

size and exposure length modulated the genotoxicity and 

the expression of genes involved in DNA repair, apoptosis, 

and oxidative stress.45 Flow cytometry and real-time PCR 

analysis of apoptotic genes and ATP depletion measurements 

suggested that 17 nm Au NPs induced cell damage through 

extrinsic and intrinsic apoptotic pathways in human lung 

adenocarcinoma A549 cells.46

Au NPs (12 nm) were internalized by the endolysosomal 

pathway in Balb/3T3 fibroblasts after 10 days of exposure, 

and although they were not a severe cytotoxicant, Au NPs 

induced DNA damage.47 Moreover, the comet assay showed 

DNA damage in MRC-5 human lung fibroblasts treated with 

20 nm Au NPs, and FISH analysis revealed that the majority 

of the chromosomal breaks were undetectable telomeres.48 Li 

et al explained this genomic instability with the differences in 

the oxidative stress-related proteins as well as with proteins 

associated to the cell cycle regulation and cytoskeleton and 

DNA repair.33 Similarly, our studies directly demonstrated 

that apoptosis, DNA oxidation, and aneuploidy could explain 

the genotoxicity observed in PBL and Raw264.7 cells. 

In addition to the alterations of the mitotic spindle, to the 

weakness of mitotic checkpoints and to cytoskeletal defects, 

a growing body of evidence suggests that aneuploidy can 

be also induced by epigenetic mechanisms.49,50 Chromatin 

condensation and reorganization, as well as global gene 

expression alterations, were observed in fibroblasts exposed 

to Au NPs, providing further insights into the molecular 

mechanisms underlying toxicity of Au NPs and their impact 

on epigenetic processes.51–53

Conclusion
We can conclude that differently sized Au NPs induced 

cytotoxicity and genotoxicity through different mechanisms 

of action. While Au NPs size did not play a pivotal role in 

determining cytotoxicity, the size was a fundamental factor in 

inducing genotoxicity. In fact, the most severe  genotoxicity 

in PBL and Raw264.7 was observed following exposure to 

15 nm Au NPs. These observations were confirmed, also 

taking into account the particle numbers as dose-metric, 

and these results might represent groundwork for further 

studies aimed at investigating the mechanistic interactions 

between Au NPs and DNA. Nevertheless, cytotoxic and 

genotoxic mechanisms, as well as the exposure time, could 

be ascribed to the different cell type-related reactivity. Au 

NPs induced cytotoxicity through apoptotic pathways, and 

the premutagenic DNA oxidation appears to be an important 

factor in inducing genotoxicity. Finally, to our knowledge, 

this study reports for the first time increased aneuploidy 

after Au NPs exposure in vitro in a human and in a murine 

cell model.
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Figure S1 cell viability evaluated by MTT assay in function of the theoretically calculated number of 5 nm and 15 nm au NPs.
Notes: Mass concentrations (0.1–100 µg/ml) were expressed as theoretically calculated number of au NPs ranging from 2.93×1012 to 7.92×1016. In PBl (A and C) and 
raw264.7 (B and D), after 2 hours (A and B) and 24 hours (C and D) treatment, no statistically significant differences among the cytotoxicity of 5 nm and 15 nm au NPs 
were observed. Data show the percent of viable cells normalized to untreated control (± seM, n=9). statistical analysis was performed by student’s t-test.
Abbreviations: au NP, gold nanoparticles; MTT, methylthiazol tetrazolium; PBl, peripheral blood lymphocytes; seM, standard error of the mean.
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Figure S2 cBPI and MN frequency evaluated by cBMN cyt assay in function of the theoretically calculated number of 5 nm and 15 nm au NPs.
Notes: While cBPI shows no differences in antiproliferative activity of 5 nm and 15 au NPs in PBl (A) and raw264.7 (B), MN frequency was higher in PBl (C) and raw264.7 
(D) exposed to 15 nm au NPs than to 5 nm (P,0.05). Data are shown as mean ± seM (PBl: n=4; raw264.7: n=6). statistical analysis was performed by student’s t-test.
Abbreviations: au NP, gold nanoparticle; BN, binucleated cells; cBMN cyt, cytokinesis-block micronucleus cytome; cBPI, cytokinesis block proliferation index; MN, 
micronuclei; PBl, peripheral blood lymphocytes; seM, standard error of the mean.
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