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Abstract: The incidence of breast cancer continues to rise: 1.7 million women were diagnosed 

with and 521,000 women died from breast cancer in 2012. This review considers first current 

treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic 

therapies. Clinical management includes prevention, early detection by screening, treatment 

with curative intent, management of chronic disease, and palliative control of advanced breast 

cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, 

intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related 

receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers 

with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies 

such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan 

receptor and transcription factor. Its activity is regulated by coregulator proteins and posttrans-

lational modification. It is an energy sensor that controls adaptation to energy demand and may 

facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. 

Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor 

development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed 

to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions 

of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, 

their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand 

agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands 

of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, 

diabetes, osteoporosis, and oncology. The clinical settings in which these novel drugs might 

have utility in the management of advanced breast cancer, and biomarkers for stratification of 

patients likely to benefit, are discussed. Finally, the potential side effects of the novel drugs on 

metabolism, osteoporosis, osteo-metastasis, and cachexia are considered.

Keywords: estrogen receptor alpha, inverse or reverse agonist, coactivators, ligand-binding 

domain, TFF1, HER2, antiestrogen-resistance

Introduction to breast cancer
incidence, mortality, and survival
Breast cancer is the most common cancer in women and the greatest cause of death 

from cancer in females. In 2012, 1.7 million women were diagnosed with breast cancer 

worldwide; men have a 100-fold lower risk of developing breast cancer than women. 

Across the world, over 522,000 women died as a direct result of their breast cancer 

(GLOBOCAN 2012 IACR).1

Breast cancer is considered very much a cancer of the western developed world; 

countries of Western Europe and North America, as well as Australia and New Zealand, 
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report the highest rates of new diagnoses (Figure 1A). The 

incidence is sevenfold higher in richer than in more deprived 

nations. The prevailing view is that lifestyle drives this higher 

rate of diagnosis; second-generation migrants from low-

incidence countries develop breast cancer with the incidence 

of their host nation. Belgium has the ignominious claim to the 

highest incidence; it has an age-standardized rate of diagnosis 

of over 110 cases per 100,000 women per annum (Figure 1B). 

Of the other 12 top countries, nine are Western European, but 

the Bahamas, Barbados, and the United States of America 
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Figure 1 worldwide incidence of breast cancer. 
Notes: Age-standardized incidence rates of breast cancer per 100,000 women throughout the world are shown; these measures remove any bias for different life expectancies 
in countries. The incidence of new diagnoses per 100,000 women per year (A). The mortality rates of breast cancer per 100,000 women per year throughout the world 
(C). The estimated numbers of women alive 5 years after being diagnosed with breast cancer per 100,000 women (E). Countries for which figures are unavailable are left 
uncolored. The incidences of new diagnoses (D) and mortality (M) per 100,000 women in the 12 countries with the highest (B) and lowest (D) incidences of diagnoses. The 
prevalence of women who have survived breast cancer for 5 years is shown in the six countries with the highest and six countries with the lowest incidence of diagnoses 
(F). Countries are indicated by their official ISO 3166-1 alpha-2 codes. Figures for male breast cancer are not available, but are between 0.5% and 1.0% of those shown for 
female patients. Data from GLOBOCAN 2012 (iARC).1 
Abbreviations: BB, Barbados; Be, Belgium; BS, Bahamas; BT, Bhutan; De, Germany; DK, Denmark; Fi, Finland; FR, France; GA, Gabon; GB, United Kingdom; GM, Gambia; 
GT, Guatemala; ie, Republic of ireland; iS, iceland; iT, italy; LS, Lesotho; MN, Mongolia; Mw, Malawi; MZ, Mozambique; NL, Netherlands; NP, Nepal; PG, Guinea; Rw, 
Rwanda; SZ, Swaziland; US, United States of America.
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also make the rank. The 12 lowest-incidence countries are 

mainly in sub-Saharan Africa, South Asia, and the Far East, 

and are all characterized by poverty.

The distribution of countries with the highest age-

 standardized mortality per 100,000 women throughout the 

world is very different (Figure 1C). Belgium has the highest 

mortality followed by the Republic of Ireland of the 12 coun-

tries with the highest rate of diagnosis, but they are outranked 

by poorer countries: Fiji, the Bahamas, Nigeria, and Pakistan. 

Mortality is relatively low in most of the lowest-incidence 

countries, but the likelihood that an individual will die from 

their breast cancer is much higher in low-incidence countries 

than in high-incidence countries (Figure 1B and D). For 

instance, a woman diagnosed with breast cancer in Belgium, 

the UK, France, or Iceland has an 82%, 82%, 84%, or 85% 

chance, respectively, of surviving her cancer and of dying 

of other causes. A woman diagnosed with breast cancer in 

Nepal, Mozambique, Papua New Guinea, or Comoros has 

only a 47%, 45%, 45%, or 44% chance, respectively, of 

surviving her disease. The reasons for the differential sur-

vival are multiple and include cultural influences, stage of 

presentation, and standards of health care.

Preferred sites of metastasis
Patients are unlikely to die of primary early breast cancer; the 

breast is a nonessential organ. Patients die from metastases 

to essential organs. Metastasis by localized spread is to the 

overlying skin and underlying muscles and ribs. Distant 

metastasis via the lymphatic drainage, vascular system, or 

neural network allows for the formation of secondary tumors 

in preferred organs notably bone, lung, liver, and brain.2 It is 

these secondary tumors that cause most of the terrible suf-

fering and pain associated with advanced breast cancer. The 

success of antibody therapies in some patients has resulted 

in an increase in deaths from brain metastases because the 

drugs that target, successfully the cancer cells throughout the 

rest of the body are unable to cross the blood–brain barrier 

and the malignant cells within the brain are able to thrive.3 

Intrathecal administration of the antibodies provides an 

attractive solution.4

Risk factors
The strongest risk factor for breast cancer is inheritance of 

an inactivating mutation in one of the familial breast cancer 

genes: BRCA1, BRCA2, CHEK2, p53, and ATM, which 

together contribute to around 5% of breast cancer cases.5 

The next highest risk factor is age: three-quarters of breast 

cancer cases present in postmenopausal women, less than 

5% in women less than 40 years of age and breast cancer is 

rare in women less than 30 years of age.5 Nevertheless, large 

numbers of premenopausal women develop breast cancer 

and it is the highest cause of death in women between 34 

and 54 years of age. Exposure to estrogens explains the 

majority of the other known risk factors for breast cancer. 

Early menarche, late menopause, nulliparity, absence of 

lactation, hormone replacement therapy, oral contraception, 

and treatment with the synthetic estrogen diethylstilbestrol 

are all associated with an increased risk of breast cancer. 

High circulating insulin-like growth factor-1 (IGF-1) and low 

serum insulin-like growth factor binding protein 3, as well as 

alcohol intake, are thought to increase risk, while exercise is 

thought to reduce risk.6–8

Obesity, the scourge of our times, is associated with a 

1.6-fold increased risk of breast cancer in postmenopausal 

women.6 Given the high basal incidence of postmenopausal 

breast cancer and the ongoing surge in obesity, predictions are 

that rates will rise at an alarming rate in the coming decades. 

The reasons why people with more body fat are more likely 

to develop breast cancer are debated, but it is incontrovertible 

that adipose cells express aromatase, which converts andro-

gens into estrogens, and 17β-hydroxysteroid dehydrogenase, 

which converts estrone into the more active 17β-estradiol. As 

adipose tissue accumulates in the body, local and circulat-

ing concentrations of estrone and 17β-estradiol increase.6 

Exposure to high local and circulating concentrations of IGFs 

secreted by adipose tissue may contribute to the increased 

risk of breast cancer in obese individuals.6,9,10 In addition, 

high concentrations of circulating insulin in obese individu-

als who develop hyperinsulinemia and metabolic syndrome 

may contribute.6

Recent rise
A recent study reported a huge rise in presentation of young 

women with advanced, estrogen receptor-positive breast 

cancer.11 Rates of presentation had risen 2% per year for 

women less than 40 years of age and 3% per year for women 

less than 34 years of age. No explanation was proffered for 

the increases observed, but they are cause for alarm and may 

be related to changes in lifestyle factors such as obesity.

Brief overview of current treatment 
options and emerging therapies
Efforts to counteract or lessen the impact of breast cancer 

can be divided into five main phases: the “holy grail” of 

prevention, earlier detection, cure, management as a chronic 

disease, and palliation of symptoms (Figure 2).
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Figure 2 Treatment options for prevention, early detection, and clinical management of patients diagnosed with breast cancer.
Notes: Possible means by which breast cancer might be reduced in women at low and high risk of developing breast cancer (A) and possible approaches with which to detect 
the presence of asymptomatic breast cancer in low- and high-risk populations (B). Options for treatment of premenopausal and postmenopausal patients who present with 
early, localized breast cancer (C). Options for clinical management of women with chronic breast cancer (D) or with disseminated, advanced breast cancer (E). The dark 
pink dots provide a graphical representation of the presence, size, and extent of demonstrable disease. 
Abbreviations: CT, computed tomography; GP, general practitioner; MRi, magnetic resonance imaging.
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Prevention
Prevention of any cancer is the ultimate aim (Figure 2A). For 

individuals who have an inherited predisposition to develop 

breast cancer because they have inherited a mutated copy 

of one of the susceptibility genes, radical intervention is 

appropriate. Surgical removal of the susceptible breast tissue 

at an early age is one option. Alternatively, individuals may 

receive long-term systemic therapy with antiestrogens, an 

aromatase inhibitor, aspirin, bisphosphonates, or metformin, 

all of which have proven ability to reduce the development 

of breast cancer in these women.12,13

For others, education to alter lifestyle choices that pre-

dispose towards cancer is paramount. Reduction in obesity 

could have a huge impact on the number of people who will 

develop breast cancer. Reduction in, restricted duration of, 

or altered composition of medications such as oral contra-

ceptives and hormone replacement therapy to reduce the 

length of time that breast tissue is exposed to estrogens and 

the concentration of estrogens to which it is exposed has the 

potential to reduce the incidence of breast cancer. General 

physical and mental well-being, exercise, and reduced alcohol 

intake may reduce risk.7,8,14

early detection
If breast cancer cannot be prevented, the next most effective 

strategy is early detection; the rationale being that a cancer 

detected early is a curable cancer. Screening is most cost 

effective in individuals at high risk of developing cancer 

(Figure 2B). Women in the Western world who have inherited 

a mutated copy of one of the genes that predisposes to breast 

cancer are offered annual magnetic resonance imaging from 

an early age. Magnetic resonance imaging is more effective 

than mammography in younger breast tissue. Breast tissue 

in younger women tends to be denser than breast tissue 

in older women, because breast tissue in older women is 

more likely to contain a higher proportion of adipose tissue. 

Dense breast tissue is visible on a mammogram and difficult 

to distinguish from a breast cancer. Women in the Western 

world who have been exposed to high levels of therapeutic 

or industrial radiation are also screened from an early age. It 

is debatable whether clinically obese individuals should be 

screened earlier than the general population.

In the low-risk population, younger women tend to rely on 

self-awareness and self-examination, which are of question-

able benefit. Older women are often offered mammographic 

screening. Three-yearly screening is offered now as standard in 

the UK for women between 47 and 73 years; in New  Zealand 

for women between 45 and 69 years, and, in  Denmark for 

women between 50 and 69 years of age.  Detection of a 

potential abnormality is followed by triple assessment: further 

mammographic or ultrasound imaging; clinical examination; 

and cytological or histological examination of a fine-needle 

aspirate, core biopsy, or vacuum-assisted mammotome biopsy. 

The benefits of universal breast screening remain controver-

sial.15,16 Some argue that more women should be screened, 

while others contend that the lives saved are at an unaccept-

able human and financial cost. Current estimates suggest that 

a cancer will be detected in 6.81%, a life saved in 0.43%, and 

a cancer detected and treated that never would have caused 

any morbidity in 1.29% of women screened.16 Baum contends 

that the benefit of universal screening in terms of reduction in 

death from breast cancer is outweighed by cardiopulmonary 

and other adverse effects of treatment.17 Others argue that for 

fit, healthy, slim women, the risk of radiation outweighs the 

benefits of potential early detection.18

Treatment of early breast cancer
Breast cancers that are detected early may be treated with 

curative intent (Figure 2C). Research in the 1980s con-

firmed that wide local excision accompanied by appropriate 

lymph node clearance was as effective as a simple or radical 

 mastectomy.19,20 More recently, detection of and histological 

evaluation of the sentinel node has reduced the number of 

patients who undergo unnecessary lymph node clearance with 

associated resultant debilitating lymphedema and neuropathic 

pain. As a result, surgeons now cure breast cancer with much 

lower associated morbidity than previously.

In contrast to many other major solid tumors, such as lung, 

gastric, or pancreatic adenocarcinomas, patients with breast 

cancer often relapse with disseminated disease over 10 years 

after their initial diagnosis. For this reason, and because of 

its proven benefit, almost all women diagnosed with early 

breast cancer will be offered some form of adjuvant therapy, 

which is therapy given after surgical resection in the absence 

of demonstrable residual disease. Adjuvant therapy may be 

radiotherapy to the breast and axilla or systemic cytotoxic, 

endocrine, or anti-human epidermal growth factor receptor 2 

(HER2) therapy. Interestingly, obese patients or patients 

who gain weight during adjuvant therapy are less likely to 

benefit.21 A disadvantage of adjuvant treatment is that it is 

not known which patients will or will not benefit from their 

treatment because they do not have measurable disease. 

A consequence is that outwith clinical trials, patients who 

experience severe side effects from their drugs when they do 
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not feel ill from their potential occult disease are less likely 

to comply. It is estimated that over 40% of women prescribed 

adjuvant endocrine therapy outside of clinical trials do not 

comply.22,23 There is a clear need to develop strategies with 

which to identify women who do require and who will benefit 

from different adjuvant therapies.

Management of chronic breast cancer
The combination of early detection, improved clinical man-

agement, and general increased longevity has resulted in there 

being over 6,250,000 survivors of breast cancer worldwide 

whose breast cancer was diagnosed within the past 5 years 

(GLOBOCAN, 2012;1 Figure 1E). The worldwide distribu-

tions of age-standardized incidence of diagnoses and of 

prevalence of breast cancer survivors are similar, because 

countries with high rates of diagnosis tend to have better 

survival and countries with low rates of diagnosis tend to 

have worse survival (Figure 1B, D and F). Many of these 

breast cancer survivors will die from diseases other than their 

breast cancer and can be considered to have chronic breast 

cancer. Many will receive adjuvant radiotherapy or systemic 

cytotoxic, endocrine, or anti-HER2 adjuvant therapy (Figure 

2D). Other strategies include bisphosphonates, zoledronic 

acid, or alendronic acid, to strengthen the bones and reduce 

the formation of osteo-metastases. Some will receive adju-

vant endocrine therapy for 10 years.24 These patients require 

long-term surveillance, which may include computed tomog-

raphy scans. Some will relapse and will benefit from multiple 

successive interventions designed to keep their disease at 

bay. Patients who relapse during adjuvant therapy will have 

developed disease that is resistant to the drugs that they took 

during their adjuvant therapy. A goal for the pharmaceutical 

industry is to develop strategies and new drugs to reduce or 

delay the onset of resistance and for the medical oncologist 

to keep one step ahead of the evolving disease. Patients with 

significant comorbidities or advanced disease may be offered 

primary endocrine therapy. Some of these women will benefit 

from this systemic therapy for the remainder of their lives, 

but others will relapse with resistant disease and require 

alternative intervention or palliative care.

Treatment of advanced breast cancer
For patients who present with advanced disease or who relapse 

with advanced disease, therapy will be largely palliative 

 (Figure 2E). Patients present with advanced disease for dif-

ferent reasons: they may have particularly aggressive disease; 

there may be cultural taboos; or they may live in a country 

with inadequate health care or be too poor to seek help. 

 Neoadjuvant therapy may be necessary to downsize the 

 primary tumor prior to surgery. Palliative treatment will aim to 

reduce tumor burden and slow the progression of the  disease. 

Strategies can include surgery, radiotherapy, cytotoxic or 

anti-biological therapies, and pain management.

Current systemic therapies
Systemic therapy has important roles in breast cancer man-

agement to treat advanced disease, to treat frail patients, as 

adjuvant therapy for early operable disease, and as neoadju-

vant therapy to downsize inoperable tumors or to downsize 

operable tumors and enable breast conservation. Therapy 

decisions are based upon the age of and menopausal status 

of the patient; existence of comorbidities; clinical stage; 

prognostic indicators such as tumor size, histological grade, 

and axillary lymph node involvement; and the expression 

of the estrogen and progesterone receptors and HER2 in the 

primary tumor cells.

All four of the major classes of cytotoxic drug have a 

role. Therapy will usually include a topoisomerase inhibitor, 

doxorubicin or epirubicin, combined with the antimetabolite 

5-fluorouracil and the alkylating agent cyclophosphamide. 

A taxane to disrupt microtubule formation, docetaxel, may 

be given in combination or sequentially to the former drugs 

and has utility in treatment of anthracycline-resistant disease. 

Capecitabine, an alternative antimetabolite, is often given as 

second-line therapy and the alternative antimicrotubule agent 

vinorelbine as third-line therapy. Platinum complexes such 

as carboplatin or cisplatin may be active.

Patients whose tumor cells express estrogen or progesterone 

receptor are eligible for endocrine therapy. Endocrine therapy 

prevents ovarian synthesis of estrogens either with the luteinis-

ing hormone-releasing hormone (LHRH) analog goserelin in 

premenopausal women or by oophorectomy in pre- or peri-

menopausal women. Conversion of androgens into estrogens 

may be inhibited with aromatase inhibitors such as letrozole, 

anastrozole, or exemestane in postmenopausal women. Alter-

natively, the interaction between estrogens and their nuclear 

receptor may be inhibited with antiestrogens such as tamoxifen, 

raloxifene, or fulvestrant in all breast cancer patients.

Tumor cell expression of membrane-bound HER2 or 

amplification of the HER2 gene constitutes eligibility for 

anti-HER2 therapies. The antibodies trastuzumab and pertu-

zumab inhibit dimerization of HER2 with other members of 

its receptor family. Small molecule inhibitors of the activation 

by phosphorylation of HER2, such as lapatinib, may be used 

in combination with trastuzumab or in patients who develop 

trastuzumab-resistant disease. Recently, ado-trastuzumab 

emtansine (T-DM1), a drug in which trastuzumab is con-

jugated to the cytotoxin mertansine, has been approved for 
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treatment of advanced breast cancer patients whose disease 

has progressed after treatment with trastuzumab.25,26

emerging systemic therapies
Enormous effort has been expended to develop drugs against 

novel targets and many have been evaluated in clinical trials, 

either as single agents or in combination with established 

regimens. Among the most popular are agents that potentiate 

the DNA damage induced by cytotoxic drugs or mutations 

in genes that encode enzymes in the DNA damage response 

of malignant cells.27 Cytotoxic drugs cause substitution with 

nucleotide analogs, which is reversed by base excision repair; 

formation of DNA adducts, that are removed by nucleotide 

excision repair; DNA double-strand breaks that are repaired 

by nonhomologous end-joining; stalled replication forks due 

to single-strand breaks which are restored by homologous 

recombination; or interstrand crosslinks that are excised by 

interstrand crosslink repair. The rationale behind the devel-

opment of drugs that inhibit DNA repair is that DNA repair 

antagonizes cytotoxic drugs and that inhibition of DNA 

repair enzymes will potentiate the drugs. Agents that inhibit 

DNA-dependent protein kinase are designed to potentiate 

drugs that induce DNA double-strand breaks and interstrand 

crosslinks. Inhibitors of poly(adenosine diphosphate-ribose) 

polymerase prevent single-strand repair and therefore induce 

double-strand breaks and subsequent cell death in cells in 

which enzymes such as BRCA1, BRCA2, or ATM (ataxia 

telangiectasia mutated) are defective.27

Other agents are designed to prevent the dependence of 

malignant cells on diverse growth factors and their  receptors. 

At the forefront are agents that target members of the human 

epidermal growth factor receptor family (HER): epidermal 

growth factor receptor (EGFR), HER2, HER3 and HER4.28–30 

The dependence of many tumor cells on the IGFs31–34 led 

to the development of drugs that sequester the ligands or 

inhibit their receptors.6,35 The fibroblast growth factor recep-

tor has received attention. The potency of the agents is low, 

but promising results have been obtained in patients with 

amplified FGFR1 analogous to the treatment of patients with 

amplified HER2.36 Inhibitors of the scatter factor receptor 

MET are being considered.

Substantial effort has focused on two main intracellular 

signal-transduction pathways: PI3K–Akt–mTor37 and Ras–

Raf–MAPK.38 Many specific or pan-PI3K inhibitors have 

entered clinical trials, as have inhibitors of Akt, mTor1, and 

mTor2.39 Mutations of Ras and Raf are relatively infrequent 

in breast cancer and their inhibitors have received less atten-

tion than in other cancers, but MEK inhibitors have shown 

some success.40 Given the ubiquitous importance of these 

signal-transduction molecules in the response of all cells to 

many different extracellular signals, it is questionable whether 

these agents will have sufficient specificity.  Alternatively, the 

possibility that some breast cancers are dependent on other 

steroid hormones has led investigators to test antiandrogens 

such as bicalutamide and enzalutamide.41

Drugs have been developed to target cyclins and cyclin-

dependent kinases but tend to lack tumor cell specificity.42  

Recent interest has investigated specific characteristics of 

cancer stem cells,43 the rationale being that elimination of 

such cells is central to the destruction of the tumor because 

they control cell renewal and resistance to therapy. Interest 

prevails in strategies that encompass the interactions between 

the malignant cells and their microenvironment. For instance, 

drugs that target chemokines such as CXCL12 and its recep-

tor CXCR4 have been investigated.44 There is considerable 

interest in the potential to target the interactions between 

cells via, for instance, β-catenin, or with the extracellular 

matrix via integrins, or the consequence of integrin signal 

transduction.45 Another strategy is to potentiate and extend 

tumor hypoxia.46

Introduction to the estrogen-
related receptor alpha
estrogens
Steroid hormones are small hydrophobic molecules that 

are transported in the blood bound to sex hormone binding 

globulin and are able to diffuse in and out of cells. Estrogen 

target tissues include breast, endometrium, bone, brain, 

liver, and heart. Derived from cholesterol, estrogens share a 

common four-ring structure and have important roles in sex 

determination, fertility, pregnancy, immune response, bone 

formation, and in the cardiovascular system. Cholesterol is 

converted into progestins, then into androgens and, finally, 

estrogens in a series of enzymatic reactions.6 Synthesized 

predominantly in the ovaries in premenopausal women, the 

principal site of estrogen synthesis in older women and in 

men is in peripheral tissues, notably adipose tissue.6

There are three estrogens, which are named for the num-

ber of hydroxyl groups: estrone, estradiol, and estriol. Estrone 

and estradiol are produced by aromatization of androstene-

dione and testosterone, respectively. Estriol is synthesized in 

the liver and placenta. Estriol is considered the major estrogen 

in pregnant women, estradiol in premenopausal women, 

and estrone in postmenopausal women. Concentrations of 

estrone and estradiol increase with obesity in postmenopausal 

women and in men.6,9 The surge in estrogen concentrations at 

puberty contributes to the development of secondary sexual 

characteristics including the female breast. Cyclical changes 
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in concentration during the menstrual cycle cause cyclical 

changes in breast size and tenderness. Reduction in estrogen 

concentrations on cessation of lactation or menopause lead 

to breast involution.

The role of the estrogen receptor
The existence of a high-affinity receptor for estrogen was 

recognized initially by Jensen.47 Each steroid hormone fam-

ily has its own protein receptor. These receptors are found in 

the steroid target cells and are ligand-dependent transcription 

factors, inactive until bound by their ligand (Figure 3A). The 

activated transcription factors coordinate formation of com-

plexes of coactivator or corepressor proteins on the chromatin 

of their target genes. The composition of the transcription 

complexes, which depends on the receptor, the availability 

of coactivator and corepressor proteins, and on the DNA that 

surrounds the interaction site in the responsive gene, deter-

mines whether transcription is activated or repressed. 

The estrogen receptor is a 66 kDa protein of 595 amino 

acid residues sequestered in estrogen target cells in its inac-

tive form in a complex with proteins including heat shock 

proteins 70 and 90, cyclophilin 40, FKBP51, and FKBP52 

(Figure 3A). Estrogens diffuse into the target cells and bind 

with high affinity to their receptor, which dissociates from 

its sequestered complex. Estradiol has the highest affin-

ity for the estrogen receptor, followed by estriol and then 

estrone.48 Interaction with the ligand leads to dimerization 

of the receptor and stabilizes a conformation that creates a 

surface on the receptor with which transcriptional coregula-

tors interact. The dimeric receptor binds to estrogen response 

elements (EREs) in the promoters of estrogen-responsive 

genes.49,50 Coactivators, for instance, members of the p160 

steroid receptor coactivator (SRC) family (SRC-1, SRC-2, 

and SRC-3), bind through one of three LXXLL motifs that 

form amphipathic alpha-helices.51,52 The p160 SRC proteins 

interact, in turn, with the histone acetyltransferases, cyclic 

adenosine monophosphate (cAMP) response element-

binding protein (CREB)-binding protein (CBP), and p300, 

which acetylate, and with coactivator-associated arginine 

methyltransferase 1 (CARM1) and protein arginine N-meth-

yltransferase 1 (PRMT1), which methylate, histones within 

the nucleosomes. An RNA helicase A (RHA), and an ATP-

dependent chromatin remodeling complex, SWItch/Sucrose 

NonFermentable (SW1/SNF), are recruited. The resultant 

coactivator complex modifies the nucleosomes and alters 

the surrounding chromatin to allow access to the activating 

transcription factor proteins, TATA-binding protein, and RNA 

polymerase II machinery, and transcription ensues. Posttrans-

lational modifications may affect the  activity of the estrogen 

receptor.52,53  Alternatively, corepressors, such as ligand-

dependent corepressor (LCoR) and receptor-interacting 

protein 140 (RIP140), are recruited and attract deacetylases 

and demethylases to inhibit transcription.

Domain organization of estrogen 
receptors
Nuclear steroid receptors comprise five separate domains 

(Figure 4A). From the amino-terminus, the hormone-

 independent transcription activation domain comprises 

also a nuclear localization signal. It is followed by the 

DNA-binding domain, which contains a second nuclear 

localization signal. The DNA-binding domain is separated 

by a short hinge region from the ligand-binding domain, 

which is the largest domain and contains a dimerization 

domain and a transcription repression domain. The second 

transcription activator domain, which is ligand dependent, 

is at the carboxy- terminus. There are two estrogen receptors. 

The first, cloned in 1985 from estrogen-responsive breast 

cancer cells,54,55 is expressed in classic estrogen target cells 

and tissues and is responsible for the standard estrogen 

responses listed above. It is this receptor that is measured 

as an important prognostic and predictive biomarker in 

hormone-dependent breast cancer. The second, which is a  

59.2 kDa receptor of 530 amino acids, identified in 1996,56 

was called estrogen receptor beta; the former was renamed 

estrogen receptor alpha at this time to distinguish between the 

two. Estrogen receptor beta is reported to be expressed more 

widely than oestrogen receptor alpha and its function is less 

well understood. Conservation between the two paralogs is 

variable: low in the domains that interact with transcription 

activators and in the hinge region, at 25-30%; intermediate 

in the ligand-binding domain, at 60%; and highest, at 90%, 

in the DNA-binding domain (Figure 4C).

estrogen-related receptor alpha
In 1988, 8 years before discovery of estrogen receptor beta, 

two other members of the estrogen receptor family were 

discovered by Giguère et al:57 a 45.5 kDa, 423 amino acid 

residue protein named estrogen-related receptor alpha; and a 

56.2 kDa, 508 amino acid residue protein named estrogen-re-

lated receptor beta. Later, the estrogen-related receptor gamma 

of 51.3 kDa, 458 amino acid residue protein was identified.58 

Evolutionarily, estrogen-related receptor beta and gamma are 

closer to each other than to estrogen-related receptor alpha 

(Figure 4B). Comparison of the primary sequences in the dif-

ferent receptor domains shows relatively strong conservation 

of around 65% in the DNA-binding domains and less, around 

35%, in the ligand-binding domains.  Conservation is lower 
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Figure 3 Mechanisms of activation of estrogen receptor alpha and estrogen-related receptor alpha.  
Notes: (A) estrogen-responsive cells harbor the estrogen receptor alpha (pale pink), which is a ligand-dependent transcription factor inactive in the absence of ligands. 
estrogens: estrone (e1), estradiol (e2), and estriol (e3) are synthesized in the ovaries, in peripheral tissue, or in the placenta and transported in the blood bound to sex hormone-
binding globulin (pale blue-gray). Estrogens diffuse through the cellular plasma and nuclear membranes and bind with high affinity to the estrogen receptor. This interaction 
leads to dissociation of chaperone proteins (pale green), including heat shock protein 90 (90), heat shock protein 70 (70), and cyclophilin 40 (40), from the receptor, which 
undergoes conformational structural changes and dimerization. The dimerized estrogen receptor ligand complex interacts with specific estrogen response elements (EREs) 
in the DNA of its responsive genes such as TFF1. interaction with coregulator proteins (pale blue) via the coactivator recruitment surface brings these coregulators into 
the vicinity of the promoters of the responsive genes. Coactivator proteins interact in turn with proteins, such as histone acetyltransferases or methyltransferases (cyan-
blue), that acetylate or methylate the histones to induce local chromatin decondensation and increased accessibility to the promoter elements for the RNA polymerase ii 
initiation complex (yellow); transcription of the responsive genes ensues. TFF1 mRNA is translated and the protein secreted from the target cells to exert its effects, which 
are thought to include cell migration on its target cells.66 Alternatively, the receptor interacts with corepressors, and the transcription of other responsive genes is ablated. 
The estrogen response may be inhibited by prevention of estrogen synthesis with aromatase inhibitors or by competitive inhibition of the interaction of the ligand with 
the receptor in target cells. (B) The estrogen-related receptor alpha (pink) is present in responsive cells. Being an orphan receptor, its activity is not thought to require 
the presence of a ligand. instead, the activity is thought to depend upon the availability of coactivator proteins such as peroxisome proliferator-activated receptor-gamma 
coactivator (PGC)-1α or PGC-1β (pale blue) or corepressor proteins. induction of the expression of these proteins in response to metabolic stress or starvation allows the 
estrogen-related receptor alpha to function as a transcription factor and induce or repress the expression of its responsive genes. The dimerized estrogen-related receptor 
alpha complex interacts with specific response elements (ERREs) in the DNA of its responsive genes such as TFF1. The activity of estrogen-related receptor alpha is affected 
also by phosphorylation (gold) in response to stimuli through the insulin-like growth factor or epidermal growth factor cell surface receptors (pink and green, respectively). 
The activity of estrogen-related receptor alpha may be inhibited by cessation of synthesis of the receptor or of its activator proteins. inhibitors of epidermal growth factor or 
insulin-like growth factor signal transduction may also have utility in responsive cells. Alternatively, inverse agonists prevent its interaction with the coregulators. The activity 
of estrogen-related receptor alpha may be enhanced by ligands that increase its affinity for the coactivators, possibly by stabilizing the receptor in its active conformation.
Abbreviations: Ac, acetylation; Me, methylation; eRα, estrogen receptor alpha; eRRα, estrogen-related receptor alpha; mRNA, messenger RNA; Pol, RNA polymerase ii.
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outwith these domains, and the estrogen-related receptors 

alpha and gamma lack an F domain (Figure 4C).

The estrogen-related receptor alpha interacts with coregu-

lator proteins and binds to specific DNA sequences of its target 

gene promoters, primarily as a homodimer (Figure 3B). The 
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Figure 4 Generic nuclear receptor structure, and estrogen receptor family phylogeny and shared homologies. 
Notes: Steroid hormone receptors share a conserved five-domain structure (A): domain A/B, which is involved in transcription activation and nuclear localization; domain 
C, which is the DBD; domain D, which serves as a hinge between the DBD and LBD; domain e, which is the LBD, responsible also for dimerization, transcription activation, 
and transcription repression; and domain F, which contains part of the second transcription activation domain. Phylogenetic analysis indicates that the genes that encode the 
five estrogen receptor proteins have evolved from a common precursor gene (B). The estrogen-related receptor alpha is the most distant. The percentage conservation 
between the estrogen receptor alpha (yellow text) and the other four proteins, and between the estrogen-related receptor alpha (white text) and the other four proteins, 
is shown for each of the five domains (C).
Abbreviations: NLS, nuclear localization signal; AF1, hormone-independent transcription activation domain; DBD, DNA-binding domain; HR, hinge region; LBD, ligand-
binding domain; DD, dimerization domain; AR, transcription repression domain; AF2, hormone-dependent transcription activation domain.

peroxisome proliferator-activated receptor (PPAR) gamma 

coactivator (PGC)-1 family (PGC-1α, PGC-1β, and PPRC-1) 

and the p160 SRC proteins interact with this estrogen-related 

receptor alpha coactivator surface via LXXLL motifs.51 The 

most notable difference between estrogen-related  receptors 
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and estrogen receptors is that the former function as 
 aporeceptors when they are not bound to ligand.

estrogen receptor family  
DNA-binding domains
Arguably the domain most central to the specific functions of 

the estrogen receptor family is the conserved DNA-binding 

domain that recognizes sequences in the responsive genes 

and dictates with which genes the receptor will interact. This 

relatively short sequence of 70 amino acid residues contains 

two zinc-binding elements. In each, a zinc ion is ligated tet-

rahedrally by four cysteine residues (Figure 5). This class II 

zinc-binding motif comprises, from the amino-terminus, 

a zinc finger, an alpha helix, the second zinc finger, and the 

second alpha helix. The first alpha helix is the recognition 

helix that fits into the major groove of the double-stranded 

DNA. The structure of the estrogen receptor alpha DNA-

binding domain in complex with DNA illustrates that the 

receptor dimer locates primarily on one face of the DNA 

helix (Figure 5C).59 The side chains of the residues make 

specific contacts with four DNA bases. The three residues 

responsible for the DNA interface are referred to sometimes 

as the proximal box. One of these residues, alanine in the 

estrogen-related receptors, is a glycine in the two estrogen 

receptors. The second region of intermolecular interaction is 

responsible for the dimerization interface and is referred to 

sometimes as the distal box. This region contains uniquely 

in estrogen-related receptor alpha a single conservative 

 substitution of a serine in place of a threonine.

Members of the estrogen receptor family bind to specific 

conserved DNA recognition sequences in the DNA of their 

responsive genes (Figure 6). Often, but not always, located 

proximal to the promoters, they may be up to 100 kb from 

the promoter of the responsive gene. The canonical estro-

gen response element or ERE 5′-AGGTCA-3′ is followed 

by three bases of indeterminate sequence and then by the 

inverse sequence 5′-TGACCT-3′.60–64 The palindromic nature 

of the perfect ERE is predictable given the perfect dimeric 

structure formed by interaction of the two receptor DNA-

binding domains (Figure 5C). Reduction in the length of the 

palindromic sequence by a base on either side reduces the 

affinity of the interaction with the receptor dimer. The third 

base pair of the ERE half-site, G–C, provides binding energy, 

and the fourth base pair, T–A, makes a positive contact with 

the receptor. Most EREs identified differ from the canonical 

sequence by at least one base pair.63

The estrogen-related receptor alpha affects the transcrip-

tion of known estrogen-responsive genes, such as those that 

encode lactoferrin, osteopontin, thyroid receptor alpha, 

aromatase (CYP19), and TFF165,66 via interaction with the 

EREs in these genes.67–71 Detailed analysis suggests that 

estrogen-related receptor alpha binds particularly well if the 

sequence is preceded by 5′-TAA-3′ or 5′-TCA-3′, and it is 

suggested that the estrogen-related receptor alpha response 

element (ERRE) is 5′-TA/CA AGGTCA-3′. The presence 

of a combined ERRE and ERE will ensure regulation of a 

gene by both receptors. It is noteworthy that the TFF1 pro-

moter contains an imperfect ERRE and an imperfect ERE 

(Figure 6).

estrogen receptor family  
ligand-binding domains
The ligand-binding domains of the estrogen receptor fam-

ily are composed almost entirely of 12 helices, of which 

eleven are arranged in three antiparallel layers.72 Helices 5, 

6, 9, and 10 comprise the central core layer,which is sand-

wiched between helices 1–4 on one face and helices 7, 8, 

and 11 on the other (Figure 7A). In the estrogen receptors, 

this wedge-shaped molecular scaffold creates a sizeable 

hydrophobic cavity at its narrower end into which estrogens 

slip and interact with high affinity. The remaining secondary 

structural elements, a small two-stranded antiparallel β-sheet 

and helix 12, flank the main three-layered motif on either 

side of the hydrophobic pocket (Figure 7A). After interac-

tion with estrogens, helix 12 is positioned as a lid over the 

ligand-binding pocket to secure the ligand in position and 

posit the hydrophobic side chains of helix 12 toward the 

steroid (Figure 7B).72 This conformation creates a surface on 

the receptor that includes the charged residues, Lys362 at the 

end of helix 3 and Asp538, Glu542, and Asp545 from helix 

12, that were identified by mutation analysis to be important 

for transcription activation (Figure 7A).73  Subsequent analysis 

of the structure of the ligand-binding domain of estrogen 

 receptor alpha bound to the synthetic estrogen diethylstil-

bestrol and a coactivator peptide with an LXXLL motif 

identified more fully the coactivator recruitment surface.74 

The interaction surface comprises a hydrophobic cleft formed 

with residues from helices 3, 4, 5, and 12 and the turn between 

helices 3 and 4 (Figure 7C). Interaction of the amphipathic 

alpha-helical coactivator peptide buries approximately 

1,000 Å2 of the hydrophobic interaction  surface. The majority 

of the residues involved in the interaction are hydrophobic. 

In addition, the main chain conformation of the coactivator 

peptide is stabilized by charged capping interactions at either 

end of the peptide helix with Lys362 from helix 3 and Glu542 

from helix 12 of the receptor (Figure 7C).
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Figure 5 DNA-binding domains of the estrogen receptors.
Notes: The primary sequences of the DNA-binding domains of the five estrogen receptors are aligned (A). vertical lines indicate amino acid residues that are identical 
in estrogen receptor alpha and beta, or in the three estrogen-related receptors, and dots indicate conserved substitution of residues. Residues that are identical in all five 
proteins are indicated by a small circle, and those that are substituted conservatively by a dot underneath the sequences. Cysteine residues are colored ochre and are in bold. 
The residues in the proximal box (P-box) that are responsible for interaction with DNA and those in the distal box (D-box) that are involved in the dimerization interface 
are in bold and are underlined. The two residues that are unique to estrogen-related receptor alpha are colored red. A small gold sphere is above the four cysteine residues 
that bind tetrahedrally to one zinc ion and a small blue sphere is above the cysteine residues that bind tetrahedrally to the second zinc ion. Regions of secondary structure 
are indicated below the sequences: turn (gray arrow), beta strand (yellow arrow), and alpha helix (pink cylinder). The estrogen-related receptor alpha DNA-binding class ii 
zinc-binding motif is illustrated graphically (B) and a ribbon representation of the structure of the of the estrogen receptor alpha in complex with DNA is shown (C) with 
the same conventions as in (A).

After interaction of antiestrogens such as the active metab-

olite of tamoxifen, 4-hydroxytamoxifen, or raloxifene with 

the ligand-binding domain of estrogen receptor alpha, a por-

tion of the ligand remains outside the ligand-binding pocket 

(Figure 7A).72,74 The extruded ligand prevents alignment of 

helix 12 over the ligand-binding pocket and hence formation 

of a complete coactivator recruitment surface. Instead, helix 

12 is positioned over the hydrophobic cleft between helices 3, 

4, and 5, in which position it precludes completely interaction 

of coactivators with this surface of the receptor.
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Estrogen receptor alpha

Vitellogenin A2 ERE 5'-GTCAGGTCACAGTGAACCTGAT - 3'

Progesterone receptor B ERE 5'-AAGGGCAGG AGCTGAC

AC

CAGCG- 3'

Progesterone receptor A ERE 5'-GCGAGGTCACCA GCCTCTTTGGT- 3'

Cathepsin D element 2 ERE 5'-GCTGGGCCCGGGGCTG CCCGC- 3'

TFF1 ERE 5'-GCAAGGTCAGCGTGGCCAC- 3'

Canonical ERE 5'-AGGTCAnnnTGACCT- 3 ' 

Estrogen-related receptor alpha 

Lactoferrin ERRE 5'- TCAAGGTCATC-3'

Osteopontin 1 ERRE 5'- TAAAGGTCA-3'

Osteopontin 2 ERRE 5'- TCAGGGTCA-3'

Thyroid receptor alpha ERRE 5'- TCAAGGTCA-3'

Aromatase ERRE 5 ' - - - AAGGTCAGAAT-3'

TFF1 1 ERRE 5'-              TTAAGGTCAGG-3'

TFF1 2 ERRE  5'- TGCAGGTCAGC-3'

Canonical ERREs 5'- TCAAGGTCA-3'

5'- TAAAGGTCA-3'

Both receptors

TFF1 ERRE and ERE 5'-TGCAAGGTCAGCGTGGCCAC-3'

Canonical ERRE and ERE 5'-TCAAGGTCA n n nTGACCT-3' 

A

B

C
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Figure 6 DNA response elements recognized by estrogen receptor alpha and estrogen-related receptor alpha.
Notes: The sequences of the EREs identified in key estrogen responsive genes are aligned above the consensus perfect palindromic sequence (A). The sequences of the 
ERREs identified in its responsive genes are aligned above the canonical sequence (B). The dual eRRe and eRe found in the promoter region of the TFF1 gene is shown above 
a perfect combined eRRe and eRe (C). The important third and fourth base pairs of the eRe or eRRe half-sites that provide binding energy and make positive contact with 
the receptor, respectively, are underlined when they are the conserved canonical sequence in the response elements.
Abbreviations: eRe, estrogen response element; eRRe, estrogen-related receptor alpha response element.

The secondary and tertiary structures of the ligand-

 binding domains of estrogen-related receptors are extremely 

similar to those of the estrogen receptors, but subtle differ-

ences are proposed to allow them to function as aporecep-

tors and explain the failure to identify their natural ligands. 

Notably, in the structure of the estrogen-related aporeceptor 

alpha, helix 12 is positioned across the ligand-binding domain 

(Figure 7A).75 Thus the four charged residues, Lys244 in helix 

3 and Lys412, Glu416, and Glu419 in helix 12, equivalent 

to those thought originally to be critical for activation of 
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Figure 7 (Continued)

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2014:6 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

239

estrogen-related receptor α: a therapeutic target in breast cancer?

transcription in estrogen receptor alpha, are on the same face 

of the receptor in the absence of ligand. The crystal structure 

of estrogen-related receptor alpha includes the coactiva-

tor peptide of PGC-1α bound to the receptor coactivator 

recruitment surface; it is not known if the presence of this 

peptide facilitates stabilization of the active conformation 

of estrogen-related receptor alpha in the crystals, or if the 

structure of the aporeceptor ligand-binding pocket would 

be more open in the absence of the PGC-1α peptide. The 

coactivator recruitment surface of estrogen-related receptor 

alpha formed from helices 3, 4, 5, and 12 is similar to that of 

estrogen receptor alpha. The PGC-1α peptide is anchored by 

Figure 7 Structures of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha in complex with their ligands. 
Notes: Ribbon representations of the three-dimensional crystal structures of the ligand-binding domains of estrogen receptor alpha in complex with estradiol (a); DeS (b); 
4-hydroxy-tamoxifen, a high-affinity metabolite of tamoxifen (c); and raloxifene (d), and of estrogen-related receptor alpha in complex with a PGC-1α peptide (e); compound 
1a (f); and compound 29 (g) (A). Helices 1–11 of estrogen receptor alpha are colored pale pink and those of estrogen-related receptor alpha pink. The 12th helices are 
colored darker shades of pink and the short antiparallel beta sheets are colored yellow. The ligands, shown in stick view, and coactivator peptides, shown in a ribbon 
representation, are colored green if they increase activity of the receptor and red if they inhibit its activity. The helices are numbered and the four charged residues proposed 
initially to be critical for coregulator interaction are labeled. Ribbon representations of the ligand-binding pockets of estrogen receptor alpha in complex with estradiol and 
of estrogen-related receptor alpha in complex with a PGC-1α peptide are shown with estradiol shown in stick representation (B). The molecules are rotated to the right 
compared to the views shown in (A), with helix 11 to the front and helix 12 to the right of the structures. Much of helix 11 has been removed to allow better visualization of 
the occupancy of the ligand-binding pockets. The side chains of the four phenylalanine residues, Phe232, Phe286, Phe399, and Phe414, that are orientated towards the ligand-
binding pocket of estrogen-related receptor alpha and are thought to contribute to stabilization of its active conformation, and the equivalent residues of estrogen receptor 
alpha, Ala350, Phe404, Leu426, and Leu442, are indicated and labeled, and their side chains are shown in stick representation (top) or in space-filling mode (bottom). Helices 
are numbered and colored as in (A). Ribbon representations of the coactivator recruitment surfaces of estrogen receptor alpha in complex with DeS and a GRiP1 peptide, 
and of estrogen-related receptor alpha in complex with a PGC-1α peptide, are shown (C). The molecules are rotated slightly to the left compared to the views shown in (A) 
to allow better visualization of the hydrophobic cleft formed between helices 3, 4, 5, and 12. The helices are numbered and colored as in (A). The residues involved in the 
coactivator peptide interaction are shown in stick representation (top) and space-filling representation (bottom). Most have hydrophobic side chains and are colored light 
blue. The charged Lys and Glu residues that form charged capping interactions at either end of the coactivator peptide are colored blue and red, respectively. Conserved 
residues that were identified as being involved in interactions with the coactivator peptides in both structures and that are clearly visible in the figure are indicated. All images 
were created with PyMol Molecular Graphics Software (Schrödinger, Portland, OR, USA). 
Abbreviations: DeS, diethylstilbestrol; PGC, peroxisome proliferator-activated receptor gamma coactivator.
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canonical charge clamp interactions with Lys244 from helix 

3 and Glu416 from helix 12, and many of the conserved 

hydrophobic residues interact with the coactivator peptides 

in both structures (Figure 7C).74,75

The estrogen-related receptor alpha ligand-binding pocket 

is delineated by 22 amino acid residues, most of which have 

hydrophobic side chains. It is occluded by bulky hydrophobic 

side chains, in particular that of the phenylalanine Phe232 

from helix 3,75 which is an alanine in the other four recep-

tors, to create a cavity of only 100 Å3, which is substantially 

smaller than those of the estrogen receptor alpha (490 Å3) 

or beta (390 Å3) (Figure 7B). Removal of this hydropho-

bic side chain abolishes activity of the  aporeceptor. It is 

proposed that the presence in the ligand-binding pocket of 

Phe232 and other bulky hydrophobic side chains, notably 

Phe286 from the small beta sheet, Phe399 from helix 11, 

and Phe414 from helix 12, recapitulates the interactions 

provided by hydrophobic steroids in the estrogen receptors 

and allows the aporeceptor to hold an active conformation 

able to interact with coactivator proteins.75 Disruption of the 

interactions between Phe232, Phe286, Phe399, and Phe414 

destabilizes the active conformation of the estrogen-related 

aporeceptor alpha.

Interestingly, estrogen-related receptor alpha retains 

the charged Glu235 and Arg276, of which the equivalent 

residues in estrogen receptor alpha form a hydrogen bond 

network with the hydroxyl group on carbon 3 of the A ring 

of all three estrogens.  Estrogen-related receptor alpha retains 

also the polar His298 that forms a hydrogen bond with the 

hydroxyl group on carbon 17 of the D ring of estradiol and 

estriol. It is suggested, however, that insertion of an estrogen 

into the ligand-binding pocket of estrogen-related receptor 

alpha would cause such serious steric clashes, notably with 

the side chains of Phe232 and Phe399, that even the A ring 

would not be accommodated (Figure 7B).75

The occlusion of the estrogen-related receptor alpha 

ligand-binding pocket by bulky hydrophobic side chains 

indicates that the introduction of a molecule with more than 

four or five carbon atoms would necessitate a conformational 

change that would displace helix 12 from the coactivator 

surface.75 The estrogen-related receptor alpha does not 

bind estrogens or 4-hydroxytamoxifen, but does interact 

with the synthetic estrogen diethylstilbestrol to prevent 

the receptor interaction with SRC-1. Antagonist effects of 

 diethylstilboestrol on estrogen-related receptor alpha activity 

have been reported by some but not all authors.71,76 Modeling 

indicates that diethylstilbestrol would only be accommodated 

in the estrogen-related receptor alpha ligand-binding pocket 

if the side chains of Phe232 from helix 3 and Phe399 from 

helix 11 were to assume different conformations, and if 

Phe414 was removed from the hydrophobic cavity by dis-

placement of helix 12.29,30 That these conformational changes 

would disrupt the favorable cluster of phenylalanines Phe232, 

Phe286, Phe399, and Phe414, might indicate that the affin-

ity of diethyl stilboestrol for estrogen-related receptor alpha 

would be weak. Substitution of Phe232 with an alanine 

residue, which is found in the equivalent position in the 

other four members of the estrogen receptor family, allows 

4-hydroxytamoxifen to bind estrogen-related receptor alpha 

with a relatively high affinity of 4×10–8 M.77

Despite the steric constraints described above, several 

phytoestrogens: the flavone 6,3′,4′-trihydroxyflavone and 

the isoflavones genistein, daidzein, and biochanin A, have 

been reported to be agonists for estrogen-related receptor 

alpha activity.76 Phytoestrogens are produced by plants, 

have bactericidal and fungicidal activity, and represent 

the major natural exogenous sources of estrogenic com-

pounds. The results indicate that it is possible for a ligand 

to interact with estrogen-related receptor alpha to augment 

its activity.

Physiological functions of estrogen-
related receptor alpha
Discovery of estrogen-related receptor alpha immediately 

prompted questions of its physiological function: whether it 

overlapped with that of the estrogen receptor and if the recep-

tor had a role in breast cancer. Estrogen-related receptor alpha 

is expressed in the later stages of embryonic development 

and is abundant in heart, skeletal muscle, and the nervous 

system. The physiological role of estrogen-related receptor 

alpha, and of estrogen-related receptor gamma, is to act as 

an energy sensor to control cellular adaptation to energy 

demand and stress. To this end, estrogen-related receptor 

alpha is expressed at high levels in tissues with high energy 

demands, such as muscle and brown adipose tissue. Cells that 

do not express active estrogen-related receptor alpha cannot 

produce sufficient energy in times of peak demand.

Role of estrogen-related receptor  
alpha in metabolism
In adipose tissue, estrogen-related receptor alpha increases 

the differentiation of mesenchymal stem cells into adipocytes 

and hence enhances fat deposition. Further, estrogen-related 

receptor alpha has a role in the regulation of energy 

metabolism in adipocytes. It increases lipid uptake, fatty 

acid beta-oxidation, the tricarboxylic acid cycle, oxidative 
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 phosphorylation, and mitochondrial biogenesis and  function. 

Effects of estrogen-related receptor alpha on metabolism 

extend to other tissues with high energy requirements, 

notably cardiomyocytes and macrophages. The importance 

of estrogen-related receptor alpha in metabolic regulation is 

emphasized by the demonstration that esrra-null mice have 

impaired fat absorption and metabolism and are relatively 

resistant to fat-induced obesity.78 These lean mice are unable 

to adapt to cold environments and develop cardiac contrac-

tile dysfunction. The cardiac hypertrophy induced by stress 

in esrra-null mice is caused by reduced ATP synthesis and 

reduced phosphocreatine storage.79

Role of estrogen-related receptor  
alpha in osteogenesis
Estrogen-related receptor alpha influences the differen-

tiation of myocytes, T-cells, intestinal epithelial cells, and 

osteoblasts. A report indicated that estrogen-related recep-

tor alpha has a role in bone development and metabolism 

during embryogenesis.80 Its messenger RNA is expressed in 

murine bone cells during bone formation by endochondral 

and intramembranous ossification and in primary human 

osteoblasts. Estrogen-related receptor alpha was found 

to affect transcription of an osteopontin gene promoter; 

osteopontin is an important constituent of the mineralized 

extracellular matrix of bones.80 In essra-null mice, absence 

of estrogen-related receptor alpha increased modestly osteo-

blast differentiation and cancellous bone mineral density, as 

well as mesenchymal cell differentiation into osteoblasts.81 

Further, estrogen-related receptor alpha was shown to 

decrease differentiation of human mesenchymal stem cells 

into osteoblasts, osteopontin expression, and mineral deposi-

tion, but to increase adipocyte differentiation.81 In a different 

strain of essra-null mice, female bones aged less compared 

to those of wild-type mice even after estrogen depletion and 

their marrow mesenchymal stem cells showed greater ability 

to differentiate into osteoblasts ex vivo.82 Thus estrogen-

related receptor alpha has a pivotal role in determination of 

mesenchymal stem cell fate and is implicated in inhibition 

of mineralization by osteoblasts.80–82

Genes induced by estrogen-related 
receptor alpha
Genomic studies indicate that estrogen-related receptor 

alpha regulates large numbers of genes involved in energy 

metabolism. Estrogen-related receptors interact with the pro-

moters of most mitochondrial and cellular genes that encode 

enzymes involved in the glycolytic pathway, the tricarboxylic 

acid cycle, and oxidative phosphorylation, and in nucleic acid, 

amino acid, lipid, and pyruvate synthesis. Estrogen-related 

receptor alpha is involved in the transcriptional regulation 

of genes required for mitochondrial biogenesis, the tricar-

boxylic acid cycle, oxidative phosphorylation, fatty acid 

oxidation, and lipid metabolism.83–85 For instance, estrogen-

related receptor alpha induces expression of NRF1, GAPα, 

and PPARα.86 The nuclear receptor coactivators PGC-1α, 

PGC-1β, and PPRC-1 are implicated in the regulation of 

these genes and in the autoregulation of the expression of 

estrogen-related receptor alpha. It has been suggested that 

the metabolic effects of estrogen-related receptor alpha are 

controlled by PGC-1α.85 PGC-1α is expressed at low basal 

levels but is induced by fasting and other metabolic stresses.83 

PGC-1β, a related coactivator, has similar functions, but its 

expression may not be regulated as acutely by variations in 

energy demand.84

Activation of estrogen-related  
receptor alpha
If the estrogen-related receptor alpha is fully functional in 

the absence of ligand, does this mean that it is constitutively 

active? Current thoughts are that its activity is regulated in 

two main ways (Figure 3B). First, its activation is limited by 

the intracellular concentrations of its coregulators. Rather 

than being regulated by interaction with a classic ligand with 

resultant stabilization of an active receptor conformation, 

the magnitude of estrogen-related receptor alpha activity is 

thought to be dependent largely on the presence of transcrip-

tional coactivators of transcription such as PGC-1α, PGC-1β 

and PPARβ, SRC-3 and PPGC183,87,88 or corepressors of 

transcription such as RIP140 and nuclear receptor corepres-

sor 1 (NCoR1).89,90 Whether or not the coactivators induce or 

stabilize the active conformation of estrogen-related receptor 

alpha is unknown. Certainly, the coregulators are essential 

for most estrogen-related receptor alpha activity and have 

been termed surrogate ligands. Induction of the expression 

of the coregulators by external metabolic stress activates 

estrogen-related receptor alpha.

Secondly, receptor activity is controlled by posttransla-

tional modification (Figure 3B), namely by phosphorylation 

initiated by the interaction of growth factors such as the IGFs 

and epidermal growth factors (EGFs) with their cognate 

receptors and consequent signal transduction. Recruitment 

of estrogen-related receptor alpha to the TFF1 promoter 

and resultant transcription are increased in the presence 

of EGF, possibly via phosphorylation of the DNA-binding 

domain.91 Activation of HER2 increases the transcriptional 
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activity of estrogen-related receptor alpha by phosphoryla-

tion at multiple residues, including in the carboxy-terminus.92 

In vitro analyses of the ability of estrogen-related receptor 

alpha to induce transcription from the TFF1 gene in breast 

cancer cells demonstrated that the induction is increased 

by activation of growth factor receptors including EGF 

receptor, HER2 and the type I IGF receptor.93 In addition, 

phosphorylation-dependent, amino-terminal SUMOylation 

reduces transcriptional activity of estrogen-related receptor 

alpha94 and acetylation by p300 coactivator-associated factor 

(PCAF) of four lysine resides in its DNA-binding domain 

modulates its activity.95

Role of the estrogen-related 
receptor alpha in breast cancer
Preclinical studies
The estrogen-related receptor alpha receptor has been pro-

mulgated as a prospective target for breast cancer therapy 

based in part on preclinical analyses. Knockdown of estrogen-

related receptor alpha mRNA in estrogen-responsive and 

estrogen-unresponsive breast cancer cells decreased their 

migratory potential, possibly by induction of WNT11 and 

vascular endothelial growth factor expression.96 Similarly, 

reduction of estrogen-related receptor alpha mRNA with 

miR-137 decreased the migratory and proliferative capacity 

of breast cancer cells.97 While proliferation in vitro was unaf-

fected, proliferation of xenografts of estrogen-unresponsive 

breast cancer cells was reduced after knockdown of estrogen-

related receptor alpha mRNA.98 Further, genetic deletion 

of esrra delayed tumor development in a mouse model of 

HER2-induced mammary tumorigenesis.99 The ability of 

estrogen-related receptor alpha to increase orthotopic tumor 

growth may be explained by its promotion of angiogenesis by 

induction of vascular endothelial growth factor.100 In appar-

ent contradiction, estrogen-related receptor alpha expression 

decreased the growth of osteolytic metastases in a mouse 

model of breast cancer, possibly via reduced osteolysis as 

a result of the induction of osteoprotegerin, which inhibits 

osteoclastogenesis.100

Tumor metabolism
The importance of estrogen-related receptor alpha in the 

control of cellular energy metabolism suggests that it may 

be involved in breast cancer cell metabolism.79 Estrogen-

related receptor alpha could facilitate glycolytic metabolism 

by tumor cells. Its relatively high expression in tumors 

with poorer prognosis, some of which manifest increased 

glucose uptake, which is associated with a more aggressive 

 phenotype,  supports this conjecture. In breast cancer cells, 

estrogen-related receptor alpha increases the expression of 

critical enzymes of the glycolytic pathway.98,101 Estrogen-re-

lated receptor alpha expression may also favor mitochondrial 

oxidative respiration in breast cancer cells through its regula-

tion of genes involved in mitochondrial oxidative function.86 

Breast cancer cells that had been selected for their ability to 

metastasize to the brain, expressed estrogen-related recep-

tor alpha, PGC-1α, PGC-1β, and estrogen-related receptor 

alpha-regulated genes involved in the tricarboxylic acid cycle, 

glycolysis, and oxidative phosphorylation pathways at higher 

levels than unselected cells.102 Activation of estrogen-related 

receptor alpha by overexpression of PGC-1α in breast cancer 

cells increases oxidative metabolism.103 The induction by 

estrogen-related receptor alpha of genes involved in lipid, 

amino acid, and nucleic acid synthesis, in glutaminolysis, and 

in regulation of the pentose phosphate pathway implicates 

the receptor in anabolic biosynthesis.98,101 Further, estrogen-

related receptor alpha may protect breast cancer cells against 

oxidative damage and production of reactive oxygen species 

by induction of detoxifying enzymes such as glutathione 

S-transferase MU-1 (GSTM1), liver glutaminase (GLS2), 

and superoxide dismutase 2 (SOD2).98,101

Translational studies
A decade ago, two clinical studies reported that estro-

gen-related receptor alpha is involved in breast cancer 

progression.104,105 Estrogen-related receptor alpha expres-

sion is inversely correlated with estrogen receptor and pro-

gesterone receptor expression but is associated positively 

with expression of HER2.104 The authors suggested that 

estrogen-related receptor alpha might be able to substitute 

for estrogen receptor if expression of the latter is lost, espe-

cially in HER2-positive or tamoxifen-resistant tumors.104 

Estrogen-related receptor alpha is detected in around 55% 

of human breast cancers by immunohistochemistry and its 

expression is associated with increased risk of recurrence and 

poor prognosis.105 Estrogen-related receptor alpha mRNA 

levels are similar or higher than estrogen receptor mRNA 

levels in approximately one-quarter of breast tumors and 

are highest in tumors in which functional estrogen receptor 

is absent.105 In this context, estrogen-related receptor alpha 

response elements often overlap those of estrogen receptor 

alpha, and both receptors affect the in vitro transcription of 

genes that encode lactoferrin, osteopontin, aromatase, and 

TFF1.67,68,70,71 Conversely, estrogen-related receptor alpha is 

reported to induce transcription of the HER2 gene, whereas 

the estrogen receptor represses the transcription of HER2 in 
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the presence of estrogen.99 Estrogen-related receptor alpha 

is not an independent biomarker of prognosis of breast can-

cer patients, but the concerted expression of a cohort of 86 

genes that are regulated by the receptor is associated with 

poor prognosis.98

Critical analysis of the potential 
for targeting the estrogen-related 
receptor alpha in breast cancer 
management
There has been considerable interest in the therapeutic 

potential of the activation or suppression of estrogen-related 

receptor alpha activity. The important role of estrogen-related 

receptor alpha in mitochondrial biogenesis and oxidative 

metabolism suggests that its activation could be an effective 

therapeutic intervention in diabetes or metabolic diseases. 

Although more controversial, the possibility of targeting 

estrogen-related receptor alpha activity in the treatment 

of osteoporosis has attracted attention. Importantly, in the 

context of this review, interest in the inhibition of estrogen-

related receptor alpha in medical oncology has focused on 

the treatment of breast cancer.

Phenex Pharmaceuticals AG (Ludwigshafen, Germany) 

was interested in the potential to treat cancer, osteoporosis, 

obesity, lipid and cardiovascular disorders, or conditions that 

affect fertility and reproductive health. GlaxoSmithKline 

(Brentford, UK) investigated estrogen-related receptor alpha 

activation for the treatment of metabolic disease. Merck & 

Co., Inc. (Whitehouse Station, NJ, USA) considered its inhi-

bition in the context of breast cancer and metabolic disorders. 

Novartis (Basel, Switzerland) invested in the possibility of 

targeting breast cancer, metabolic diseases, and osteoporosis. 

Johnson and Johnson (New  Brunswick, NJ, USA) considered 

the treatment of obesity and insulin-insensitive diabetes. 

The last two companies have published structures of their 

synthetic compounds bound to the receptor.106,107 The SRI 

International (Menlo Park, CA, USA) has a compound in 

clinical trial. Notably, medicinal chemists at the Guangzhou 

International Business Incubator (Guangzhou, People’s 

Republic of China) have reported the synthesis of several 

series of biologically active ligands of the estrogen-related 

receptor alpha.108

Potential drugs
Natural ligands of the estrogen-related receptor alpha have 

not been identified, and it is generally accepted that the 

aporeceptor is active. The crystal structure of Kallen et al 

indicates that the aporeceptor has an active conformation in 

the absence of bound ligand, that the ligand-binding pocket 

is too small to accommodate an estrogen-like ligand, and 

that introduction of such a ligand would disrupt the active 

conformation (Figure 7).75 The crystals of estrogen-related 

receptor alpha included a coactivator peptide from PGC-1α, 

and it is possible that the presence of this peptide and its 

interaction with the receptor induces or favors adoption of 

the active conformation by the receptor. The corollary is that 

it is possible that, in the absence of the PGC-1α coactivator 

peptide, helix 12 of the receptor may be more mobile than 

is suggested by the crystal structure, and the ligand-binding 

site more open and flexible and able to accommodate a 

ligand larger than might be predicted from examination of 

the crystal structure.

Agonists
Given the failure to identify natural ligands for the estrogen-

related receptor alpha and widespread acceptance that 

the receptor is fully active in its unliganded form, it was 

surprising to discover that natural phytoestrogens had ago-

nist activity for estrogen-related receptor alpha. In 2003, 

Suetsugi et al identified potential agonists76 by virtual 

ligand screening of a homology model of the estrogen-

related receptor alpha ligand-binding domain based on 

the crystal structure of estrogen-related receptor gamma 

ligand-binding domain.77 Four ligands, three isoflavones: 

genistein, daidzein, and biochanin A, and one flavone: 

6,3,4-trihydroxyflavone, all of which are present in legumes 

and various herbs, were  identified (Figure 8).76 The virtual 

screening indicated that estradiol, the synthetic estrogen 

diethylstilbestrol, and 4-hydroxytamoxifen do not bind. The 

authors demonstrated that genistein, daidzein, biochanin 

A, and 6,3,4-trihydroxyflavone increased estrogen-related 

receptor alpha transcriptional activity.76

Later, scientists at GlaxoSmithKline failed to identify 

agonists through random screening of their compound 

 collection. Subsequently, they synthesized molecules pre-

dicted to interact with the ligand-binding domain by struc-

ture-guided design based on the 2004 crystal structure of the 

estrogen-related receptor alpha,75 but were unable to demon-

strate agonist activity.109 Subsequently, Peng et al synthesized 

a series of pyrido[1,2-α]pyrimidin-4-ones with a view to 

producing more potent agonists of the estrogen-related recep-

tor alpha and confirmed the compounds’ ability to increase 

the transcriptional activity of the receptor (Figure 8).110 The 

compounds improved the uptake of glucose and fatty acids by 

muscle cells and have potential in the treatment of metabolic 

disease.110 Taken together, these data indicate that there are 
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Figure 8 Ligands of estrogen receptor alpha and estrogen-related receptor alpha. 
Notes: Outline structures of the estrogen receptor alpha (A) and estrogen-related receptor alpha (B) ligands are shown. The natural ligands of estrogen receptor alpha: 
estrone, estradiol, and estriol are outlined in pink. Synthetic ligands: diethylstilbestrol (DeS), tamoxifen and its metabolite 4-hydroxytamoxifen, raloxifene, and fulvestrant are 
uncolored (A). Phytoestrogens: genistein, daidzein and its metabolite equol, biochanin A, 6,3,4-trihydroxyflavone, and kaempferol are outlined in pale pink. Synthetic ligands: 
pyrido [1,2-α] pyrimidine-4-ones, XCT790, compound A, compound 1a, compound 29, troglitazone, AM251, compound 14n and SR16388 are uncolored (B). Names of the 
natural ligands and of other ligands that stimulate receptor activity are in green, and those of ligands that inhibit at least some receptor activity in red.

ligands whose interaction with the estrogen-related receptor 

alpha stabilizes the active conformation of the receptor and 

increases its transcriptional activity. These molecules or their 

derivatives have potential clinical utility for the treatment 

of metabolic diseases, including metabolic syndrome and 

diabetes.

inverse agonists
The demonstration that two organochlorine pesticides, toxa-

phene and chlordane, antagonize estrogen-related receptor 

alpha activity established the principle that the activity of 

the aporeceptor may be inhibited by a ligand.111 The dietary 

 flavonol kaempferol, which is present in tea, brassicas, 
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legumes, and some fruits, prevents interaction of estrogen-

 related receptor alpha with DNA response elements and 

hence its effects on transcription (Figure 8).112 Such com-

pounds are called reverse agonists or inverse agonists. Several 

groups have synthesized inverse agonists of estrogen-related 

receptor alpha and sought to demonstrate their therapeutic 

potential in preclinical models.

In 2004, Busch et al reported the first synthetic inverse 

agonists of estrogen-related receptor alpha.113 Their 

search was initiated by a high-throughput screen of their 

compound library followed by optimization of their lead 

structure to develop a potent, selective, and orally-available 

compound, (2E)-3-(4-([2,4-bis(trifluoromethyl)benzyl]

oxy)-3-methoxyphenyl)-2-cyano-N-[5-(trifluoromethyl)-1-

,3,4-thiadiazol-2-yl]acrylamide, or XCT790 (Figure 8).113 

Several other groups have studied the effects of XCT790 

on the biological activity of estrogen-related receptor alpha 

and established that XCT790 induces ubiquitin-dependent 

proteasomal degradation of estrogen-related receptor alpha.114 

XCT790 treatment was found to increase glucose uptake and 

mitochondrial production of reactive oxygen species and 

decrease mitochondrial mass and membrane potential.115–118 

The proliferation of estrogen-responsive and estrogen-

unresponsive breast cancer cells is inhibited by XCT790.119 

XCT790 prevents the induction in vitro by estrogen-related 

receptor alpha of the expression of genes whose expression 

in tumors is associated with poor patient prognosis.93

Chisamore et al searched for inverse agonists by examina-

tion of the ability of compounds to antagonize the interac-

tion between estrogen-related receptor alpha ligand-binding 

domain and the coactivator interaction domain of PGC-1α.120 

They identified a novel tricyclic antagonist, N-[(2Z)-3-(4,5-

dihydro-1,3-thiazol-2-yl)-1,3-thiazolidin-2-ylidene]-5H 

dibenzo[a,d][7]annulen-5-amine, or compound A, that binds 

estrogen-related receptor alpha with high affinity (Figure 8). 

The authors developed a homology model of estrogen-related 

receptor alpha in an antagonist conformation to explain the 

specificity of compound A. Subsequently, Chisamore et al 

demonstrated that compound A decreased expression of 

estrogen-related receptor alpha-responsive genes that encode 

TFF1, osteopontin, and aromatase.121 Estrogen-related recep-

tor alpha protein degradation is induced by compound A 

through the ubiquitin 26S proteasome pathway.121  Compound 

A was shown to inhibit the proliferation of estrogen-

 responsive and estrogen-unresponsive breast cancer cells and 

reduce their growth in xenograft models.122

The first structure of a cocrystal of a synthetic inverse 

agonist in complex with the estrogen-related receptor alpha 

ligand-binding domain was reported in 2007 by Kallen et al.106 

The authors produced cyclohexylmethyl-(1-p-tolyl-1H-indol-

3-ylmethyl)-amine, or compound 1a (Figure 8), by evolution 

of a lead compound identified through high-throughput 

screening. In the complex with compound 1a, part of the 

ligand fits into the ligand-binding pocket of estrogen-related 

receptor alpha and the aromatic side chains of Phe232 from 

helix 3, Phe399 from helix 11, and Phe414 from helix 12 do 

not cluster (Figure 7A). The remainder of compound 1a pro-

trudes from the ligand-binding pocket. The last turn of helix 11 

is unwound and the amino-terminus of helix 3 is in a different 

position than in the structure of the aporeceptor in complex 

with the coactivator peptide from PGC-1α. Helix 12 of the 

estrogen-related receptor alpha is not aligned in its agonist 

position but lies in the groove occupied by the coactivator 

peptide from PGC-1α in the cocrystal with the aporeceptor. 

This alignment of helix 12 is similar to the alignment of helix 

12 in the crystal structures of estrogen receptor alpha with the 

antiestrogens 4-hydroxytamoxifen and raloxifene. Interaction 

of coactivator LXXLL motif peptides with the coactivator 

recruitment surface is prevented, which may well account for 

the inverse agonistic effects of compound 1a.106

More recently, Patch et al used a high-throughput binding 

assay to identify unbiased ligands for estrogen-related receptor 

alpha.107 Compounds were tested for their ability to inhibit 

interaction with a coactivator peptide of SRC-2. Subsequent 

optimization produced 4-(4-[[(5R)-2,4-dioxo-1,3- thiazolidin-

5-yl]methyl]- 2-methoxyphenoxy)-3-(trifluoromethyl)

benzonitrile, or compound 29, as the most potent ligand 

(Figure 8). A cocrystal structure of the ligand-binding domain 

of estrogen-related receptor alpha with compound 29 revealed 

a covalent interaction between the ligand and the receptor that 

is known to be reversible.107 Helix 12 is aligned in a similar 

position to that found in the cocrystal with compound 1a 

adjacent to the hydrophobic cleft formed between helices 3, 

4, and 5, which means that helix 12 prevents interaction of 

coactivators with this receptor coactivator recruitment surface 

(Figure 7A). Interestingly, Patch et al demonstrated that com-

pound 29 was functionally active in metabolic animal models 

and proposed its development as a novel antidiabetic agent. 

Oral administration of compound 29 stabilized insulin and 

circulating triglyceride levels and improved insulin sensitivity 

but did not affect body weight in diet-induced murine models 

of obesity and in an overt diabetic rat model.107

Wang et al found that that the thiazolidinedione (RS)-5-

(4-[(6-hydroxy-2,5,7,8-tetramethylchroman-2-yl)methoxy]

benzyl)thiazolidine-2,4-dione, or troglitazone (Figure 8), 

which was marketed originally as an antidiabetic agent but 
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withdrawn due to liver toxicity, is an effective inverse agonist 

of estrogen-related receptor alpha.123 The troglitazone- receptor 

complex does not interact with the coactivators PGC-1α 

and PGC-1β, and troglitazone inhibits mitochondrial func-

tion. Mitochondrial mass was reduced and the expression of 

superoxide dismutases suppressed, which elevated reactive 

oxygen species production. The increase in reactive oxygen 

species in turn induced expression of the cell cycle inhibitor 

p21.123 Investigation of a pyrazole derivative, the cannabinoid 

1 receptor inverse antagonist biarylpyrazole compound 1-(2,4-

dichlorophenyl)-5-(4-iodophenyl)-4- methyl-N-1-piperidinyl-

1H-pyrazole-3-carboxamide, or AM251 (Figure 8), in 

cannabinoid 1 receptor-null cells identified estrogen-related 

receptor alpha as an alternative receptor.124 Interaction between 

AM251 and estrogen-related receptor alpha inhibited its tran-

scriptional activity and induced its proteolytic degradation. 

AM251 displaced diethylstilboestrol from the ligand-binding 

domain of recombinant estrogen-related receptor alpha. Sub-

sequent studies confirmed that AM251 effects are mediated by 

proteasomal degradation of nuclear estrogen-related receptor 

alpha.125 Downregulation of estrogen-related receptor alpha 

by AM251 or small interfering RNA led to increased mito-

chondria biogenesis and reduced mitochondrial membrane 

potential. These results indicate that the clinical analog of 

AM251, rimonabant, which is prescribed to decrease food 

intake, could exert its inhibitory effects against obesity, at 

least in part, through estrogen-related receptor alpha.

Most recently, Xu et al reported synthesis of a series of 

1-phenyl-4-benzoyl-1H-1,2,3-triazoles as novel suppressors 

of estrogen-related receptor alpha transcriptional activa-

tion.108 The most promising compound, 2-aminophenyl-(1-

(3-isopropylphenyl)-1H-1,2,3-triazol-4-yl)methanone, or 

compound 14n (Figure 8), reduced with an IC
50

 of 0.021 μM 

the transcriptional activation by estrogen-related receptor 

alpha as assessed in a cell-based reporter gene assay and 

decreased breast cancer cell migration and proliferation. 

Preliminary pharmacokinetic studies suggested that com-

pound 14n has a good pharmacokinetic profile, with an oral 

bioavailability of 71.8%.108

The synthetic inverse inhibitor of estrogen-related receptor 

alpha that has advanced furthest towards clinical application 

is (E)-3-Hydroxy-7α-methyl-21-[2′-(N,N,-dimethylamino)

ethoxy]-19-norpregna-1,3,5(10),17(20)-tetraene, or SR16388 

or TAS-108 (Figure 8).126,127 This novel steroidal compound 

was developed by SRI International for the treatment of breast, 

prostate, ovarian, and colon cancer in the hope that it would 

inhibit the effects of estrogen-related receptor alpha on energy 

 metabolism of tumor cells by inhibition of hypoxia-inducible 

factor 1-alpha and hence prevent tumor cell survival in hypoxic 

conditions by prevention of angiogenesis and induction of 

apoptosis.126,127 SR16388 also inhibits estrogen receptor alpha. 

Malignant cell growth in xenograft models is inhibited with 

an IC
50

 of around 0.2 μM and the inhibition is potentiated in 

the presence of microtubulin inhibitors such as paclitaxel or 

vincristine.127 Promulgated for treatment of tamoxifen-resistant 

breast cancer and bicalutamide-resistant prostate cancer, 

SR16388 has completed Phase I trials, as well as Phase II tri-

als for different tumor types. Benefits demonstrated in these 

studies include: antitumor efficacy in breast cancer patients 

who have relapsed while on treatment with an antiestrogen 

or an aromatase inhibitor; similar reduction in bone mineral 

density compared with aromatase inhibitors; no thickening of 

the endometrium; and a good overall safety profile. A Phase III 

trial of SR16388 in combination with a microtubulin inhibitor 

has been proposed.

inhibitors of protein interactions
The second most popular approach by which to inhibit 

the activity of estrogen-related receptor alpha is to prevent 

interaction between the receptor and the coactivators and 

corepressors that interact with the coactivator surface that lies 

between helices 3, 4, 5, and 12 in the active conformation of 

the receptor (Figure 7A and C).75 There are no prototype drugs 

reported, but the importance of these interactions in modulat-

ing the activity of the receptor is recognized.90,98,128 The success 

of the nutlins that disrupt interaction between p53 and MDM2 

demonstrates the feasibility of a strategy to disrupt interactions 

between two important intracellular proteins.

Repression of expression by microRNA 
A third possibility that has been mooted is to exploit the 

regulation of estrogen-related receptor alpha expression by 

the microRNA miR-137.97 This microRNA reduced expres-

sion of estrogen-related receptor alpha in breast cancer cells 

and consequently reduced breast cancer cell proliferation and 

migration.97 Therapeutic intervention with inhibitory RNAs 

is in its infancy, but the existence of this regulatory control 

of estrogen-related receptor alpha provides an alternative 

strategy for therapeutic intervention.

Phosphorylation
Another possible intervention with which to inhibit estrogen-

related receptor alpha activity would be a drug designed to 

inhibit the activity of the intracellular signal  transduction 

proteins responsible for activation of the receptor by 

 phosphorylation. Inhibitors that target the IGF and EGF 

pathways6,30 are likely to affect the transcriptional activity of 

the estrogen-related receptor alpha.93 Examples of these drugs 
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are figitumumab and lapatinib.30,35 An advantage of such a 

therapeutic approach would be that other tumor promotion 

signal transduction induced through the growth factor path-

way would be prevented.

Clinical setting
Drugs that target estrogen-related receptor alpha are most 

likely to be introduced initially for the treatment of patients 

with advanced breast cancer, most probably with palliative 

intent (Figure 2E). There is evidence that the estrogen-

related receptor alpha may be an effective target in estrogen-

dependent and estrogen-independent tumors. The dearth of 

effective noncytotoxic drugs for the treatment of patients 

with triple-negative breast tumors that lack expression of 

estrogen receptor, progesterone receptor, and HER2 means 

that these patients are more likely to be offered such novel 

therapy. In addition, there is evidence from early clinical trials 

of SR16388 that estrogen-related receptor alpha inhibitors 

are effective in patients who have relapsed after treatment 

with tamoxifen or an aromatase inhibitor. Such patients might 

benefit from estrogen-related receptor alpha inhibitors.

Evidence of clinical benefit from drugs that target 

estrogen-related receptor alpha in the palliative setting would 

indicate that they should be considered for adjuvant therapy 

in patients diagnosed with early triple-negative breast cancers 

(Figure 2C). It would be necessary to consider if drugs that 

target estrogen-related receptor alpha activity should be given 

in combination with cytotoxic therapies or as single agents. 

The decision might be influenced by patient prognosis.

Patient stratification
Increasingly, promulgation of new drugs is accompanied by 

consideration of which patients are most likely to receive clin-

ical benefit. While pharmaceutical companies might wish that 

their novel drug could benefit, for example, all breast cancer 

patients, they must recognize that it is better to demonstrate 

activity in a subgroup of patients than no significant effect in 

all patients. Analogous to the estrogen receptor alpha, patients 

in whom the estrogen-related receptor alpha is expressed at 

high levels in tumor cells might be more likely to receive 

benefit. Presence of high concentrations of the coactivators 

PGC-1α and PGC-1β may also indicate that the patient is 

more likely to benefit from drugs that target the dependence 

of tumor cells on the estrogen-related receptor alpha. It is 

 possible that assessment of the metabolic reliance of the tumor 

cells might select those most likely to benefit.  Measurement 

of genes whose expression is particularly closely dependent 

on the activity of the estrogen-related receptor alpha, for 

instance, those that encode aromatase or TFF1, or enzymes 

in the glycolytic pathway or enzymes involved in oxidative 

phosphorylation, might predict the dependence of the tumor 

cells on its transcriptional pathway.

Estrogen receptor alpha might be a biomarker that pre-

dicts lack of response to drugs that target estrogen-related 

receptor alpha activity because the presence of estrogen 

receptor alpha and the progesterone receptor indicate the 

importance of the estrogen-responsive transcriptional path-

way in the tumor cells. In addition, based on the evidence 

that the estrogen-related receptor alpha may inhibit estrogen 

receptor alpha activity, inhibition of the former might pro-

mote the activity of the latter and enhance the progression 

of the estrogen-dependent breast disease.70,129,130,131 Other 

evidence suggests that inhibition of estrogen-related receptor 

alpha might potentiate the effects of fulvestrant.114

Potential side effects
Consideration of the therapeutic potential of the estrogen-

related receptor alpha encompasses its effectiveness in target 

malignant cells and its effects in other cells and other tissues. 

Clearly, toxicity studies and early clinical trials will investigate 

these effects and potential side effects, and dose limitation 

work will determine the optimum therapeutic threshold.

Osteoporosis
The effects of interventions that target exclusively the 

estrogen-related receptor alpha are unknown. It is thought 

that estrogen-related receptor alpha increases adipocyte for-

mation at the expense of osteoblast formation and activity.81 

This bone inhibitory role is supported by the demonstration 

that, in estrogen-related receptor alpha-null mice, the bone 

mineral density does not reduce with age.82 The protective 

effect prevails during estrogen deficiency. The true effects 

of estrogen-related receptor alpha on osteogenesis in vivo 

in humans are particularly important given the widespread 

incidence of osteoporosis in many breast cancer patients, the 

drug-limiting side effects of pure antiestrogens and aromatase 

inhibitors on bone density, and the potential complications of 

treatment in patients who may have received bisphosphonates 

or their replacements. SRI International has reported that 

early trial data indicate that the effect of SR16388, which 

inhibits both estrogen receptor alpha and estrogen-related 

receptor alpha, on bone mineral density is comparable to that 

of aromatase inhibitors.

Metastasis
Most relevant studies of estrogen-related receptor alpha activ-

ity suggest that it promotes reduction of bone formation.81,82 

The bone is a favored site of breast cancer cell metastasis. 
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The possibility that an inhibitor of estrogen-related receptor 

alpha activity might strengthen bone structure suggests that 

such a drug might, as a consequence, militate against the 

establishment of clinically significant metastatic deposits of 

breast cancer secondary tumors in bones. Such an activity 

would be desirable in the treatment of advanced breast cancer 

and could augment the effects of bisphosphonates. Evidence 

from a preclinical mouse model of bone metastasis contradicts 

this supposition; overexpression of estrogen-related recep-

tor alpha in the tumor cells reduced formation of osteolytic 

lesions. The corollary would be that inhibition of estrogen-

related receptor alpha activity might promote formation of 

bone metastases.100

Metabolism
Many of the inverse agonists of the estrogen-related recep-

tor alpha have been produced with the aim of managing 

metabolic diseases. Consideration must be given to the 

potential of detrimental side effects of oncological inter-

vention via estrogen-related receptor alpha on metabolic 

control in normal tissues with high energy requirements, 

such as skeletal muscle, heart, and kidney. There is concern 

that the decrease in PGC-1α and PGC-1β in the skeletal 

muscle of patients with diabetes and obesity would mean 

that inhibition of estrogen-related receptor alpha activity 

could be particularly detrimental in diabetic or obese breast 

cancer patients.132

Another consideration is that esrra-null mice exhibit 

cardiac hypertrophy.79 It would be important to consider 

potential detrimental effects of drugs that target estrogen-

related receptor activity on patients with underlying heart 

conditions, including cardiomyopathy. Combined treatment 

with drugs associated with heart damage, such as anthracy-

clines and trastuzumab, might be contraindicated.

Cachexia
A major concern is that estrogen-related receptor alpha 

inhibition would be catastrophic for patients with established 

cachexia or would exacerbate its development. Poorly under-

stood, cachexia is a major cause of morbidity and contributor 

to mortality in patients with advanced breast cancer. Cachexic 

patients have extensive muscle atrophy and fatigue, as well 

as severe weight loss associated with impaired metabolic 

function and nutrient sensing ability. The possibility that this 

condition might be worsened or hastened in breast cancer 

patients by drugs that inhibit estrogen-related receptor alpha 

activity is a major concern and should be a focus of any early 

clinical trials that involve dose escalation of the drugs.

Conclusion
Estrogen-related receptor alpha is an attractive target in breast 

cancer patients, in particular, in those for whom there are 

limited therapeutic options in either the palliative or adjuvant 

clinical setting. Several compounds that have inverse agonist 

activity for the receptor have been developed, and some have 

been shown to have high affinity and good oral availability 

and to interact with the ligand-binding domain to destabilize 

the active conformation and inhibit the transcriptional activity 

of the receptor. Preclinical studies suggest that inhibitors of its 

activity prevent breast cancer cell migration in vitro and prolif-

eration in vivo in mouse models. The possibility that they might 

enhance metastasis to the bone warrants further  investigation. 

The pivotal role of estrogen-related receptor alpha in energy 

metabolism suggests that its inhibition might target the high 

metabolism characteristic of many tumor cells.

Being an attractive target is a long way from introduction 

into routine clinical practice. Important areas of investigation 

include identification of valid biomarkers of dependence upon 

estrogen-related receptor alpha transcriptional activity and 

potential response to therapeutic intervention.  Successful 

identification of such biomarkers would ensure effective 

patient stratification and that only those with a high prob-

ability of benefit would receive treatment. The important 

roles of estrogen-related receptor alpha in energy metabolism 

and bone formation mean that inhibition of its effects in 

tissues with high energy requirements and in bone must be 

considered. Further, effects of inhibition of estrogen-related 

receptor alpha activity in those with metabolic disorders or 

diabetes, many of whom will develop breast cancer,6 will 

require careful investigation.
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