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Abstract: Patients with chronic pain have impaired cognitive functions, including decision 

making, as shown with the Iowa gambling task (IGT). The main aim of this study was to elucidate 

whether patients’ decision making is associated with a lack of the anticipatory skin conductance 

response (SCR). An increase in anticipatory SCR before making unfavorable choices is known 

to guide decisions in healthy controls during the IGT. Since several brain regions involved in 

decision making are reported to have altered morphology in patients with chronic pain, the  second 

aim was to explore the associations between IGT performance and brain structure volumes. 

Eighteen patients with chronic pain of mixed etiology and 19 healthy controls matched in terms 

of age, sex, and education were investigated with a computerized IGT during the recording of 

SCR, heart rate, and blood pressure. The participants also underwent neuropsychological test-

ing, and three-dimensional T1-weighted cerebral magnetic resonance images were obtained. 

Contrary to controls, patients did not generate anticipatory SCRs before making unfavorable 

choices, and they switched between decks of cards during the late phase of the IGT significantly 

more often, and this was still observed after adjusting for depression scores. None of the other 

autonomic measures differed during IGT performance in either group or between groups. In 

patients, IGT scores correlated positively with total cortical grey matter volume. In controls, 

there was no such association, but their IGT scores correlated with the anticipatory SCR. It 

may be speculated that the reduction in anticipatory SCRs makes the chronic pain patients rely 

more on cortical resources during decision making.

Keywords: Iowa gambling task, skin conductance response, autonomic measures, magnetic 

resonance imaging, cortex

Introduction
Patients with chronic pain have impaired cognitive functions;1 among those are 

impaired decision making,2–4 as demonstrated in the Iowa gambling task (IGT), a test 

that simulates real-life decision making.5 In this test, the goal is to win as much as 

possible by discerning which of the two decks of cards are advantageous and which 

two are disadvantageous. Previous research on the IGT has shown that patients with 

chronic pain score lower and/or switch more frequently between decks compared to 

healthy controls (HCs).2–4

The IGT was introduced as a test of the somatic marker hypothesis.5 This hypoth-

esis states that when facing ambiguous decisions, cognitive processes are insufficient 

in guiding choices.6,7 Instead, autonomic physiological reactions, such as skin con-

ductance responses (SCRs) that are learned to be associated with a specific outcome, 

are engendered in the body and are relayed to the brain where they give rise to an 
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Figure 1 Decision-making structures important during the iowa gambling task.
Notes: Trigger structures are the (A and C) V, and (B and C) a. The a mainly 
works as a trigger structure for the impulsive system, while the V is a trigger 
structure for the reflective system. Important supporting structures for the V are 
the dorsolateral prefrontal cortex (not shown) and (B and C) h. effector structures 
include the hypothalamus, nucleus accumbens, and periaqueductal gray area, while 
sensory structures include the sensory brain stem nuclei such as the parabrachial 
nucleus and neurotransmitter nuclei. For effector structures and sensory structures, 
the figure only displays the (A and C) B. important structures for processing 
information from the sensory structures are the (B and C) i, the (A) cc, (A) the P, 
as well as the somatosensory cortices (not shown). X and Z give the location of the 
two saggital and one transverse planes in the illustration.
Abbreviations: P, precuneus; B, brainstem; cc, cingulated cortex; V, ventromedial 
prefrontal cortex; h, hippocampus; a, amygdala; i, insula.

emotion-guided decision.7 This is called a somatic marker. 

In healthy subjects, increased anticipatory SCRs are present 

before choosing cards from the disadvantageous decks of 

cards in the IGT (see Figures 1 and 2 for an illustration of 

the model).8 This is not found in subjects with lesions in the 

ventromedial prefrontal cortex, who have impaired decision-

making skills, but who are otherwise spared intellect.8,9 

Similarly, the reduced decision-making ability in patients 

with chronic pain may arise from a lack of anticipatory SCR 

generation, but this has not yet been investigated.

As far as we know, there is also a lack of knowledge as 

to whether impaired performance on the IGT correlates with 

changes in the cerebral morphology of patients with chronic 

pain. This may be expected, since several brain regions 

involved in decision making are reported to have altered 

morphology in chronic pain patients.10 Decision making 

relies on many brain regions for generating, relaying, and 

interpreting SCR and/or other somatic signals. The winner 

of any competing signals influences the final choice.7 This 

process is dependent on trigger structures (the amygdala and 

ventromedial prefrontal cortex), effector structures (such 

as the hypothalamus, periaqueductal gray area, nucleus 

accumbens, and neurotransmitter brainstem nuclei), sen-

sory structures (sensory brain stem nuclei), and processing 

structures (such as the insula and somatosensory cortices), 

as well as memory structures (for instance, the hippocampus 

and dorsolateral prefrontal cortex).7 In patients with chronic 

pain, gray matter volume reductions have been reported in all 

these mentioned structure groups, most consistently in the 

trigger (ventromedial prefrontal cortex), processing (insula), 

and memory (dorsolateral prefrontal cortex) structures.10–12

The overall intention of this study was to explore and 

compare differences and associations between IGT behavior, 

autonomic signals, and brain structure volumes in patients 

with chronic pain and matched HCs. The main aim was 

to examine whether patients’ impaired decision making is 

associated with a lack of anticipatory autonomic physio-

logical reactions. We predicted, based on the previously 

reported deficits in performance on the IGT in chronic pain 

patients,2–4 and on the somatic marker hypothesis, that the 

patient group would lack the anticipatory SCR before picking 

cards from the disadvantageous decks. To elucidate possible 

contributions of other autonomic physiological reactions on 

IGT performance in the patient group, heart rate (HR) and 

blood pressure were also measured. The secondary aim was to 

explore the associations between IGT performance and brain 

structure volumes. We anticipated that reduced brain structure 

volumes would be related to impaired IGT performance in 

patients with chronic pain.

Methods
The study was approved by the Regional Committee for 

Medical Research Ethics and the Norwegian Social  Sciences 

Data Service, and was performed in accordance with their 

requirements and the Declaration of Helsinki. Written 

informed consent was obtained from all participants.

Materials
Twenty subjects (16 females) with chronic pain were recruited 

during consultations in a university pain clinic, and 20 

(18 females) age- and education-matched HCs were recruited 

from the local community. Prior to inclusion, the patients 

had to report a 6-month average pain intensity of $4 on 

the Verbal Rating Scale, with scores ranging from 0–10.13 

The included patients also had to be in a chronic pain state, 

which corresponds to Verbal Rating Scale scores $4 for at 

least 6 months.14

All participants were offered a monetary compensation 

of 400 Norwegian Kroner (NOK) (approximately USD 

$65) and pictures from their morphological brain scan. 

Psychiatric and neurological disorders, known traumatic 

brain injuries (13 Glasgow coma scale score at the time of 

injury), or magnetic resonance imaging (MRI) contraindica-

tions were used as exclusion criteria. A diagnosis of mild 

or moderate depression did not warrant exclusion in any of 

the groups. Furthermore, patients with a high consumption 

of analgesics were excluded (.180 mg of codeine or its 

equivalent per 24 hours, 24-hour continuous benzodiaz-

epine treatment, or use of carisoprodol). All participants 
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Figure 2 The generation of scR during the igT in the PcP and hc groups in the present study in light of the somatic marker hypothesis.
Notes: The schematic representation of the neuronal structures involved in generating and utilizing scR during the igT is from the somatic marker hypothesis.7 The top 
row shows the phases of the igT. after choice n, the subject is presented with a reward and possibly a punishment (feedback phase). This visual feedback generates a 
feedback scR. The subject ponders choice n + 1, which generates an anticipatory SCR (anticipatory phase). Anticipatory SCRs are interpreted by the brain and influence 
choice n + 1. The flow charts show the structures involved in generating SCRs and interpreting them during the IGT in HCs and in PCP. The arrows indicate the direction 
of information flow in a continuous process, initiated by the two trigger structures. The amygdala is more important as a trigger structure in the feedback phase due to its 
role in the impulsive system. The ventromedial prefrontal cortex is more important as a trigger structure in the anticipatory phase, and it triggers effector structures via 
the insula. The dotted lines indicate pathways that the current study suggests are abnormal in PcP, since they managed to generate normal feedback scRs, but not normal 
anticipatory scRs during pondering.
Abbreviations: scR, skin conductance response; igT, iowa gambling task; PcP, patients with chronic pain; hc, healthy control; n, choice number; vmPFc, ventromedial 
prefrontal cortex.

reported being right-handed, and they were assessed with 

the Edinburgh Handedness Inventory15 (patients: 0.82±0.21 

[mean±standard deviation]; controls: 0.91±0.16).

One patient was excluded due to a neurological disease 

that was discovered after inclusion, and one patient and one 

control were excluded due to technical problems during the 

IGT presentation. Thus, the groups included in the final analy-

sis consisted of 18 patients with chronic pain (15 females) 

and 19 HCs (17 females).

Of the 18 included chronic pain patients, eleven were 

classified as having pain of musculoskeletal etiology, five of 

idiopathic etiology, two with visceral etiology, and none with 

neuropathic pain.

Data collection
Procedure
On day 1, the participants underwent MRI scanning. On 

day 2, the participants filled out questionnaires measuring 

pain and completed neuropsychological tests to assess their 

general intelligence, depression level, working memory and 

effort, and finally performance on the IGT during neurophysi-

ological monitoring.

The IGT testing began with the subjects visiting the lava-

tory and washing their hands to ensure good SCR readings. 

Following that, various autonomic measuring equipment were 

attached (see below). Instructions for the computerized ver-

sion of the IGT16 were read to the subjects by the researcher 

(NAE) while the game was demonstrated. The subjects 

were then left alone in the room and monitored by closed-

circuit camera and microphone by the researcher. They were 

instructed to relax while an on-screen clock counted down 

from five minutes, and they were then instructed to com-

mence with the task. They began to choose cards by pressing 

keyboard keys labeled A, B, C, and D, which corresponded 

to the labeling of the card decks on the screen.

Room temperature was consistently maintained between 

22°C–26°C, and this was confirmed before testing with an 

electronic thermometer (Digitron 2088T, Elektron Technol-

ogy, Cambridge, UK).

iowa gambling task (igT)
We used a modified computerized version of the original IGT, 

which is similar to the version described by Bechara et al.16 

To avoid confusion about the value of foreign  currencies, 
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Figure 3 The iowa gambling task.
Notes: The Iowa gambling task is designed to test decision making. The figure 
illustrates the starting screen on a computerized version developed by the first author. 
The four decks from which subjects can choose have different and fixed rewards, 
while punishment frequencies vary between the decks, and punishment size also 
varies within the decks. From these characteristics, two decks are disadvantageous 
over time, while two decks are advantageous over time. Decision-making ability 
is scored by the number of cards the subject draws from the advantageous decks 
minus the cards drawn from the disadvantageous decks. The white text provides 
instructions to the subject in norwegian (“You now have $2,000/press a, B, c, or D”).  
The green bar displays the amount of money the subject has, while the red bar 
displays the total sum of money the subject has borrowed to play. in this version, 
the placement of the four decks was randomized on the screen for each subject, and 
renamed a–D from left to right. in this article a–D refers to the decks by the classic 
nomenclature of the iowa gambling task, not the letters displayed to the subjects.

all USD values from the original IGT were converted to local 

currency (NOK). Subjects chose cards from four decks (A, 

B, C, and D) with the goal of winning as much as possible. In 

each deck, there are varying amounts of rewards and punish-

ments, with decks A and B offering a fixed gain of $100, and 

decks C and D offering a fixed gain of $50. The losses vary in 

frequency, with a 10% loss in decks B and D, and a 50% loss 

in decks A and C. This results in an average gain or loss after 

ten cards, with a $250 loss for cards from decks A and B, and 

a $250 gain for decks C and D. Decks C and D were thus the 

advantageous decks, and A and B were the disadvantageous 

decks. On the computer display of the four card decks, a red 

bar indicating the amount of debt and a green bar indicating 

the amount of winnings were presented.On the same screen, 

updated instructions were presented to the subjects in 

Norwegian (“You now have X NOK”, “Press A, B, C, or D”, 

“You won Y NOK”, and on some trials “but you lost Z NOK”, 

where X, Y and Z were currency amounts) (Figure 3). The 

IGT has been described in more detail elsewhere.16

We randomized the on-screen position and naming of 

the different decks to avoid bias from naming or placement 

on the screen (see Figure 3).17 Furthermore, we shuffled the 

decks of cards between subjects. Randomization of the card 

order increases the robustness of averaging the autonomic 

signal, and it also rules out the effect of a specific card order 

on somatic marker generation. Randomization was obtained 

by block randomization in blocks of ten cards, keeping the 

original punishment and reward frequencies as described by 

Bechara et al.5

The interval from one choice to the next was set to a mini-

mum of 6.5 seconds, and it ended when the subject chose a 

card. The IGT has been criticized for allowing certain decks 

to run out of cards,18 thus reducing its sensitivity to detecting 

impairment in decision making. Because of this, we set all 

decks to contain 100 cards, which is equal to the total amount 

of cards that the subject was allowed to draw.

autonomic measures
As a measure of the state and balance of the autonomic ner-

vous system, several autonomic measurements were made. 

Skin sweat gland activity (ie, SCR), HR (ie, R wave to R wave 

intervals [RR]) from electrocardiogram (ECG) (PowerLab  

unit, ADInstruments, Dunedin, New Zealand) recordings, and 

blood pressure from the finger manometer were recorded during 

IGT performance. The ECG data was used to calculate both 

HR and HR variability. HR variability was calculated based 

on the HR, according to current recommendations.19 SCR, RR 

intervals, and blood pressure were used in event-related analyses 

(autonomic activity directly preceding or following choices). 

The average HR, HR variability, and blood pressure were cal-

culated separately for the 5-minute baseline period before the 

IGT (“Baseline”) and for the entire IGT period (“Activity”). 

In addition the individual’s change (∆) in these measurements 

from Baseline to Activity was calculated, for example:

 Baseline HR - Activity HR = ∆HR. (1)

sample characteristics
Pain
Pain intensity was assessed using the validated Norwegian 

translation of the Brief Pain Inventory (BPI).20,21 The BPI 

assesses the intensity of pain during the last 24 hours using 

a 0–10 numerical rating scale.

Depression level
Since major depressive disorder is known to affect decision 

making,22 depression levels were scored with the Beck Depres-

sion Inventory-II to enable the correction of IGT scores.23

Working memory
Working memory function is necessary for normal IGT 

performance,24 and reduced working memory performance 
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has been reported in chronic pain samples.25 Thus, all  subjects 

completed the Letter–Number Sequencing subtest of the 

Wechsler Adult Intelligence Scale III, a standard two-back 

test, and a visual version of the Paced Auditory Serial  Addition 

Test.26 These three tasks cover various aspects of working 

memory, ranging from simple storage of information in work-

ing memory, to manipulation of the stored information.

hardware
For the autonomic measurements, all data were collected 

using Chart (version 5.5; ADInstruments, Dunedin, 

New Zealand) and sampled at 1 kHz. The computer was 

fed data from PowerLab 16/30 (ADInstruments), which got 

user input data and card information data via a serial output/ 

parallel input cable (Leteng AS, Oslo, Norway). The SCR was 

measured with finger electrodes with a dedicated preampli-

fier (MLT116F and ML135; ADInstruments).  Respiration 

(Thermistor; Sleepmate® Technologies, Glen Burnie, MD, 

USA) and one-lead ECG (lead II) were also measured. 

Continuous finger blood pressure was measured  (Finometer® 

PRO, internal sampling at 200 Hz; Finapres Medical Sys-

tems BV, Amsterdam, the Netherlands). Recordings of blood 

pressure and SCR were done on the left (nonmoving) hand 

to reduce motion artifacts.

image acquisition
Scanning was performed on a 3T Siemens Trio scanner with a 

12-channel Head Matrix Coil (Siemens AG, Munich, Bavaria, 

Germany). Foam pads were used to minimize head motion. 

One T1-weighted three-dimensional volume measurement 

was acquired (repetition time [TR] =2,300 ms; echo time  

[TE] =2.88 ms; inversion time [TI] =900 ms; flip angle =9°; 

field of view [FOV] =526; slices =160; slice thickness =1.2 

mm; in-plane resolution of 1.0 mm × 1.0 mm). No morpholog-

ical abnormalities were revealed in any of the participants.

analysis
igT measurements
The IGT score was calculated as the number of advantageous 

(cards chosen from decks C and D) minus disadvantageous 

choices (cards chosen from decks A and B).

Patients with chronic pain have been shown to have 

reduced persistence during IGT performance (ie, they switch 

more often between the four decks of cards) than controls.2,4 

IGT switching was calculated as the frequency at which a 

subject switched from drawing from an advantageous or 

disadvantageous deck choice, to drawing from the other type 

of deck choice. For example, “A, A” and “A, B” were not 

counted as a switch, but “A, C” and “A, D” were counted 

as a switch.

For IGT score and switching, total score and total switch-

ing was calculated for the whole test (cards 1 to 100). Addi-

tionally, score and switching was calculated for the learning 

phase of the test (cards 1 to 40) and the performance phase of 

the test (cards 41 to 100), as the processes underlying decision 

making have been shown to differ in the first 40 versus the last 

60 cards in controls27 and in patients with chronic pain.2

event-related autonomic analysis
Previous research on anticipatory SCR during the IGT has 

used a variety of methods for calculating the SCR.28–31 We 

measured both anticipatory responses (5–0 seconds prior to 

making a choice) and feedback responses (0–5 seconds after 

making a choice) for SCR. SCRs were calculated in a manner 

similar to that reported by Bechara et al32 (ie, the integral of the 

detrended skin conductance level curve, or the area under the 

curve, was obtained, with the skin conductance level recorded 

at the beginning of the integral serving as the baseline).

We used the same method to calculate the integral of sys-

tolic blood pressure and heart RR intervals in the 5 seconds 

prior to making a choice and after making a choice.

For the analysis of blood pressure levels, the delay from 

true aortic blood pressure to the pulse signals measured in 

the hand was assumed at a fixed 250 ms delay. Automatic 

calibration of the blood pressure monitoring equipment and 

ectopic heart beats were identified by manual inspection of 

the data, and any RR or blood pressure intervals that included 

such events were excluded from the analysis.

Postchoice SCRs were analyzed to assess whether SCR 

generation following punishment or reward was similar in 

the control and patient groups. For this analysis, SCRs after 

making a choice were grouped based on whether the card 

actually punished the subject or not (50% of cards in decks 

A and C and 10% of cards in decks B and D punished the 

subject). The integral was analyzed in the 5-second period 

after making a choice; otherwise, they were similar to antici-

patory SCR calculations.

Analyses at the event level (ie, integrals for a period prior 

to making a card selection for a given subject) and HR vari-

ability analyses were done in Chart 7.0 (ADInstruments).

cardiac autonomic regulation
Analysis of normalized low frequency (LF) power 

(0.04–0.15 Hz ms2), normalized high frequency (HF) power 

(0.15–0.4 Hz ms2), and the LF to HF ratio (LF/HF) were per-

formed in the frequency domain (LabChart 7.0;  ADInstruments) 
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Table 1 Demographic, clinical, and working memory measures in 
patients with chronic pain and matched healthy controls

 PCP HCs P d

education 4.67±2.4 5.26±2.7 0.484 0.23
sex 18 (3 male) 19 (2 male) 0.597 0.18
age 38.5±7.1 38.4±7.0 0.955 0.02
Pain nRs (prior 24 hour 
average)

6±1.64 1±1.29 0.000* 3.39

Pain nRs (at testing) 4.11±1.49 0.05±0.23 0.000* 3.86
Depression level 14.2±8.6 1.9±2.4 0.000* 1.96
Working memory measures    
 letter–number sequencing 9.2±2.2 9.9±2.0 0.313 0.34
 2-back score 47.9±3.8 50±2.9 0.059 0.64
 PVsaT score 99.1±4.9 100.1±3.8 0.492 0.23

Notes: Depression level was determined with the Beck Depression inventory ii. 
numbers are the numbers are the mean values ± standard deviation within groups 
of PcP with a pain self-rating of $4/10 for $6 months and in their healthy controls. 
statistical differences between groups were explored with a two-tailed, two-sample 
student’s t-test. Significance on the Student’s t-test is marked with * for P#0.05. 
effect size is calculated as cohen’s d.
Abbreviations: PcP, patients with chronic pain; hcs, healthy controls; nRs, 
numerical Rating scale; PVsaT; Paced Visual serial addition Test.

(Welch window, 1,024 data points, and segment overlap, 50%). 

The maximal frequency was set to 0.5 Hz.

Artifacts were excluded from the analyses, and RR 

intervals were estimated from the intervals noted before and 

after the ectopic heartbeats occurred. The recordings were 

inspected manually and corrected when necessary.

HR, HR variability, and blood pressure were calculated 

as the average for the 5-minute resting period before the start 

of the IGT (for example, “Baseline HR”), for the duration of 

the IGT (for example, “Activity HR”), and for each group’s 

mean absolute change from Baseline to Activity across all 

cardiac autonomic measures (for example, “∆HR”).

MRi analysis
The volumetric assessment of subjects’ T1-weighted brain 

MRI volumes was performed using NeuroQuant software 

(CorTechs Labs, Inc., La Jolla, CA, USA). This software 

enables automated analysis of T1-weighted brain volumes 

and provides a morphology report on the volume of the 

total cortical gray matter, as well as of the ventricles, 

brainstem, cerebellum, and some subcortical structures 

(hippocampus, amygdala, caudate, putamen, pallidum, 

thalamus, nucleus accumbens, and brainstem), which was 

corrected for intra cranial volume.33 For each structure, the 

volumes of the structures in the right and left hemisphere 

were combined. The volumes of the structures of interest 

(total cortical gray matter, amygdala, hippocampus, brain-

stem, and nucleus accumbens) were compared between 

groups and correlated with total IGT scores, pain, and 

autonomic data.

statistical analysis
PASW Statistics 18.0 (IBM Corporation, Armonk, NY, USA) 

was used for all statistical analyses.

Two-tailed, unpaired Student’s t-tests were used to identify 

the differences between groups on demographic, depression 

level, pain, and neuropsychological measures, as well as on 

IGT scores, brain structure volumes, and autonomic activity. 

Cohen’s d was calculated and classified as small (d=0.15–

0.40), medium (d=0.40–0.75), and large (d.0.75).

Paired Student’s t-tests were used for all within-groups 

analyses of event-related or cardiac autonomic measures. 

 Spearman’s rank–order correlation was performed to assess 

the relationships between the IGT total score, the IGT total 

switching, pain level (evaluated using the BPI) before the 

IGT, and event-related autonomic data, as well as between 

the IGT total score and brain structure volumes. Possible 

confounding effects of depression levels on the IGT score 

were  investigated with Spearman’s partial correlation. The 

significance thres hold was set to P#0.05 (two-tailed) for both 

Student’s t-tests and  Spearman’s correlations.

A mixed-design analysis of variance (ANOVA) (“split-

plot ANOVA”) was used to investigate the interactions 

between the three autonomic measures related to choosing 

from the advantageous versus disadvantageous decks and 

subject group (chronic pain patients versus HCs).  Outliers 

were identified as studentized residuals $±3 standard 

 deviations. Simple main effects were investigated where sig-

nificant interactions were found. Effect sizes were calculated 

as partial eta squared (ηp2), and they were classified as small 

(.0.01), medium (.0.06), or large (.0.14).

All data are given as the mean ± standard deviation.

Results
Participants
As shown in Table 1, there were no differences in age, length 

of education, or the sex distribution between the patients and 

control groups. The patient group scored significantly higher on 

both the average pain for the last 24 hours and average pain at 

the time of testing than did the controls. (Table 1).

There were no significant differences on the working 

memory tests (Table 1).

iowa gambling task behavior
As shown in Table 2, the IGT total score was not different 

between the patients and controls. There were also no dif-

ferences in the IGT score for the learning or performance 

phases of the IGT between the groups (Table 2).

During the entire IGT period, there was a trend toward 

increased switching in the patient group compared to the 
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Table 2 igT total scores and switching in the learning phase 
(1–40 cards) and performance phase (41–100 cards), and brain 
volumes in PcP and matched hcs

 PCP HCs P d

igT score 5.2±28.6 5.7±31.0 0.959 0.02
igT score, learning phase -7.4±10.7 -9.2±13.3 0.665 0.14
igT score, performance phase -0.3±26.9 1.6±27.4 0.830 0.07
switch total 0.35±0.15 0.26±0.15 0.080 0.59
switch, learning phase -6.13±0.16 -6.17±0.17 0.472 0.24
switch, performance phase -6.17±0.18 -6.29±0.16 0.031* 0.74
Brain volume, % of icV
 Total cortical gray matter 32.75±2.81 33.93±2.47 0.209 0.44
 hippocampus 0.53±0.04 0.54±0.05 0.872 0.06
 amygdala 0.25±0.02 0.25±0.02 0.556 0.20
 nucleus accumbens 0.07±0.01 0.08±0.01 0.034* 0.75
 Brainstem 1.62±0.15 1.57±0.11 0.293 0.36

Notes: numbers are the mean values ± standard deviation within groups of PcP 
with a pain self-rating of $4/10 for $6 months and in their healthy controls cerebral 
volume is the combined volume of the two hemispheres in the % of icV. statistical 
differences between groups were explored with a two-tailed, two-sample student’s 
t-test. Significance of the Student’s t-test is marked with * for P#0.05. effect size is 
calculated as cohen’s d.
Abbreviations: igT, iowa gambling task; PcP, patients with chronic pain; hcs, 
healthy controls; icV, intracranial volume.

Table 3 correlations between pain level, the different igT scores, and scR before and during the igT in PcP and matched hcs

PCP HCs

Pain  
level

IGT  
score

IGT  
switching

SCR  
Before 
advantageous 
choices

SCR  
Before 
disadvantageous 
choices

Pain  
level

IGT  
score

IGT  
switching

SCR  
Before 
advantageous 
choices

SCR  
Before 
disadvantageous 
choices

Pain level 1*    1*     
igT score -0.388 1*    -0.151 1*    
igT switching 0.262 -0.009 1*   0.172 -0.277 1*   
scR before 
advantageous 
choices

-0.02 0.103 0.091 1*  0.172 0.184 -0.119 1*  

scR before 
disadvantageous 
choices

0.044 0.063 0.203 0.539* 1* 0.215 0.568* 0.151 0.253 1*

Notes: numbers are spearman’s rho in PcP with a pain self-rating of $4/10 for $6 months and in their healthy controls. statistical differences within groups were explored 
with a two-tailed Spearman’s rank–order correlation. Significance of the Student’s t-test is marked with * for P#0.05.
Abbreviations: igT, iowa gambling task; scR, skin conductance response; PcP, patients with chronic pain; hcs, healthy controls.

control group. In the performance phase of the IGT, the 

chronic pain patients switched significantly more often than 

did the HCs (Table 2).

There were no significant correlations between the dif-

ferent IGT scores and pain level before the test in any of the 

groups (Table 3). These correlations remained nonsignificant 

after adjusting for depression scores (results not shown).

autonomic activation during  
decision making
scR
A mixed-design ANOVA (group [chronic pain patient or 

control] × deck [advantageous or disadvantageous]) on the 

SCR before choices showed a weak, nonsignificant main 

effect for group, no main effect for deck, but a significant 

group × deck interaction with a large effect size (Table 4 and 

Figure 4). There was one outlier in the patient group, but the 

group × deck interaction remained when excluding the outlier 

(F[1, 33]=5.227, P=0.029, η
p

2=0.137).

The SCRs before choosing from advantageous and 

disadvantageous decks were significantly different, with 

a large effect size observed within the control group 

(Table 4 and Figure 5). In the patient group, there was no 

difference in SCRs before choosing from advantageous 

and disadvantageous decks (Table 5 and Figure 4). For 

disadvantageous decks, the SCR was significantly higher 

in controls than in patients with a large effect size (F[1, 

34]=6.581, P=0.015, η
p

2=0.162). There was no such group 

difference in SCR before the advantageous deck choices 

(Figure 2).

For HCs, there was a significant correlation between the 

SCR before the disadvantageous deck choices and the IGT 

total score (Spearman’s rho =0.568, P=0.011). This was 

not found in the patient group. Rather, the SCRs before the 

disadvantageous and advantageous deck choices were made 

were correlated with each other in the chronic pain group 

(Spearman’s rho =0.539, P=0.026). Except for the aforemen-

tioned results, no correlations were found in the chronic pain 

group between SCR and IGT behavior, or between SCR and 

pain level (Table 3). None of these correlations changed in 

significance after adjusting for depression level (results not 

shown).

There were no differences in the postchoice SCRs 

between receiving a punishment and a no-punishment card 

within the patient or control groups, or between the groups 

(Table 5).
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Table 4 Results of the mixed anOVa (group × choice type) 
analyses of the autonomic scR, heart rate (RR), and BP before 
choosing from the disadvantageous or the advantageous decks in 
PcP and matched hcs

F P ηp
2

scR
 group F(1,34)=2.869 0.099 0.078

 Deck F(1,34)=1.005 0.323 0.029

 group × deck F(1,34)=6.195 0.018* 0.154

RR
 group F(1,32)=1.917 0.176 0.057

 Deck F(1,32)=2.755 0.107 0.079

 group × deck F(1,32)=0.542 0.467 0.017

BP
 group F(1,32)=1.753 0.802 0.002

 Deck F(1,32)=1.916 0.176 0.056

 group × deck F(1,32)=1.382 0.249 0.041

Simple main effects
scR
 hc group F(1,18)=5.349 0.033* 0.229

 PcP group F(1,16)=1.363 0.260 0.079

 Disadvantageous decks F(1,34)=6.581 0.015* 0.162
 advantageous decks F(1,34)=0.374 0.545 0.011

Notes: Relationship between group status and anticipatory autonomic activation 
among PcP with a pain self-rating of $4/10 for $6 months and in their healthy 
controls. The mixed anOVa is by group (PcP or hcs) × deck type (advantageous 
or disadvantageous) for each of the three autonomic measures used in the study 
(scR, RR, and BP). One patient was excluded from all scR analyses due to technical 
problems with the recordings. Two controls were excluded from all BP and heart 
rate analyses because of excessive amount of extrasystoles. Measures are integrals 
of autonomic measures in the 5 seconds preceding the subject’s choice of card, 
which were either classified as advantageous or disadvantageous. Significance of the 
student’s t-test is marked with * for P$0.05.
Abbreviations: anOVa, analysis of variance; scR, skin conductance response; 
RR, R wave to R wave interval; BP, systolic blood pressure; PcP, patients with 
chronic pain; hcs, healthy controls.
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Figure 4 autonomic measures from the anticipatory phase of the iowa gambling task before drawing from either the advantageous or disadvantageous decks.
Notes: The autonomic measures were scR (A), heart RR (B), and BP (C). The Y-axes denote the area under the respective measurement curves from 5.0 seconds before a 
card was picked from a deck. Points are split into PCP (red lines and squares) and their HCs (green lines and circles). The bars mark standard errors. •Significant within-group 
difference, P,0.05; ••significant between-group difference, P,0.05; *significant interactions between groups and card deck type, P,0.05.
Abbreviations: scR, skin conductance response; RR, R wave to R wave intervals; BP, systolic blood pressure; PcP, patients with chronic pain; hcs, healthy controls.

RR intervals
A mixed-design ANOVA on the RR integral before choices 

(group [chronic pain patient or control] × deck [advantageous 

or disadvantageous]) showed no main effect for group, deck, 

or the group × deck interaction (Table 4). There were no 

outliers in any group.

Blood pressure
The mixed-design ANOVA on the blood pressure integral 

before choices (group [chronic pain patient or control] × deck 

[advantageous or disadvantageous]) showed no main effect 

for group, deck, or the group × deck interaction (Table 4).  

There was one outlier in the control group, but removing this 

did not alter the results.

cardiac autonomic regulation
The Student’s t-tests showed no significant group differences 

for the Baseline HR or Baseline HR variability measures (LF/

HF, LF, or HF), or the Baseline blood pressure between the 

patient and the control groups, and all of the effect sizes were 

small. There was also no significant group difference for the 

change from Baseline to Activity on any of the cardiac auto-

nomic measures. However, there were medium effect sizes for 

the group differences on ∆HR, ∆LF/HF, and ∆HF (Table 6).

Brain structure volumes
As shown in Table 2, the nucleus accumbens volume was 

significantly reduced in the chronic pain group. For the other 
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Table 5 scR before disadvantageous and advantageous choices, 
and after receiving reward and punishment cards in the igT in 
PcP and matched hcs

PCP HCs Between 
groups

P d

SCR before choice
advantageous -0.14±0.67 -0.02±0.49 0.545 0.2
Disadvantageous -0.24±0.68 0.23±0.42 0.015* 0.86
Within groups
 P 0.260 0.033*  
 d 0.16 0.55  
SCR after choice
no punishment 0.24±0.79 0.08±0.50 0.467 0.25
Punishment 0.39±0.78 0.03±0.73 0.166 0.47
Within groups
 P 0.224 0.742  
 d 0.19 0.08  

Notes: numbers are mean values within groups ± standard deviation in PcP with 
a pain self-rating of $4/10 for $6 months and in their healthy controls. statistical 
differences between and within groups were explored with a two-tailed, two-sample 
student’s t-test. Significance of the Student’s t-test is marked with * for P#0.05. 
effect size is calculated as cohen’s d.
Abbreviations: scR, skin conductance response; igT, iowa gambling task; PcP, 
patients with chronic pain; hcs, healthy controls.
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Figure 5 scR during the iowa gambling task for pain patients and controls.
Notes: The relative changes in scl for the 5 seconds prior to making advantageous choices (continuous line) or disadvantageous choices (dashed line) for PcP (red line) 
and HCs (green line), for illustrative purposes. Curves of significantly different SCRs are marked with * or §. The SCR was calculated as the area under a continuous SCL 
curve, with baseline as the scl 5 seconds prior to making a choice. Simple main effects in a mixed design ANOVA showed that the SCR was significantly higher in HCs than 
in PCP for disadvantageous (§), but not advantageous choices. Only within the HC group was there a significant difference between the SCRs prior to making advantageous 
and disadvantageous choices (*).
Abbreviations: scl, skin conductance level; scR, skin conductance response; PcP, patients with chronic pain; hcs, healthy controls; anOVa, analysis of variance.

four brain structures, no significant group differences were 

found, but a medium effect size was present for the reduced 

total cortical gray matter volume in the chronic pain patients 

(Table 2).

The chronic pain group had a significantly positive 

correlation between total cortical gray matter volume and 

IGT total score (Table 7). Moreover, there was a negative cor-

relation between IGT total switching and amygdala volume 

in the chronic pain patients (Table 7). No such correlations 

with IGT behavior were found in the control group. All cor-

relations remained significant after adjusting for depression 

levels (results not shown).

Discussion
To our knowledge, this is the first study to show that patients 

with chronic pain lack SCR before making disadvantageous 

decisions. In line with our hypothesis, the patient group was 

impaired at generating SCRs before choosing from disad-

vantageous card decks in the IGT. The other main finding in 

this study was that the decision-making ability in the chronic 
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Table 6 cardiac autonomic regulation during the igT and rest in PcP and matched hcs

 PCP HCs Between-groups tests

Baseline IGT Baseline IGT Baseline ∆IGT

P d P d

Blood pressure 126±18.6 123±13.8 125±17.1 123±12.7 0.617 0.17 0.892 0.05
heart rate 73.5±8.4 75.1±13.6 72.4±8.1 75.2±13.6 0.466 0.25 0.161 0.48
low-to-high frequency power ratio 2.41±1.51 2.66±3.49 1.65±1.16 2.55±3.39 0.310 0.35 0.135 0.52
normalized low frequency power 62.1±16.1 61±13.8 54.8±14.6 57.8±17.1 0.583 0.19 0.294 0.36
normalized high frequency power 33.2±13.99 35.22±12.9 41.86±14.18 38.46±16.4 0.516 0.22 0.145 0.50

Notes: numbers are mean values within groups ± standard deviation in PcP with a pain self-rating of $4/10 for $6 months and in their healthy controls. Measures are 
calculated for the baseline period (resting period prior to task) and during the igT. Between-groups tests were performed on the baseline data and on the group-averaged 
∆IGT. Statistical differences between baseline and IGT within groups were explored with a two-tailed, two-sample Student’s t-test. Significance on the Student’s t-test is 
marked with * for P#0.05. The effect size is calculated as cohen’s d.
Abbreviations: IGT, Iowa gambling task; PCP, patients with chronic pain; HCs, healthy controls; ∆IGT, increase from baseline to IGT.

Table 7 correlations between igT behavior and autonomic measures and brain volumes in PcP and matched hcs

PCP HCs

IGT score Switching IGT score Switching

autonomic activity before igT choices
 scR advantageous 0.103 0.091 0.184 -0.119
 scR disadvantageous 0.063 0.203 0.568* 0.151
 RR advantageous 0.06 0.289 0.083 -0.044
 RR disadvantageous -0.027 0.483 0.298 0.132
 BP advantageous -0.370 0.250 0.280 -0.402
 BP disadvantageous -0.194 0.417 -0.184 -0.338
combined cerebral volume in % icV
 Total cortical gray matter 0.691* -0.182 0.03 -0.042
 hippocampus 0.436 -0.319 0.129 -0.426
 amygdala 0.156 -0.701* 0.011 0.061
 nucleus accumbens 0.315 -0.152 0.108 -0.068
 Brainstem 0.068 0.130 0.099 -0.355

Notes: numbers are spearman’s rho in PcP with a pain self-rating of $4/10 for $6 months and in their healthy controls. cerebral volume is the combined volume of the 
two hemispheres in % of ICV. Statistical differences within groups were explored with a two-tailed Spearman’s rank–order correlation. Significance on Student’s t-test is 
marked with * for P#0.05.
Abbreviations: igT, iowa gambling task; PcP, patients with chronic pain; hcs, healthy controls; scR, skin conductance response; RR, R wave to R wave interval; BP, systolic 
blood pressure; icV, intracranial volume.

pain patient group correlated positively with total cortical 

gray matter volume.

As predicted by the somatic marker hypothesis, a specific 

and significant increase in anticipatory SCR appeared when 

controls chose from the disadvantageous decks, and this 

correlated positively with the total IGT scores. This finding 

is in line with those from previous studies that showed a posi-

tive relationship between IGT performance and strength of 

the anticipatory SCR in healthy subjects.34–36 Similar findings 

were not present in the patient group.

The lack of the anticipatory SCRs in the patients with pain 

was not caused by a general impairment in SCR generation. 

There were no group differences in terms of the autonomic 

measures that indicated the presence of autonomic dysfunction 

in the patient group. For instance, despite abnormal anticipatory 

SCRs before the choices were made, the patient group exhibited 

similar SCRs after the choices were made as the controls when 

receiving punishment or reward. These results suggest that the 

chronic pain group was able to trigger somatic responses due to 

innate or learned stimuli, but they were impaired in the somatic 

marker structures necessary for sensing (sensory brain stem 

nuclei), processing (insula, somatosensory cortices, posterior 

cingulate cortex, and precuneus), or triggering (ventromedial pre-

frontal cortex, hippocampus, and dorsolateral prefrontal cortex) 

the somatic states during the pondering of choices (Figure 2).37  

Figure 2 illustrates the possible abnormal pathways, shown as 

dotted lines, in the chronic pain group that could lead to the 

observed lack of SCR generation before making disadvanta-

geous choices. The figure is based on the model by Bechara,7 

as described in the Introduction.

Patients and controls also displayed different behavior 

during the IGT. The patient group switched significantly 

more between advantageous and disadvantageous decks 

compared to the controls in the performance phase of the 
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test. This is in line with results from previous studies that 

reported a difference in switching measures among patients.2,4 

The current study did not find a significant group difference in 

the IGT total score between patients and controls. While this 

is in line with the findings from the largest study conducted 

thus far on the IGT in chronic pain patients,3 the opposite 

has been reported in two other studies.2,4 Compared with the 

reports on the IGT studies that exhibited group differences,2,4 

our control group appears to have performed subpar, but 

based on a review of previous IGT studies, the HCs scored 

within the range of the control groups.38 Furthermore, the 

mean score of the current study’s chronic pain group lies 

between the two chronic pain subgroups of the only past 

chronic pain study that reported mean scores of the IGT, albeit 

 graphically.4 The current study thus suggests that increased 

switching and SCR deficits are more sensitive to chronic 

pain-induced impairments in decision making than in the 

total IGT score. The lack of standardized scores for the IGT 

and the general lack of mean score reporting complicate the 

interpretation and comparison between publications.

Moreover, normal IGT-scores have been seen in subjects 

without SCRs,39 as other body signals can help construct 

somatic markers in the brain.7 Thus, it is possible that other 

bodily signals guided the patient group’s decisions. However, 

we failed to find any signs of increased reliance on other somatic 

states (ie, cardiac autonomic measures) in the patient group. 

Still, decision making in chronic pain patients can be supported 

by signaling pathways that were not monitored (for example, 

proprioceptive, vagal, or humoral pathways),7 or by the as–if 

loop between the effector structures and sensory structures that 

bypass the body altogether (Figure 2). Another possibility is that 

the chronic pain group draws on cognitive resources for deci-

sion making, as suggested by the association between cortical 

volumes and IGT scores in the chronic pain patients.

To our knowledge, this is the first study to show that 

performance on the IGT correlates with changes in the 

cerebral morphology of chronic pain patients. The present 

study demonstrated a strong positive correlation between the 

IGT total score and cortical gray matter volume in the patient 

group. Such a correlation was not found for the subcortical 

structures or the brain stem. Previous clinical studies have 

showed a relationship between IGT performance and corti-

cal thickness of the ventromedial prefrontal cortex in patient 

groups with Parkinson’s disease and alcoholism,40,41 but not 

in controls.42 The current results could suggest that the IGT 

is sensitive to cortical thinning in chronic pain patients. The 

location of such thinning cannot be derived from the current 

results, but all the cortical areas involved in decision making 

are known to be affected in chronic pain patients.10

The present findings indicate that decision-making 

deficits in chronic pain patients are dependent on cortical 

volume rather than on reductions in subcortical structures, 

including the nucleus accumbens. The latter structure is sug-

gested in the somatic marker hypothesis to be involved both 

in registering the somatic states and as an effector structure 

(Figure 2).37,43 Although this study demonstrated a reduction 

in nucleus accumbens volume in the patient group, which was 

in line with previous research,44 no correlation between the 

size of the nucleus accumbens and the IGT total score in the 

patient group was found. Furthermore, the amygdala, brain-

stem, and hippocampus are important for the generation of 

anticipatory SCRs and decision making (Figure 2). Although 

size alone does not determine function, their normal volume 

in the patient group suggests the observed anticipatory 

SCR impairment in this group has its neurophysiological  

correlates elsewhere.

Different mechanisms within the framework of the 

somatic marker hypothesis could explain the neurophysiology 

behind the altered decision making in chronic pain patients 

(see Figures 1 and 2). One possibility is that the processing 

structures (for example, the insula, cingulate cortex, or soma-

tosensory cortices) interpret pain as part of the somatic state. 

Chronic pain may create a backdrop of noise that increases 

the time necessary for a somatic marker to form. There is 

some support for this speculation in the current data, as there 

is a weak, nonsignificant correlation between IGT score 

and pain rating immediately before testing (Table 2). A not 

mutually exclusive possibility is that the sensory structures 

or the aforementioned processing structures are affected by 

the abnormal amount of pain signals in chronic pain patients, 

making them less sensitive to normal interoceptive signals 

that contribute to the formation of the somatic markers. 

This explanation draws some support from the correlation 

between the IGT total score and cortical gray matter volume, 

assuming reduced cortical volume is indicative of reduced 

sensory functions.

limitations
Unlike other decision-making tests such as the Cambridge 

Gambling Task, the IGT is reliant on working memory.45 Dif-

ferences in cognitive abilities did not seem to contribute to 

the observed difference in IGT behavior between the chronic 

pain patients and controls since there were no correlations 

(data not shown) between the working memory and the dif-

ferent IGT scores in any of the groups.

The IGT procedure in the current study closely resem-

bles that of the original computerized IGT,16 with a few 

 exceptions previously described. Notably, the positions of 
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all four decks were randomized on screen from subject 

to subject, as opposed to the original computerized IGT, 

where placements of the advantageous and disadvantageous 

decks are standardized.16 Studies have shown that decision 

making is affected by the placement of the options.17,46,47 

 Randomization of placement is a simple tool that can be used 

to eliminate any possible confounding effect of placement 

in the original IGT.18

The number of participants was relatively low, but still 

higher than in the other studies conducted assessing the IGT 

in chronic pain groups.2,4 Another limitation is the lack of a 

common pain etiology in the patient group. In general, the 

use of heterogeneous groups makes a study more vulnerable 

to type 2 errors, and there is indication that patients with 

different pain etiologies may have different changes in brain 

morphology.48 A recent meta-analysis of studies of changes 

in brain morphology in chronic pain patients did, however, 

find significant changes compared to controls.10 This indi-

cates that, although pain etiology-specific differences may 

be found in brain morphology, different etiologies do have 

important common findings. The effect sizes of the reported 

significant findings in the current study do not indicate a 

type 2 error. Findings in a heterogeneous pain group have 

stronger external validity than do more homogeneous stud-

ies, as chronic pain patients are a mixed-etiology group in 

real-life settings. A finding in a mixed-etiology pain group 

is also less likely to be dependent on a cause underlying the 

pain per se, and increases the probability that the findings 

are related to chronic pain.

Two-tailed statistical tests were chosen due to the low 

number of participants in the current study to avoid a type 1 

error. While this method increases the chance of a type 2 

error, it ensures that any results from the current study are 

worth further investigation. To avoid too high a risk of a 

type 2 error, correction for multiple comparisons was not 

applied.

Conclusion
The current study shows that chronic pain patients have 

impaired generation of anticipatory SCRs before making 

disadvantageous decisions, possibly caused by the interpre-

tation of pain as part of the somatic state, or by a reduced 

ability to process the somatic state due to chronic pain. It can 

be hypothesized that the patient group compensated for the 

reduction in anticipatory signals by becoming more depen-

dent on cortical resources in their decision making, and they 

demonstrated increased switching between advantageous and 

disadvantageous decks during the IGT.

In summary, the presence of chronic pain was found to 

affect fundamental aspects of decision making, which may 

have significant implications for everyday functioning and 

choices in this patient group.
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