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Abstract: This review describes strategies for the delivery of therapeutic radionuclides to tumor 

sites. Therapeutic approaches are summarized in terms of tumor location in the body, and tumor 

morphology. These determine the radionuclides of choice for suggested targeting ligands, and 

the type of delivery carriers. This review is not exhaustive in examples of radionuclide carriers 

for targeted cancer therapy. Our purpose is two-fold: to give an integrated picture of the general 

strategies and molecular constructs currently explored for the delivery of therapeutic radionu-

clides, and to identify challenges that need to be addressed. Internal radiotherapies for targeting 

of cancer are at a very exciting and creative stage. It is expected that the current emphasis on 

multidisciplinary approaches for exploring such therapeutic directions should enable internal 

radiotherapy to reach its full potential.

Keywords: cancer radiotherapy, targeted radiotherapy, radiotherapy of micrometastases, 

radiotherapy of solid tumors, radiotherapy of tumor vasculature

The drug
In internal radionuclide therapy, as opposed to external beam therapy, the radiations 

of interest are primarily particle emissions (alpha-, beta-particles, and Auger electrons; 

Table 1; see Kassis and Adelstein 2005), that aim on the destruction of the nuclear 

DNA strands by radiation-induced ionizations, excitations, chemical transmutations and 

local charge effects (Nunez et al 1995). During recoil, the ionizing radiation produces 

tracks along which energy is transferred to the surroundings. Linear energy transfer 

(LET) describes the transferred energy per distance traveled by the emitted particles. 

Alpha particles have high LET and produce densely ionizing tracks with highly lethal 

effects. Beta particle emitters, due to lower LET, produce sparsely ionizing tracks 

with lower killing effi cacy. Beta particles have the longest range in tissue followed 

by alpha particles and Auger electrons. The range of Auger cascade electrons are just 

of the order of a few nanometers, essentially creating a very localized irradiated area 

(sphere) around the decay site of the parent radionuclide (Zaidi and Sgouros 2003). The 

range of these emitted particles in tissue is a great determinant of the size of tumors to 

be potentially treated, and affects other considerations regarding the type of targeting 

ligand and delivery carrier for the parent radionuclide.

Specifi cally, alpha particles are positively charged monoenergetic helium nuclei 

with the highest energy among particle emissions ranging from 5 to 9 MeV. Alpha 

particles are characterized by LET values of the order of 80 keV/µm along the straight 

line tracks they travel with rate of energy deposition that increases approximately to 

300 keV/µm at the end of the track. Their range in tissue varies between 5 and 10 cell 

diameters (40 to 100 µm) depending on their energy (Kassis and Adelstein 2005). This 

is consistent with the dimensions of micrometastatic disease, allowing for localized 

irradiation of target cells with minimal toxicity on the surrounding normal cells. 

Alphas are particularly effective in cell killing (McDevitt et al 2001): cell survival 

studies have shown that alpha particle induced killing is independent of oxygenation 

state or cell cycle phase during irradiation, and that as few as 1–3 tracks across the 
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nucleus may result in cell death (Humm 1987; Macklis et al 

1988; Humm and Chin 1993; Couturier et al 2005) causing 

single- and double-stranded DNA breaks. Studies on survival 

of normal human epithelial cells suggest that alpha particle 

traversals in the cytoplasm or tangential to the cell nucleus do 

not affect cell survival (Søyland and Hassfjell 2000). These 

studies propose the signifi cance of the alpha particle traversed 

path length in the cell nuclei rather than the number of alpha 

particle traversals of cell nuclei. Consequently, internaliza-

tion of alpha particle emitters by cancer cells increases the 

chance to kill: alpha particles originating on the cell surface 

have only an estimated 30% probability of traversing the cell 

nucleus (Nikula et al 1999).

Beta particles are negatively charged electrons and their 

range in tissue is of the order of a centimeter that is compa-

rable with larger size tumors. Beta particles have energies 

ranging from 0.05 to 2.3 MeV with LET of the order of 

0.2 keV/µm (Table 1). Consequently, disregarding other 

parameters such as tumor penetration profi les of radionuclide 

carriers, higher radionuclide concentrations of beta emitters 

compared to alpha emitters are required for comparable cell 

kill (Zaidi and Sgouros 2003). However, the long range of 

beta particles results in a “cross fi re” effect. This effect is due 

to the long beta particles’ path that crosses multiple individual 

cells. The cross fi re effect decreases the need to target each 

cancer cell with a radionuclide emitter. Cell survival studies 

show that cells are more sensitive to beta radiation when they 

are arrested in the G2 phase, and are in a good oxygenated 

state. The presence of oxygen upon beta particle irradiation 

generates free radical species that are particularly harmful to 

the nuclear DNA. Both the rate of beta particle disintegra-

tion (half-life) and number of beta emitters (radioactivity) 

at the target site infl uence the killing effi cacy by competing 

against the enzymatic repair of the irradiated DNA strands 

(Zaidi and Sgouros 2003).

Auger electrons are low energy atomic orbital electrons 

emitted after electron capture (Kassis et al 1987; Kassis 

2004). During nuclear recoil they produce an array of reac-

tive radicals similar to those formed by alpha particle tracks. 

Because of the nanometer range tracks, the precise subcellular 

localization of Auger emitters can dramatically affect their 

killing effi cacy. Nuclear localization results in signifi cant 

enhancement of killing compared to localization at the cell 

surface (Faraggi et al 1994), making the subcellular accumula-

tion sites of Auger emitters of paramount importance on their 

killing effi cacy (Boswell and Brechbiel 2005).

Tumor response to particle radiation depends on several 

parameters including the absorbed dose, the dose rate, the 

tumor penetration profi le of radionuclides, the intracellular 

localization profi les of radionuclides of shorter range, and 

the tumor radiosensitivity.

Calculation of the absorbed dose (D) is necessary to 

quantitatively correlate tumor response to a particular 

radiotherapeutic modality and to project on the potential 

effect of other radiotherapeutic modalities or administration 

strategies. In simple terms, the absorbed dose from a target 

site is defi ned as the energy (E) absorbed by a particular 

mass of tissue, normalized by the tissue mass (M): D = E/M 

(Sgouros 2005). The absorbed energy is defi ned as a function 

of three parameters: the number of disintegrations within 

the particular volume of interest (δ), the energy emitted per 

disintegration (ε), and the fraction of emitted energy that 

is absorbed by the particular volume of interest (the target 

mass) (f): E = δ × ε × f. For the relatively long range beta 

emitters, the dose evaluation at a target site includes not only 

the energy emitted by radionuclides localized within the 

target volume, but also the energy emitted by radionuclides 

accumulated in neighboring organs or areas whose emissions 

cross along their path the target volume of interest (Kolbert 

et al 2003). In other words, the calculated total absorbed 

dose is the sum of the dose contributions from all regions 

containing radionuclides that act as secondary sources. The 

adsorbed dose due to photon emissions is usually calculated 

separately and added to the dose due to alpha or beta particles. 

For alpha particle emitters such cross organ absorbed doses 

may be of no signifi cance due to their short recoil distances. 

At the micron-scale and at distances comparable to a few 

cells, microdosimetric evaluations are used to evaluate dose 

or ‘hits’ acquired by cancer cells within micrometastatic 

clusters (Palm et al 2002).

Evaluation of the rate of clearance and rate of uptake at 

the target site rather than only the total accumulation of a 

radiopharmaceutical at key body sites (bone marrow, liver, 

spleen etc) can provide direct information to mathematical 

modeling for estimation of useful quantities in dosimetry 

such as antigen density (for radioimmunotherapy), tumor 

burden and antigen availability (Kolbert et al 2001).

Table 1 Physical characteristics of therapeutic radionuclides

 Particles Energy Emin–Emax Range

β Electrons Medium to high* 0.2–12 mm
  (0.05–2.3 MeV)
α Helium nuclei High** 5–9 MeV 40–100 µm
EC/IC Auger electrons Very low** Several nm
  (eV–keV)

Abbreviations: EC, electron capture; IC, internal conversion.
Notes: *average values; **monoenergetic.
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The apparent lethal effi cacy of the calculated self-dose 

and cross-dose may also be infl uenced by the bystander 

effect. This effect describes the enhanced killing of cells by 

radiation and even of cells that have not been accessed by the 

radionuclides. It is believed to be a biological effect that has 

been shown to be proportional to the dose that is delivered to 

the neighboring targeted cells, and has been primarily studied 

and verifi ed in vitro for alpha particle-, beta particle- and 

Auger electron-emitters. Depending on the radiation’s LET, 

this effect has been suggested to be driven by gap junction 

intracellular communications or by secretion from irradiated 

cells of cytokines and free radicals. These secreted compounds 

are taken up by non-irradiated cells that, in turn, respond with 

reduced survival (Snyder 2004). Recently, evidence for the 

bystander effect of Auger electron-emitters in vivo was also 

reported (Xu et al 2002). It is possible that for certain cases 

omission to account for the bystander effect in the dose deter-

mination could interfere with the correct evaluation of the dose 

effect. This is because of the way the dose is traditionally 

determined leading to underestimation of the radiobiological 

effect (Hei et al 2004; Kassis 2004). Currently, the molecular 

and physical mechanism(s) that describe the bystander effect 

are not fully understood. Elucidation of these mechanisms 

should provide the tools to mathematically incorporate their 

effect on dose estimation (Sgouros et al 2007).

Depending on the radiosensitivity of the target site, 

radiosensitizers for beta-particle therapy are also employed 

to improve killing effi cacy. Major design properties of an 

ideal radiosensitizer and its delivery vehicle include: the 

appropriate timing of the radiosensitizer’s administration 

and its presence at the tumor microenvironment relative to 

the therapeutic radiation, the radiosensitizer’s selective tumor 

accumulation and its adequate tumor localization and reten-

tion. Minimal toxicity and minimal enhancement of radia-

tion toxicity at normal organ sites are major considerations 

(for a review see Kvols 2005). Compounds currently in use 

include molecules that either target DNA (thymidilate syn-

thase inhibitors or platinum analogues), or aim at non-DNA 

targets. p53-mediated radiosensitization was also reported 

using folate-targeting liposomes for wtp53 transfection (Xu 

et al 2001). Examples of the non-DNA targeting category 

include compounds for targeting the epidermal growth factor 

receptor (EGFR), inhibitors of the Ras function, prostaglandin 

inhibitors or compounds that target the tumor neovasculature 

inhibiting angiogenesis and tumor nutrient- and oxygen-

supply. Contrary to beta particles, complete understanding 

of potential radiosensitization mechanisms towards alpha 

particles requires further studies (Supiot et al 2005, 2007).

When radionuclide delivery carriers are designed to 

specifi cally and directly target cancer cells (or endothelial 

cells of the tumor neovasculature), several criteria need to 

be evaluated regarding the molecular targets, including their 

expression by cancer cells relative to non-targeted cells 

and their relationship to the cell cycle, their surface density 

and their homogeneity on the cell surface. Several types of 

molecular targets used in targeted internal radiotherapy will 

be presented throughout the present review. Characteristic 

types include regulatory peptide receptors like the somatosta-

tin receptors for peptide receptor radiation therapy (PRRT) 

(Reubi et al 2005), EGFR (Hynes and Lane 2005; Normanno 

et al 2006), antiangiogenic molecular targets (vascular endo-

thelial growth factor receptors [VEGFR]) (Alessi et al 2004), 

integrins in antivascular therapies, and other novel targets 

under examination (Britz-Cunningham and Adelstein 2003). 

Correspondingly, the choice of the targeting ligand ideally 

is based on its binding specifi city to the chosen molecular 

targets and stability in vivo, the target affi nity and stability of 

the ligand-labeled carriers, and their resistance to degradation 

due to radiation. Stably radiolabeled constructs are crucial. 

For extensive discussions on radiolabeling strategies the 

readers are referred to reviews specifi c to the subject (Adam 

and Wilbur 2005; Brechbiel 2007).

The carriers
The types of radionuclide carriers reviewed here are catego-

rized based on the disease topology and/or tumor morphology 

and not based on the type of construct (for example lipo-

some- or polymer- or antibody-based). The rationale for 

this approach is to better describe and group the particular 

characteristics of the targeted disease that accordingly infl u-

ence the design and engineering of delivery carriers.

Metastatic cancer can exist on the same host at different 

stages simultaneously: ranging from single cancer cells or 

micrometastatic tumors to solid tumors. Micrometastases 

refer to small avascular cancer cell clusters. By solid tumors 

larger vascularized multicellular clusters are implied. To 

result in high tumor absorbed doses with relative low normal 

organ accumulation, a variety of designs for targeting carriers 

combined with different radionuclides are proposed. This 

variety emerges from the numerous variables describing each 

case. Such variables include the type (cancer biology) of 

cancer cells that constitute the tumors that would determine 

for example the relevant biomolecular markers, the tumor’s 

anatomic location in the body (topology), the shape and size 

of individual tumors (morphology), the presence or not of 

direct access routes to tumors such as vasculature or direct 
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administration in the space where they may be confi ned 

(blood or the peritoneal cavity), and others. Independently 

of the type (molecular type, and size) of the delivery car-

rier, stability of radionuclide conjugates is of paramount 

importance. Released radionuclides are free to distribute 

throughout the body and potentially accumulate at normal 

organs increasing toxicity.

In vascularized tumors, the so called “active” targeting 

of drug carriers is directed by specialized targeting ligands 

that aim at the molecular targets located on the surface of 

either the endothelial cells of tumor’s neovasculature or of 

the cancer cells that constitute the tumors. On the contrary, 

“passive” delivery of drug carriers to vascularized tumors 

denotes the extravasation from the blood stream into the 

tumor interstitium, and the preferential retention by tumors 

of nanometer-sized drug carriers compared with smaller com-

pounds. The Enhanced Permeability and Retention (EPR) 

effect that describes this mechanism is due to a combination 

of the tumor leaky neovasculature (Hobbs et al 1998; Jain 

et al 2002), the malfunctioning lymphatics, and the high 

interstitial pressures, and has been verifi ed experimentally 

by several groups (Hobbs et al 1998; Noguchi et al 1998). 

Nanometer sized carriers or macromolecules exhibiting 

enhanced retention by vascularized tumors are ideal for 

selective tumor accumulation (Noguchi et al 1998; Maeda 

et al 2000). In xenografts of human and murine tumors, the 

vascular reported pore cut off sizes can range from 200 nm 

to 1.2 µm (Hobbs et al 1998). And because passive tumor 

accumulation is a random event, for tumor accretion to 

become clinically compelling, blood circulation of carriers 

needs to be extensively sustained so as to increase the prob-

ability that the carrier will encounter the tumor. Extensive 

increase of the drug carriers’ circulation times with impres-

sive improvement of their biodistributions has been achieved 

by grafting polyethylene glycol polymers (PEGylation) on 

proteins, macromolecules and supramolecular drug carriers. 

It is believed that PEG acts as a steric barrier and interferes 

in the interactions of the carriers with serum proteins, cells of 

the immune- and reticuloendothelial- systems, and with other 

carriers (Lasic and Martin 1995; Allen et al 2002; Auguste 

et al 2003; Gabizon et al 2003; Sofou 2007). In internal 

radionuclide therapy the physical half-life of the delivered 

therapeutic radionuclides can be used as a free parameter to 

optimize the tumor delivered dose with respect to normal 

organ irradiation.

In micrometastatic disease, direct routes of administration 

at the cancer cells’ microenvironment are required to present 

the carrier and targeting moiety in the close vicinity of the 

tumor. Adsorption and internalization of radionuclide carriers 

by cancer cells that constitute the micrometastatic tumors, 

as well as their diffusion through the micrometastasis’ 

interstitial space and their penetration towards the micro-

metastatic core are characteristics that depend on several 

interfacial events. These include the binding strength of 

targeting ligands to cell surface receptors, potential non-

specifi c attractive interactions between the cell surface 

and the radionuclide carrier surface, and the size of the 

radionuclide carriers (Allen 2002; Emfietzoglou et al 

2005). Alpha- or Auger- emitters, due to their short range 

in tissues, would be more appropriate for effective killing 

of circulating single cancer cells with minimal irradiation 

of the blood vessels.

In all of the above cases, however, a major limitation 

in the therapy of cancer using internal radiotherapy still 

remains the dose-limiting toxicity. This is due to the rela-

tively signifi cant accumulation of radionuclide carriers in 

vital organs compared to target sites. It is the toxicity that 

prohibits administration of higher doses that could reach 

lethal absorbed levels at the tumor sites. Approaches to 

address this challenge include: direct single-step targeting 

using delivery carriers that result in improved biodistribu-

tions, strategies to stop angiogenesis without affecting 

normal tissues, direct selective targeting and destruction of 

neovasculature, “normalization” of the tumor neovasculature 

to enhance penetration of the drug into the tumor hetero-

geneous interstitial space, tumor accumulation of inactive 

prodrugs and localized “meta-activation” after localization 

at the tumor, direct targeting of easily accessible cancer cells, 

multi-step targeting to dissociate radiotoxicity from carrier-

induced toxicity, and others. Examples of these approaches 

are discussed below.

Single-step tumor accumulation
Here we report on radionuclide carriers without tumor-

specifi c ligands on their surface. These carriers are designed 

to either passively accumulate within the tumor interstitial 

space following extravasation from circulation in the blood 

stream, or to become physically entrapped into the fenes-

trations of the diseased tissue such as the liver. Magnetic 

radionuclide carriers that are “magnetically targeted” are 

also included in this section.

For vascularized tumors, passive accumulation within the 

tumor interstitial space is primarily infl uenced by the size and 

circulation time of the nanometer sized carriers. Liposomes 

with encapsulated radionuclides have been extensively 

studied (Hwang et al 1982; Henriksen et al 2004b; Sofou 
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et al 2004b). Liposomes are closed shell structures defi ned by 

one or more bilayer membranes that enclose an aqueous inte-

rior. The membranes consist of amphiphilic phospholipids 

(double-tailed, single-headed molecules) that self-assemble 

in water. Phospholipid bilayer membranes have a thickness 

of about 4 nm, and liposomes may entrap thousands of water 

soluble molecules in their internal aqueous compartment 

(Lasic 1993). The advantage of liposome-based carriers, apart 

from altering the biodistributions of the radiopharmaceutical, 

is their high drug-to-carrier ratios. High encapsulation effi -

ciencies of radionuclides by liposomes are achievable. Active 

loading protocols on preformed liposomes have been reported 

in the literature (Hwang et al 1982; Henriksen et al 2004a). 

Due to the current trend in liposome research for biomedi-

cal applications, towards using higher Tg lipid membranes, 

understanding the mechanisms for high radionuclide entrap-

ment effi ciencies is of great importance. Liver and spleen are 

common accumulation sites for liposomes. Therefore, for 

radionuclide delivery to solid tumors residing in these organs, 

passive accumulation of radiolabeled liposomes could be a 

logical choice. Alternatively, pretreatment with non radioac-

tive liposomes may saturate the hepatic macrophages result-

ing in lower liver uptake of the subsequently administered 

radiolabeled liposomes (Jonasdottir et al 2006).

Dextrans loaded with radionuclides have also been 

extensively studied for passive accumulation at the sites of 

vascularized tumors. Dextrans are branched polysaccharides 

composed of glucose molecules joined into chains of varying 

lengths. They have been in clinical use for several decades 

mainly to decrease vascular thrombosis. Similarly to lipo-

somes, dextran’s size that is of a few nm’s determines their 

localization in the body that is commonly at the liver and 

spleen. Extensive radiolabeling of dextrans and stable reten-

tion of radionuclides is critical for the effectively delivered 

tumor dose and the potential toxicity sites in vivo. Stable 

radiolabeling of dextrans with the beta particle emitter Rhe-

nium-188 (t
1/2 

= 16.9 h, E
max

 = 2.11 MeV, maximum range 

of 11 mm in soft tissue) was studied by Du and colleagues 

(2000). It is suggested by the authors that 188Re is particularly 

useful because it also emits gamma photons of 155 keV that 

enable monitoring of uptake and dosimetry calculations. 

However, stability of the rhenium radiocomplexes has been 

reported to be an issue in vitro owed to rhenium’s reoxida-

tion and transchelation. Du and colleagues (2000) modifi ed 

dextran’s surface by cysteine and used the free thiols for 

radiolabeling with 188Re-gluconate as transchelator. This 

approach exhibited 60%–70% labeling effi ciency. In physi-

ological conditions–5% human serum albumin in 0.9% saline 

solution at 37 °C – the radiolabeled dextrans released less 

than 15% of conjugated radioactivity for 24 hours in the 

presence of ascorbic acid under a nitrogen atmosphere.

In a different approach for passive accumulation of 

radionuclide carriers at vascularized hepatic tumors, hepatic 

arterial injection of micrometer sized particles has been 

used. In this approach, particles loaded with radionuclides 

are administered for hepatic embolization against primary 

or metastatic liver tumors. Locoregional administration into 

the hepatic artery results in the majority of injected activity 

to remain within the liver that provides almost exclusively 

the blood supply to hepatic metastases. Fortunately, normal 

liver tissue receives only 30% of its blood supply from the 

hepatic artery. Materials used for such microspheres include 

ceramics, polymers, resins or glass (Mantravadi et al 1982; 

Lin et al 1984). Increase of the tumor-to-liver ratio of 

absorbed activities beyond unity is the major requirement 

for minimizing toxicity at the liver parenchymal cells. The 

treatment effi cacy seems to depend strongly on the vascu-

larity of the hepatic malignancies (Mantravadi et al 1982), 

and it was reported that micrometer sized spheres may be 

too large to be dispersed into the hepatic tumor interstitium. 

Use of smaller size microspheres has been shown to be more 

effective at least in rats (Haefeli et al 1999). Reported chal-

lenges of this approach include heterogeneous microsphere 

distribution with high accumulation near the periphery of 

tumor vasculature and less localization at the tumor center, as 

well as clustering of deposited microspheres (Campbell et al 

2000). In addition, microspheres can potentially be released 

from the liver. In such cases, they commonly accumulate in 

the lungs. Microspheres bearing beta particle emitting radio-

nuclides, mainly 90Y (t
1/2 

= 2.67 days, E
max

 = 2.28 MeV), 186Re 

(t
1/2 

= 3.78 days, E
max

 = 1.077 keV, maximum range of 6 mm 

in soft tissue) and 188Re have been reported. Rhenium has 

the advantages of shorter required neutron activation times 

compared to 90Y, and the ability to allow for imaging. This 

is due to the gamma emissions which constitute 9.5% for 
186Re and 15.0% for 188Re emissions with energies 137 and 

155 keV, respectively. Clinical trials with 90Y-microspheres 

show encouraging results both for primary and metastatic 

liver tumors (Houle et al 1989; Salem et al 2002; Murthy 

et al 2005). Microspheres contain rhenium metal or 89Y 

without chelation. Generally, small amounts of radioactivity 

are reported to leak from microspheres in vitro. Rhenium 

compounds released from glass microspheres have been 

reported to accumulate in the thyroid. For 90Y, bone marrow 

accumulation has been reported that could lead to myelosup-

pression (Haefeli et al 1999).
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Magnetic targeting has also been explored as an alternative 

strategy to enhance tumor accumulation with the objective to 

minimize systemic toxicity. Magnetic microspheres contain-

ing therapeutic radionuclides were used in this approach, and 

enhancement of localization of the delivery carriers at the 

tumors is achieved by using external magnetic fi elds. Hafaeli 

and colleagues (1995) synthesized micron-size poly(lactic 

acid) spheres with incorporated magnetite and the beta par-

ticle emitter 90Y, and demonstrated enhanced killing effi cacy 

of neuroblastoma cells when a magnet was used to direct the 

microspheres closer to cells in vitro. In vivo studies showed 

high tumor accumulation by magnetic poly(lactic acid) radio-

micropheres when directed towards a subcutaneous tumor by 

an external fi xed magnet after intraperitoneal administration. 

Stable radiolabeling of magnetic nanoparticles with 188Re 

is reported (Haefeli et al 2001). In a different approach, 

Chunfu and colleagues (2004) developed 200 nm particles 

composed of magnetite nanoparticles covered with human 

serum albumin and labeled with 188Re via its sulfur surface 

atoms. These nanoparticles showed stable radionuclide reten-

tion in albumin solution for up to 72 hours.

After extravasation of radionuclide carriers into solid 

tumors, diffusion is the main transport mechanism that 

governs their penetration and dissemination throughout 

the tumor’s interstitial space. Tumor interstitial diffusion 

is hindered by the extracellular matrix (ECM) compris-

ing primarily collagen and glycosaminoglycans (such as 

hyaluronan). The effect of these biomacromolecules on the 

transport characteristics of antibodies and liposomes has 

been extensively studied (Netti et al 2000; Znati et al 2003). 

X-ray radiation may further hinter the interstitial diffusion. 

In particular, interstitial diffusion may be further decreased 

due to the tumor levels of collagen type I within the tumor 

interstitium that seem to increase due to irradiation. It has 

been suggested that collagen binds and stabilizes the glycos-

aminoglycan component of the ECM resulting in increased 

resistance to the transport of macromolecules (Netti et al 

2000). In vivo, decreased diffusion that was attributed to 

the increased levels of collagen type I was measured after 

external irradiation in subcutaneous implants of human colon 

(Znati et al 2003).

However, extravasation of the circulating drug carrier into 

the tumor interstitium depends on the endothelial wall perme-

ability, and it precedes the carrier’s diffusion and penetra-

tion into the tumor’s core space. Kalofonos and colleagues 

(Kalofonos et al 1990) showed that vascular permeability of 

the tumor endothelium in human colon tumor xenografts sig-

nifi cantly increases soon after exposure to X-ray irradiation. 

However, this lasts only for short time periods. Therefore, 

the same type of radiation can differently affect the accu-

mulation of radionuclide carriers to vascularized tumors by 

transiently increasing the endothelial wall permeability and 

by enhancing ECM’s structural integrity. Timing of irradia-

tion with respect to drug carrier administration was shown 

to play an important role in the therapeutic effects of lipo-

somally encapsulated doxorubicin on human osteosarcoma 

xenografts when combined with external radiation. In this 

study, improved intratumoral distribution and tumor uptake 

was shown that can be achieved with appropriate timing 

(Davies et al 2004).

Other approaches to improve penetration of macromo-

lecular delivery carriers in vascularized solid tumors include 

administration of enzymes that can degrade the ECM. 

Towards this goal, collagenase (Eikenes et al 2004) and 

hyaluronidase (Eikenes et al 2005) were evaluated in vivo on 

human osteosarcoma xenografts. In particular, before admin-

istration of an osteosarcoma specifi c monoclonal antibody, 

collagenase was administered intravenously. Although the 

particular enzyme is not clinically relevant because it may 

favor metastasis, a twofold increase in the tumor uptake of 

the osteosarcoma specifi c antibody was observed. In addition, 

the antibody exhibited improved penetration in the tumor. 

Using larger drug carriers, Eikenes and colleagues (Eikenes 

et al 2005) showed signifi cant enhancement in tumor accu-

mulation of intravenously administered liposomal drug car-

riers. This was achieved by administering intratumorally, 

preceding the administration of liposomes, the ECM enzyme 

hyaluronidase that degrades the extracellular tumor matrix. 

The adjuvant use of hyaluronidase has already been used in 

phase I and II trials to improve prevention of tumor regrowth 

when administered with chemotherapy. Surprisingly, intra-

venous administration of the enzyme was not found to be 

toxic to normal tissues (Bruera et al 1999). Such strategies 

of EMC pretreatment could, in principle, be applied to other 

types of macromolecular and nanometer sized delivery carri-

ers in internal radiotherapy for improvement of the carrier’s 

distribution within solid tumors.

In solid tumors, the irregular tumor vasculature may lead 

to heterogeneous distributions of the radionuclide carriers 

resulting in variable microdosimetric distributions. The 

signifi cance of this effect to the delivered dose depends on 

the tumor size relative to the range of the emitted particles 

in tissue. Nonspecifi c interactions between the delivery car-

riers and cancer cells in tumor spheroids that may contribute 

to these irregularities were studied for liposomes and the 

role of electrostatics and steric repulsion (PEGylation) was 
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shown to be signifi cant (Emfi etzoglou et al 2005). When 

targeting ligands such as antibodies are used, high affi nities 

for the cell receptors, fast antigen internalization and slow 

diffusion were shown to result in high accumulation only at 

the perivascular regions (Adams et al 2001). A recent theo-

retical study on evaluating the criteria for effi cient antibody 

penetration into solid tumors and micrometastases suggests 

that because of the “binding site barrier” antibodies could 

possibly be more suitable for targeting micrometastases 

(Thurber et al 2007).

Targeting of tumor vasculature
Receptors overexpressed on the endothelial cells comprising 

the tumor neovasculature are used as targets for therapy and 

diagnosis. Development of vasculature is needed for solid 

tumors to grow beyond 1–2 mm3 in size (Folkman 1990), 

and endothelial vascular cells in malignant state will divide 

as fast as every 7–20 days as opposed to every 20 years when 

in a healthy state (Hobson and Denekamp 1984; Scott and 

Harris 1994). In some cases of solid tumors, direct targeting 

of the neovasculature itself with radionuclides could be more 

attractive and effi cient than targeting molecular markers on 

the surface of cancer cells that reside within tumors. In the 

latter case, the radionuclide conjugates will have to overcome 

additional barriers related to extravasation and diffusion/ 

penetration within the tumor interstitium.

The therapeutic strategies that involve targeting of the 

tumor neovasculature are categorized as antiangiogenic (or 

angiostatic) and as antivascular (or angiolytic). Antiangio-

genic refers to the prevention of new blood vessel formation 

and includes targeting of growth factor receptors on the vas-

culature endothelial cells. Antivascular refers to damaging 

and killing of tumor cells by cutting the blood fl ow via the 

neovasculature, so as to deprive the tumor of growth factors 

(Folkman 1971), using as targets other characteristic markers 

such as integrins.

Healthy vasculature is composed of endothelial cells that 

create the walls of the vascular lumen. Endothelial cells are 

surrounded by pericytes and a basement membrane. Pericytes 

interfere with endothelial cell proliferation, microvessel out-

growth, and stabilization of the capillary walls (Sims 1986). 

Angiogenesis is the formation of new vasculature. Tumor 

vessels are abnormal in many respects. They may lack peri-

vascular cells that protect vessels from changes in oxygen and 

hormonal levels, and the vessel wall itself might contain not 

only endothelial cells but also cancer cells resembling more 

of a mosaic. Choosing targeted marker molecules should be 

infl uenced by this architecture (Carmeliet and Jain 2000).

The rationale for targeting the tumor vasculature is based 

on the observation that without adequate vasculature tumor 

cells are shown to become necrotic or apoptotic (Burrows and 

Thorpe 1993; Brooks et al 1994). However, studies on target-

ing tumor vasculature have shown that by depriving tumors 

of oxygen, tumor cells may transform into hypoxic cells 

and consequently become more resistant to chemotherapy 

and radiation (Bottaro and Liotta 2003). Hypoxic cells can 

activate the production of proteins (hypoxia-inducible factor 

[HIF]) that are involved in VEGF/VEGFR-2 signaling, and 

increase the formation of protease enzymes that degrade the 

basement membrane and the extracellular matrix, thus pro-

moting in this way cell mobility and invasion, and resulting 

in metastasis of cancer cells, and migration of the endothelial 

cells into the tumor interstitial space where they proliferate 

and create new vasculature.

Characteristic molecular targets that have been studied 

and extensively utilized include: the VEGFR, integrins, 

matrix metalloproteases, and other endogenous antiangio-

genic factors. Matrix metalloproteases are neutral endopepti-

dases that can degrade the ECM. They interact with integrins 

and the endothelial growth factors. Matrix metalloproteinase 

inhibitors aim to inhibit the action of these metalloproteases. 

The cell surface proteoglycan NG2 marker of angiogenic 

pericytes (Burg et al 1999) or the oncofetal fi bronectin that 

resides in the immediate ECM of blood vessels supplying 

malignant sites have also been suggested as alternative and 

very interesting targets (Ruoslathi 2002).

VEGF in particular, and its receptors, are important com-

ponents in the process of angiogenesis. There are six growth 

factors in the VEGF family (the most well-characterized is 

VEGF-A) and three receptors which are transmembrane 

tyrosine kinases predominantly found in endothelial cells. 

VEGF is present in normal tissues and in tumors. As men-

tioned above, activation of the VEGFR-2 is connected to 

enhanced vascular permeability and proliferation of endo-

thelial cells (Rosen 2005), and antibodies against VEGFR-2 

have been explored as inhibitors of angiogenesis (Li et al 

2005). A systematic review of several studies on the com-

bined administration of therapeutics to block proangiogenic 

factors (anti-VEGF) or administration of antiangiogenic 

factors with external radiation has been published by Nieder 

and colleagues (2006). The interaction mechanisms of tumor 

endothelial cells with antiangiogenic factors and ionizing 

radiation is particularly complex. Studies of such systems 

with internally targeted radionuclides whose action is not 

characterized by radioresistance, still needs to be explored 

(Wachsberger et al 2003).
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In antivascular strategies, targeting of integrins has 

attracted particular interest. Alpha v beta 3 integrin is 

expressed in newly formed endothelial cells and on endothe-

lial cells of the neovasculature (Ruoslathi 2002). Its function 

is related to cell adhesion, and certain members of the integrin 

family are involved in cancer metastasis and angiogenesis. 

Briefl y, integrins are bidirectional heterodimeric recep-

tors consisting of one alpha- and one beta-subunit, and are 

activated by the tripeptide sequence Arg-Gly-Asp (RGD) 

(Ruoslathi and Pierschbacher 1986). Upon binding of an 

RGD-type peptide to a resting integrin, a series of signals is 

transduced that causes dissociation of alpha, beta- heterodi-

mers and formation of clustered homooligomers (alpha-, 

and beta-oligomers). This surface nanopatterning creates 

adhesion focal points on the cell surface that is shown to 

lead to strong binding with multivalent ligands (multimeric 

RGD ligands) (Wester and Kessler 2005). When a competi-

tive antibody or molecule bearing the RGD motif disrupts 

the integrin ligand interaction, blocking of formation of 

new blood vessels takes place, which is the basis for some 

antivascular therapeutics.

Janssen and colleagues (2002) studied an 90Y labeled 

RGD-peptide to target the alpha v beta 3 integrin on the 

neovasculature of OVCAR-3 ovarian carcinoma xenografts. 

The study showed that the radiolabeled peptide delays tumor 

growth, but investigation of possible optimization of tumor-

targeting and tumor therapy using dose fractionation did not 

improve the therapeutic effi cacy of the radiolabeled peptide 

(Janssen et al 2004).

In a different approach, because it is the larger tumors 

that develop neovasculature networks, combination of 

active targeting and passive targeting was studied by Line 

and colleagues (Line et al 2005). For active targeting mul-

tivalent RDG sequences were used that were attached on 

relatively large delivery carriers to also exploit passive 

targeting demonstrated by the EPR effect. In particular, a 

30kDa 99mTc-labeled HPMA copolymer was developed that 

was conjugated to RGD-containing peptides (Koivunen 

et al 1995), and was evaluated in two xenograft models of 

prostate cancer. The studies verifi ed the additive effect of the 

two targeting mechanisms in tumor uptake, namely active 

and passive, but passive accumulation contributed to a lesser 

extent (Line et al 2005). Mitra and colleagues (Mitra et al 

2006) also studied the antitumor effectiveness of a HPMA 

copolymer conjugated to multivalent RDG sequences and 

loaded with 90Y. Signifi cant decrease in tumor volume was 

observed with increased apoptosis in treated tumors, and 

with no acute signs of toxicity to normal organs in a SCID 

mouse xenograft model of human prostate carcinoma. A 

combination of short range and long range particle emitters 

such as alpha and beta particles would be an interesting 

approach for such a construct. This suggestion is based on 

the assumption that the emitted alpha particles may have 

stronger killing impact on the endothelial cells, while the 

emitted beta particles are ideal for irradiating the cancer cells 

comprising the solid tumors.

The potential antivascular effect of alpha particle emitters 

has been proposed (Thorpe and Burrows 1995), and studied 

in vitro and in animals (Kennel and Mirzadeh 1998). Only 

recently, effi cacious results were demonstrated in humans 

(Allen et al 2007). In particular, in a phase I trial of systemic 

melanoma the 9.2.27 monoclocal antibody was radiolabeled 

with Bismuth-213 (t
1/2

 = 45.59 min) via cDTPA and was 

used to target the core glycoprotein of the melanoma associ-

ated chondroitin sulfate proteoglycan (MCSP). The studies 

showed partial or complete tumor regression in patients that 

was unexpected. This is because the alpha particle therapy 

was not intended for solid tumors but rather for circulating 

micrometastases. However, in the particular cancer, the 

targeted cancer cells are known to express the same MCSP 

antigen as the pericytes in solid tumors. Therefore, it was 

suggested that after extravasation of the radioimmunocon-

structs into the solid tumor and binding to pericytes, the alpha 

particle emitters were localized not far from the vascular 

endothelial cells which they irradiated and killed. The authors 

concluded that the induced endothelial cell death resulted in 

closure of the capillaries and starvation of the solid tumors. 

Further investigation of this approach could result in alterna-

tive uses of alpha particle emitters.

Alternatively, an interesting approach to transiently 

produce vascular “normalization” followed by administra-

tion of chemotherapy or radiation has been proposed by Jain 

(2005). The rationale is based on the hypothesis that although 

antiangiogenic monotherapy causes destruction of the neo-

vasculature, and higher doses should be more effective, high 

antiangiogenic doses may harm the vasculature of normal 

tissues as well, including the cardiovascular, endocrine, and 

nervous systems (Carmeliet and Jain 2000). In addition, 

because the blood supply network within the tumor is het-

erogeneous and interferes with our ability to deliver drugs 

into the tumors, administration of moderate antiangiogenic 

doses will not completely destroy the neovasculature. Also, 

in cases of combination therapies, it may leave the intratu-

moral drug delivery impaired. It is therefore suggested that 

“normalization” of the tumor vasculature should occur fi rst 

by administering growth factors to create a homogeneous 
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spatial vascular network within the tumor. In this way, tumor 

neovasculature will become less tortuous. Subsequently, and 

during the functional window where normalization occurs, 

administration of anticancer therapeutics should take place. 

This strategy could result in higher and more homogeneous 

uptake of therapeutics, which should be able to penetrate 

and disseminate deeper into the tumor interstitium and cells. 

Better drug distribution throughout the tumors combined with 

higher tumor oxygenation should increase the tumor killing 

effi cacy. However, identifi cation of the appropriate timing 

of each process should not be trivial.

Various ligands towards endothelial molecular targets 

have been developed and tested mainly for imaging of angio-

genesis, but the same ligands can be in principle used for tar-

geting of radionuclides. A systematic review on angiogenesis 

imaging and also on imaging of other aspects of tumor state 

(proliferation, apoptosis, hypoxia, etc) is authored by Britz-

Cunningham and Adelstein (2003). An interesting approach 

for vasculature targeting that has been extensively pursued 

is to fi rst preactivate the neovasculature so as to increase the 

density of molecular targets on the endothelial cells and then 

to deliver the killing radiation or other therapeutics. This 

approach is reviewed in the following section.

Preactivating
Upregulation of targeting proteins on the endothelial cells 

comprising the tumor’s blood vessels is the aim of radia-

tion-guided drug delivery using external radiation such as 

X-rays. At a second step, ligand-conjugated drug carriers 

are targeted towards the upregulated protein targets of the 

neovasculature.

For antiangiogenic therapies, high tumor-to-normal 

organ ratios can be potentially achieved by inducing over-

expression of targeting proteins on the tumor neovasculature 

when these proteins occur on the luminar surface of the 

endothelium. Characteristic protein examples include the 

intercellular adhesion molecule-1 (ICAM-1), E-selectrin, 

P-selectin (Hallahan et al 2001a), and the β
3
 integrins 

(Hallahan et al 2001b).

In particular, Hallahan and colleagues (2003) caused 

upregulation of the α
2b

β
3
 receptor of tumor microvascu-

lature using ionizing radiation. As targeting ligand they 

used fi brinogen - the native ligand of α
2b

β
3
 – or peptide 

fragments of fi brinogen containing the RGD motif. The 

ligand was conjugated to nanoparticles and other delivery 

carriers such as liposomes which were then administered to 

embolize the activated tumor microvasculatures in vivo in a 

murine melanoma animal model. This approach resulted in 

signifi cant decrease of the tumor blood fl ow that signifi cantly 

delayed tumor growth.

Preferential targeting of irradiated tumors resulting in 

signifi cant delay of tumor growth was also observed in vas-

cularized B16-F10 melanoma xenografts that were initially 

irradiated by x-rays to increase expression of the alpha v 

beta 3 integrin on the tumor endothelium. They were then 

targeted by liposomes conjugated to RGD sequences with 

encapsulated combretastatin that is an antivascular agent 

already evaluated on clinical trials (Pattillo et al 2005).

The strategy of radiation-guided targeted drug delivery to 

tumor blood cells seems to be promising and has been used 

till now to deliver conventional therapeutic compounds and 

radionuclides for imaging (Hallahan et al 2003). Studies 

on the delivery of therapeutic radionuclides for targeted 

antiangiogenic internal radiotherapy after upregulation of 

the molecular targets by external radiation are expected that 

will soon be reported.

Meta-activating strategies
By the term “meta-activating”, we refer to therapeutic strate-

gies where prodrugs that have been delivered to tumor sites 

are activated in situ by an external stimulus which could 

be neutrons, X-rays, gamma photons, or another source of 

radiation. This type of localized therapy is designed to result 

in minimal toxicities. This would be achievable as long as 

the inactive prodrug form that accumulates at normal organs 

is decomposed and removed from the body with minimal 

side effects.

In internal radionuclide therapy the most common 

example is boron neutron capture therapy (BNCT). In this 

approach, the prodrug is the stable isotope Boron-10 that 

upon irradiation by thermal neutrons, forms the highly ener-

getic particulate species 7Li and 4He (an alpha particle) by 

neutron capture and nuclear fi ssion, and a 0.48 MeV gamma 

photon is emitted via the neutron capture mechanism. In 

addition, the total dose in tissue has two more components: 

the gamma ray of energy 2.22 MeV that is released due to 

thermal neutron capture by hydrogen atoms in tissue, and a 

proton due to reaction of thermal neutrons with the tissue 

nitrogen (Ryan and Poston 2005). The dose due to interac-

tion of thermal neutrons with tissues is not insignifi cant, 

but lower than the dose due to alpha particles emitted from 

irradiated 10B.

Because the recoil range of the emitted lithium and helium 

particles in tissue is 5 and 7 µm, respectively, which is com-

parable to the size of a single cell, the cellular internalization 

and subcellular localization of the boron carrier with respect 
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to the cell nucleus is a major determinant of the therapeutic 

effi cacy for this approach. The chemical form of the boron 

isotope is of great importance for BNCT because it may 

interfere with boron’s subcellular localization (cytoplasmic, 

exoplasmic, or endonuclear). pH-sensitive drug carriers that 

become endocytosed and release their contents into the cyto-

plasm, such as liposomes, could provide a potential answer 

to the subcellular localization issue. In order to achieve a 

lethal dose per cancer cell, 109 Boron-10 atoms (Javid et al 

1952; Tolpin et al 1975; Hartman and Carlsson 1994) need 

to be delivered per target cell. An informative review by 

Zamenhof (1997) analyzes the issues related to the short 

recoil of emitted particles in terms of boron microdosimetric 

evaluations.

Using monoclonal antibodies serving both as the target-

ing ligand and the delivery carrier would be challenging 

for this type of therapy. This is because heavy boron loads 

are required for adequate delivered doses to cancer cells, 

and antibody conjugation generally results in relatively 

low prodrug-to-antibody ratios. Extended conjugation of 

antibodies for boron loading would not be a solution as 

it could interfere with the antibody’s immunoreactivity 

potentially resulting in lower tumor accumulation and 

higher liver uptake (Paxton et al 1992). To address these 

issues, bispecifi c antibodies were successfully designed. 

These antibodies bind to tumor specifi c antigens and also 

recognize a hapten included on the boron-containing car-

borane constructs (Pak et al 1995). For BNCT, other types 

of carriers, such as dendrimers, and liposomes with high 

prodrug-to-carrier ratios are also studied, both as targeted 

and as passive delivery carriers. A disadvantage for neutron 

capture therapy is the availability since thermal neutron 

beams originate from nuclear reactors. However, epithermal 

neutron beams with energy ranging from 0.5 eV to 1 keV 

can be produced by charged-particle accelerators that can 

be installed in an urban environment. Epithermal neutrons 

loose energy while traversing the tissue and become captur-

able when they reach the boron targets.

Dendrimer-based delivery
Dendrimers are spherical monodispersed multivalent poly-

mers with high degrees of branching. They have been 

extensively studied as carriers for the delivery of chemothera-

peutics, prodrugs, radionuclides and other molecules for ther-

apy and imaging of cancer (Gillies and Frechet 2005), although 

their toxicity is still unclear (Duncan and Izzo 2005).

Accumulation of boronated polyamidoamine (PAMAM) 

dendrimers is signifi cant at the liver and spleen, and seems 

to be directly related to the dendrimer generation. This is 

the major challenge using these constructs. In particular, 

intraperitoneal administration of second and fourth genera-

tion of boronated dendrimers with reactive terminal amino 

groups labeled with tumor specifi c antibodies were evaluated 

in tumor-free mice and in mice bearing subcutaneous B16 

murine melanoma implants (Barth et al 1994). The reported 

liver uptake was higher than the accumulation at the tumors 

at all time points ranging from one to fi ve days. Surface modi-

fi cation of dendrimers to reduce liver uptake will be critical 

for the successful implementation of these constructs.

In another study, PEGylation was used to increase 

the blood circulation times of third generation boronated 

PAMAM dendrimers. In addition, dendrimers were labeled 

with folic acid to improve their targeting and accumulation 

to tumor cells overexpressing folate receptors (Shukla et al 

2003). However, although in vitro studies showed recep-

tor-mediated uptake, the biodistributions in mice bearing 

subcutaneous folate receptor (+) murine 24JK-FBP sarco-

mas confi rmed the complexity of using denrimers. Two 

PEGylated forms of dendrimers were evaluated: the fi rst 

type contained approximately one PEG chain of 2000 MW 

per dendrimer with the folic acid attached to its distal end. 

The second type contained one PEG chain of 2000MW and 

in addition a shorter PEG chain of 800 MW with the folic 

acid attached to its distal end. In vivo studies showed that 

PEGylation reduced the renal uptake that was very high for 

non-PEGylated conjugates. Hepatic uptake was reduced with 

diPEGylation. However, in the later case, although the tumor 

uptake was signifi cant (6.0% ID/g tumor), the accumulation 

at the liver, kidney, and spleen was 6.5, 10.5, and 4 times 

higher than the tumor uptake 6 hours after intraperitoneal 

administration of the targeted boronated dendrimers. The 

degree and type of PEGylation was shown to play a critical 

role on the pharmacokinetics of these systems. The high 

values of normal organ uptake suggest that further optimiza-

tion will be required for targeted PEGylated dendrimers to 

become applicable in vivo.

To bypass the challenge of the circulation times of den-

drimers that are shorter than those required for signifi cant 

accumulation into solid tumors (Malik et al 2000), more 

accessible molecular targets such as those found on the 

tumor endothelial walls have been proposed for systemically 

administered boronated dendrimers. Fifth-generation boro-

nated PAMAM dendrimers (Baker et al 2005) conjugated to 

a vascular endothelial growth factor (VEGF) targeting the 

VEGF-2 receptor of the tumor neovasculature were evalu-

ated in a 4T1 breast carcinoma mouse model. The in vivo 

Powered by TCPDF (www.tcpdf.org)



International Journal of Nanomedicine 2008:3(2) 191

Radionuclide carriers for targeting of cancer

studies showed selective accumulation at the areas of active 

angiogenesis consistent with a VEGFR-2-mediated binding 

mechanism that was verifi ed in vitro. Application of boro-

nated dendrimers with high prodrug-to-carrier loads to target 

easily assessable disease may be an appropriate fi t for these 

constructs. The localization of these boronated bioconjugates 

in endothelial cells, and how their subcellular distributions 

interfere with their therapeutic effi cacy is left to be explored. 

These boronated bioconjugates may provide an effective 

approach for antiangiogenic therapy using BNCT.

Liposome-based delivery
Mostly due to the high encapsulation effi ciency of water 

soluble compounds, several studies have evaluated the use 

of liposomes in BNCT in vivo.

Liposomes – with and without PEGylation – encapsulating 

different boron-containing species were studied by Feakes and 

colleagues (1994), and were evaluated in vivo on a EMT6 

tumor bearing mouse model. The rationale for using liposomes, 

besides the altered biodistributions and pharmacokinetics, is 

liposomes’ ability to encapsulate and deliver free hydrophilic 

forms of boron to cancer cells. This is of great importance as 

only those boron forms that are released intracellularly and 

react with intracellular proteins could be adequately retained 

by the tumors. If boron retention by tumors is sustained for 

long time periods, then toxicity to normal organs, as is the 

liver, could be minimized. In other words, sustained tumor 

retention would offer the circulating liposomes enough time 

to clear from the blood and other tissues before activation of 

the tumor accumulated prodrug. Feakes and colleagues (1994) 

report for plain non-PEGylated liposomes, sixteen hours after 

intravenous administration, the tumor-to-blood ratio to be 5 

and the boron accumulation at the tumor to be comparable to 

required therapeutic values for BNCT. Similar tumor-to-blood 

ratios have been reported by other groups studying liposomal 

delivery of boronated species (Hawthorne and Shelly 1997). 

For PEGylated liposomes, Feakes and colleagues (1994) report 

that the blood circulation time was further extended and after 

48 hours the tumor-to-blood ratio was evaluated to have the 

lower value of 2.4. In these studies, liposomes exhibited tumor 

uptake and boron retention that were sustained over time. 

However, liver is a common site of liposome accumulation. 

In these studies, it exhibited boron uptake comparable with 

the tumor accumulation values, which, however, were sig-

nifi cantly lower than values obtained with boron-conjugated 

dendrimers as mentioned in the previous paragraphs. To 

appropriately evaluate the therapeutic effi cacy and toxicity of 

liposome-mediated BNCT, it would be necessary to determine 

the clearance kinetics of liposomes from normal organs and 

to optimize the timing for boron activation relative to tumor 

retention times.

As mentioned above, a key challenge in BNCT is the 

delivery of adequate prodrug concentrations to cause cell kill 

upon activation. To achieve high encapsulated boron contents 

in liposomes both passive loading of boron-containing agents 

and active loading approaches have been explored. Pan and 

colleagues (2002b) developed remote-loading protocols 

of boronated polyamines using a pH-gradient across the 

liposome membranes. They demonstrated higher loading 

effi ciencies when lower molecular weight boron derivatives 

were used in liposomes encapsulating ammonium sulfate as 

the trapping agent. Liposomes were then targeted to the folate 

receptors of human KB squamous epithelial cancer cells. 

Neither the chemical form of boron nor the mechanism of 

boron loading in liposomes did infl uence the incracellularly 

accumulated boron that was delivered to cancer cells by 

targeting liposomes. This study concluded that high con-

centrations of boron per cell could be delivered that would 

greatly exceed the required lethal boron amount per cell for 

effective BNCT. To evaluate feasibility in vivo, the reten-

tion times of boron compounds by cancer cells relative to 

liposome circulation times and clearance from normal organs 

should be investigated.

In another study, increased tumor accumulation in mice 

bearing subcutaneous FR (+) M109 murine lung carcinomas 

was detected for folic-acid labeled PEGylated liposomes 

with encapsulated boron compounds following intravenous 

administration. High tumor-to-blood ratio was detected for 

the targeting liposomes until 72 hours post-administration. 

However, the tumor uptake of targeting liposomes was 

comparable to nontargeting liposomes. This result possibly 

resonates with the mechanism of the enhanced tumor perme-

ability and retention that depends primarily on the size of 

the delivery carrier. Both carriers were based on the same 

liposome membrane and size. However, upon extravasation 

into the tumor interstitium, targeting ligands on the liposome 

surface may enhance their cell uptake and internalization 

(Kirpotin et al 2006). Cellular internalization and the subcel-

lular localization of targeting and non-targeting boronated 

liposomes require further investigation to evaluate their thera-

peutic effect (Pan et al 2002a). Promising results regarding 

the delivered prodrug dose per cell have been reported (from 

in vitro studies) with anti-EGFR liposomes with encapsulated 

boron (Kullberg et al 2005). Also, RGD-labeled liposomes 

have also been studied to target the endothelial wall of the 

tumor neovasculature (Koning et al 2004).
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Transferin labeled PEGylated liposomes with encapsulated 

boron compounds exhibited tumor suppression and improved 

long-term survival to subcutaneous colon 26 tumors in mice. 

Liposomes were administered intravenously. Seventy-two 

hours after administration, when the tumor-to-blood ratio 

was 6 and the liver accumulation was less than the tumor 

uptake, neutron activation took place (Maruyama et al 2004). 

These liposomes were shown to deliver therapeutic boron 

doses to the tumors. It was suggested that transferin-label-

ing enhances retention of liposomes in the tumors and also 

mediates liposome internalization by cancer cells that consti-

tute the tumors. Internalization and release of encapsulated 

contents would increase the therapeutic effi cacy by allowing 

boron-conjugates to approach the cell nuclei. Towards the 

enhancement of intracellular release of contents, liposomes 

that can directly fuse with the cell membrane and are com-

posed of the positively charged DOTAP and the zwitterionic 

DOPE (a hexagonal phase lipid) were studied for BNCT 

(Ristori et al 2005). These compositions are already used 

in gene therapy, but they will probably require some addi-

tional degree of stealthness during blood circulation since 

their positive charge could result in nonspecifi c interactions 

with healthy cells, and in signifi cant uptake by Kupffer cells 

residing in the liver (Zhang et al 2005).

Other liposome based structures involve boronated 

lipid (Justus et al 2007) or cholesterol (Thirumamagal et al 

2006) derivatives incorporated into the lipid bilayer. These 

approaches do not take advantage of the encapsulated aque-

ous compartment.

Other structures
Other carriers studied for delivery of boron compounds for 

BNCT include cationic acrylamide copolymers. Copolymers 

with variable positive charge and mean size of 10 kDa were 

evaluated for uptake by induced polyps on the luminal side 

of the gut in rats. The cationic monomer content was varied 

and boron uptake by the polyps was shown to be an inverse 

function of the cationic content of the copolymer. This was 

attributed to the thicker and more negative—richer in sialic 

acid—mucus that is due to higher mucin production by colon 

carcinoma cells. The ratios of boron content between the 

polyps and the surrounding normal epithelium ranged from 

6.5 to 1.5 with the higher ratio characterizing the less cationic 

copolymers (Azab et al 2005). The authors of this study 

concluded that for residual disease in the colon, BNCT could 

achieve therapeutic effects with minimal toxicities when 

delivered and targeted by cationic acrylamide copolymers 

that will be administered by microenema.

Single-walled carbon nanotubes (SWCNT) have also 

been studied as carriers of boron for BNCT. Boronated 

SWCNTs were administered intravenously in mice bearing 

EMT6 mammary carcinomas. SWCNTs were dissolved and 

administered in either saline or DMSO solutions. Fast blood 

clearance was detected, and tumor to blood ratio was 3.12 

and 6.13 for saline and DMSO, respectively, 48 hours after 

administration. Both solutions showed stable tumor retention 

over a period of 48 hours with tumor-delivered boron doses 

slightly lower than the therapeutic values. The liver, lung, and 

spleen uptake was lower than tumor uptake; however, kidney 

accumulation was not reported. These promising results need 

to be augmented by elucidation of SWCNTs cell binding and 

subcellular localization (Yinghuai et al 2005).

Easily accessible disease
Easily accessible refers to these types of disease for which 

the drug delivery carriers after administration are in direct 

contact or at the very close vicinity of the targeted cancer 

cells. We will review studies on drug carriers that are admin-

istered intraperitoneally to directly target intraperitoneally 

disseminated metastatic cancer. Radioimmunotherapy (RIT) 

of hematopoietic cancers is also a vast area of research that 

falls within this category. Included also, are approaches to 

decrease the toxicity of these therapies to normal organs.

Peritoneal carcinomatosis
Peritoneal carcinomatosis is common for several metastatic 

gynecological and gastrointestinal cancers. A promising 

approach for the therapy of peritoneally disseminated cancer 

is intraperitoneal administration of therapeutic agents. The 

rationale for intraperitoneal administration is twofold. First, 

for micrometastatic tumors in the peritoneal cavity developed 

vasculature in the peritoneal tumor does not exist (Li et al 

2000). For these particular cases, intravenous administra-

tion of therapeutics will not be the optimal route to target 

intraperitoneal micrometastases.

Second, since intraperitoneal administration provides 

direct access to peritoneally disseminated disease, high 

concentrations of the therapeutic agents could be achieved 

in the peritoneal cavity, before their concentration reaches 

toxic levels in the dose limiting organs (Buijs et al 1998; 

Borchardt et al 2003). Particularly for internal radiotherapy, 

it is conceivable to match the clearance kinetics from the 

peritoneum and the kinetics of normal organ uptake with 

the half-life of the delivered radioisotope so as to minimize 

irradiation of normal organs. In this way, by the time accu-

mulation of the radiolabeled carrier at normal organs starts 
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to become signifi cant, the therapeutic radionuclide can be 

chosen so as to have mostly decayed. However, in order 

to achieve therapeutic effects the drug delivery carriers are 

required to exhibit sustained retention in the peritoneal cav-

ity increasing the probability of encountering tumor sites. 

Relatively large delivery carriers such as microspheres and 

liposomes are promising in this sense as they show slow 

clearance from the peritoneal cavity (Delgado et al 1989; 

Verschraegen et al 2003).

In peritoneal carcinomatosis, traditional therapeutic pro-

cedures may involve peritoneal surgical debulking followed 

by systemic administration of chemotherapeutics and radia-

tion. Direct intraperitoneal administration has been studied 

and appears promising against minimal residual disease but 

not bulky disease (Epenetos et al 1987; Crippa et al 1995; 

Meredith et al 1996). Alpha particle emitters due to their 

short range in tissues matching the dimensions of micro-

metastatic disease could be a logical choice (Meredith et al 

1996; Borchardt et al 2003; Palm et al 2007). The high LET 

of these emitters is advantageous for high killing effi cacy. 

Beta particle emitters would deposit high enough dose only 

to relatively larger tumors, and could potentially irradiate in 

signifi cant depth the surrounding healthy tissue.

For locoregional therapy in the peritoneum, several dif-

ferent carriers and targeting systems have been studied for 

the delivery of radionuclides. One of the fi rst published stud-

ies investigated the administration of micron-size colloids 

labeled with the alpha-emitter Astatine-211 (t
1/2 

= 7.21 hr, 

E = 6.8 MeV and 65 µm path length in tissue). Tellurium 

was chosen to form the colloid microspheres due to its strong 

affi nity for astatine. These studies showed curative effects 

that were dose depended without serious morbidity in mice 

with intraperitoneally disseminated murine ovarian carci-

noma. They also showed lower toxicity relative to studies 

where intravenous administration of comparable 211At doses 

were delivered, emphasizing in this way the importance of 

regional administration (Bloomer et al 1981).

A few characteristic examples of several radionuclide 

carriers and approaches are given below in more detail 

covering different strategies that range from radiolabeled 

monoclonal antibodies to dendrimers, protein complexes, 

polypeptides, and liposomes in direct (single step) or multi-

step (pretargeting) schemes.

Borchardt and colleagues (2003) compared the intraperi-

toneal and intravenous administration of an anti-HER2/neu 

antibody – trastuzumab- labeled with the alpha particle gener-

ator Actinium-225 (t
1/2

 = 10 days, four emitted alpha particles 

per parent decay) in mice bearing peritoneally disseminated 

ovarian carcinoma that resembled micrometastatic disease. 

The study showed signifi cantly enhanced tumor localization 

of the radionuclides when administered intraperitoneally 

without increase of normal organ toxicities compared to 

the intravenous route. To reduce toxicities to normal organs 

due to released radioactive daughters from the raioimmu-

noconjugates addition of compounds for faster clearance of 

radio-toxins have been proposed (Jaggi et al 2005).

Another approach for the reduction of toxicities to normal 

organs is to decrease the loss of radioactive daughters from 

the 225Ac carrier by developing large multivesicular anti-

HER2/neu-liposomes. These are large 650 nm in diameter 

liposomes encapsulating smaller lipid vesicles that contain 

the parent radionuclide. They are proposed for locoregional 

therapy of peritoneally disseminated ovarian cancer micro-

metastases. These liposomes are shown to exhibit reten-

tion of 20% of 123Bi – the last alpha emitting radioactive 

daughter – due to their internal structure. This translates 

into control of 2.6 out of 4 alpha particles that are generated 

per 225Ac. These anti-HER2/neu-liposomes were shown to 

exhibit specifi c binding and internalization by cancer cells in 

vitro (Sofou et al 2007). At the tumors, in vivo, the delivered 

activities of 225Ac by liposomes were comparable to those 

delivered by radiolabeled antibodies twenty four hours after 

intraperitoneal administration, and showed higher daugh-

ter-to-parent ratios compared to the ratios exhibited when 

antibodies were administered (Sofou et al 2004a).

For the therapy of intraperitoneally disseminated tumors, 

dendrimers have been studied as delivery carriers for Auger 

emitters to improve the radionuclide load that is required 

for therapeutic applications. Multiple chelating agents were 

attached to biotinylated dendrimers that were mixed with avi-

din to form larger complexes. Intraperitoneal administration 

of dendrimer complexes with high 111In specifi c activities was 

performed on animals bearing intraperitoneal disseminated 

ovarian cancer tumors (Mamede et al 2003). The cationic 

charge of the fourth generation dendrimers forming the 

complexes, combined with the reported ability of avidin to 

enhance tumor accumulation, resulted in enhanced binding 

and internalization of the complexes by ovarian carcinoma 

cells with high tumor accumulation in vivo. In treatment 

studies, these high dose complexes showed tolerable and 

dose-depended therapeutic effects.

Multistep or pretargeting approaches have been explored 

in intraperitoneal radiotherapy but not as extensively as in 

intravenous RIT (vide infra). For maximum killing effi cacy 

and minimized toxicities, pretargeting strategies aim to 

decouple the pharmacokinetics of targeting ligands – that may 
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be characterized by slow tumor uptake, small binding frac-

tion to tumors, or slow clearance from normal organs—from 

the potentially different kinetics required for the therapeutic 

radionuclides. Briefl y, at the fi rst step, a tumor-targeting 

molecule such as an antibody is administered. This targeting 

molecule should have high affi nity for cancer cells, is not 

radiolabeled, and also bears a second functionality that serves 

as a linker for the targeting in the following second step. Only 

after the fi st unlabeled bifunctional antibody is adequately 

cleared from the body but not from the tumor sites, a radio-

labeled “effector” compound is administered. The effector 

compound is designed to bind with very high avidity to the 

second functionality of the bifunctional antibody of the fi rst 

targeting step. The radiolabeled effector compound should 

have faster pharmacokinetics to clear rapidly from circula-

tion and the body, and could potentially also exhibit better 

permeation in the tumor.

To target 211At to intraperitoneal tumors, Lindegren and 

colleagues (2003) used a pretargeting compound containing 

avidin as the second functionality. At the second step, the 

effector molecule polylysine was introduced in a biotinylated 

form and was used as a multicarrier for 211At. The rationale 

for this approach is the potentially high specifi c radioactivity 

of polylysine that would enable delivery of high radiation 

doses for therapy. Biotinylated polylysines of various sizes 

exhibited strong binding to avidin-coated beads. Following 

intraperitoneal administration of the effector molecule, it was 

found that increasing molecular weights shifted the normal 

organ accumulation from the kidneys to the liver. Increased 

uptake at the thyroid, lungs, stomach, and the spleen was 

detected following administration of effector molecules 

(38 and 363 kDa) (Lindegren et al 2002). The authors suggest 

that this is caused by possible degradation of the polymers 

by the liver resulting in release of the radionuclide as free 

astatine/astatide. Addressing the issue of liver accumula-

tion and radiolabel release would signifi cantly advance this 

promising approach.

Beta emitters with short range in tissue such as 177Lu 

(t
1/2

 = 6.61 days, E
max

 = 497 keV for beta emissions) have 

been proposed as alternatives for targeting intraperitoneal 

carcinomatosis. Lutetium-177 emits beta particles with 

average penetration in soft tissues ranging from 0.2 to 0.3 

mm. Two beta particle emitters, 90Y and 177Lu, were studied 

and compared in a pretargeting approach for intraperito-

neal therapy. Yttium-90’s emitted beta particles travel as 

far as 2.76 mm in tissue. Lutitium-177 in addition to beta 

particles emits low energy gamma radiation of 113 and 208 

keV allowing for gamma camera imaging. In this study, 

a tetrameric fusion protein composed of CC49-scFv-chains 

on streptavidin was initially administered intraperitoneally 

to mice bearing peritoneal TAG-71-positive LS174T tumors. 

The CC49 protein was chosen based on its good tumor uptake 

and on evidence of no localization to normal gastrointestinal 

tissues. To reduce bone marrow suppression, the blood circu-

lating non bound fusion protein was cleared from circulation 

by intravenous administration of a synthetic clearing agent 

having high affi nity for hepatocytes for rapid removal from 

the blood, and fast internalization and catabolism by the 

liver cells. Then radionuclide-DOTA-biotin was adminis-

tered intraperitoneally. In therapeutic studies, the effector 

compound 177Lu-DOTA-biotin produced prolonged survival 

and appeared to be less toxic than 90Y-DOTA-biotin. At the 

maximum dose tested of 800 µCi, 60% of deaths were early 

deaths due to toxicity of 90Y-DOTA-biotin. No evidence of 

toxicity was observed for 177Lu-DOTA-biotin at the same 

dose. This result was attributed to the shorter recoil range of 

the 177Lu emitted beta particles (Buchsbaum et al 2005b).

Radioimmunotherapy
In Radioimmunotherapy (RIT), tumor-targeting antibodies 

are utilized for the delivery of therapeutic radionuclides. 

RIT is emerging as a very promising therapeutic modality, 

and progressively gains more ground compared with tradi-

tional chemotherapy. Although treatment of solid tumors 

is still a challenge for RIT mainly due to limited tumor cell 

accessibility by circulating antibodies (Jhanwar and Divgi 

2005; Sharkey and Goldenberg 2005), RIT has been success-

ful with small volume disease or minimal residual disease 

particularly with hematopoietic neoplasms (Sharkey and 

Goldenberg 2005). The two main components in RIT are the 

type of antibody used and the therapeutic radionuclides. For 

a systematic analysis of the existing approaches the readers 

are referred to reviews by Goldenberg (Goldenberg 2002) and 

Sgouros (Sgouros 2002). Although most RIT trials and com-

mercial radioimmunoconstructs involve beta particle emitters, 

clinical RIT trials with alpha particle emitters on small volume 

disease have demonstrated safety, feasibility and activity 

against cancer cells (Mulford et al 2005), and more alpha 

particle emitting isotopes are increasingly studied.

Single-step RIT
In single-step RIT, an initial major challenge was the unde-

sirable immunogenicity of the administrated antibodies 

that could prevent repeated therapeutic cycles. Advances in 

antibody engineering have been employed to provide anti-

bodies with decreased immunogenic responses and antibody 
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fragments. However, smaller radioimmunoconjugates exhibit 

different biodistributions that essentially shift toxicities 

to other organs. As the antibody size decreases, toxicities 

shift from the bone marrow and the liver to the kidneys. In 

addition, the tumor binding uptake and retention of smaller 

fragments are decreased compared to the complete IgG’s. The 

different kinetic profi les of smaller radioimmunoconjugates 

can be successfully addressed by choosing radionuclides 

with matching half-lives, but the lower tumor accumulation 

observed for smaller antibody fragments may require higher 

administered doses to achieve lethal absorbed doses at the 

targeted cancer cells. This could proportionally increase 

toxicity at critical organs (Goldenberg 2002).

Multistep targeting
Multistep targeting is proposed as an alternative to combine 

reduced toxicities at normal organs with increased tumor-

to-normal organ ratios, and eventually deliver higher doses of 

radiation at the tumor. Numerous constructs, including mono- 

and bi-functional compounds and radionuclide combinations 

have been designed and evaluated. For extensive overviews 

on preclinical and clinical studies on RIT the readers are 

referred to other reviews specifi c on antibody pretargeting for 

radioimmunotherapy (Bethge and Sandmaier 2005; Koppe 

et al 2005; Sharkey and Goldenberg 2005; Goldenberg et al 

2006; Pohlman et al 2006).

The radiolabeling effi ciency – specifi c activity – of the 

construct that is used at the fi nal targeting step plays a deter-

mining role on the delivered radiation dose at the tumor. 

Several carriers other than antibodies, such as polypeptides 

and dendrimers that can be heavily radiolabeled, have been 

studied to improve the effi cacy of this fi nal step. However, 

the accumulation of these constructs to normal organs usually 

renders these approaches questionable for effective therapy 

(del Rosario and Wahl 1993; Wilbur et al 1998). For example, 

starburst PAMAM polyamidoamine dendrimers have been 

reported for the targeted delivery of 111In and 88Y (t
1/2

 = 106.65 

days, beta emissions with E
max

 = 0.76 MeV, gamma pho-

tons of E = 1.83 MeV). Second generation dendrimers are 

highly branched and are proposed as alternative chelating 

platforms for the attachment of radionuclides (Kobayashi 

et al 1999). However, the positively charged dendrimers 

seem to extensively accumulate in the liver, spleen, and the 

pancreas. Alternative approaches to address this toxicity 

issue are necessary.

A different approach to multistep targeting is MitraDep® 

that aims to decrease toxicity at normal organs while main-

taining high administered radiation doses for high tumor 

delivered doses. This approach involves the direct clearing 

of the circulating radiolabeled antibodies from the blood by 

extracorporeal depletion at the time point when their tumor 

localization becomes adequate and before the accumulation 

in normal organs becomes signifi cant. This is achieved by 

passing the entire blood fl ow through a fi lter coated with 

avidin to remove the radiolabeled antibodies that have 

been simultaneously biotinylated. The antibody’s func-

tionalization takes place through the trifunctional chelator 

[3-(13’-thioureabenzyl-DOTA)trioxadiamine-1-(13’’-bio-

tin-Asp-OH)trioxadiamine-5-isothiocyanato-aminoisophta-

late] to ensure the ratio of biotin-to-DOTA is 1:1. Otherwise, 

the radiolabeled antibodies that are not biotinylated would 

not be cleared using extracorporeal depletion. The reported 

phase I study, shows that this procedure is safe in the sense 

that it does not expose the patients to risks such as blood 

coagulation, perturbation of hematological parameters, 

activation of the immunological system or decrease of elec-

trolytes in the blood. In addition, for 111In labeled rituximab 

that was used as 90Y surrogate, 62% depletion of activity 

was detected in the lungs, and 40% in the liver and kidneys. 

This device is currently on a dose-escalating phase I/II study 

(Linden et al 2005).

Preactivated RIT
As mentioned above, RIT is not as effective for solid tumors 

as for easily accessible disease. This is because RIT is 

usually designed to target accessible molecular markers on 

the surface of tumor cells. For solid tumors, on the contrary, 

the radioimmuno-constructs need to fi rst extravasate into the 

tumor interstitium before reaching the tumor cells. Thus, 

issues related to poor tumor penetration, or low tumor antigen 

and receptor expression may present signifi cant challenges. 

To enhance targeting to molecular markers on tumor cells, 

upregulation of tumor-related antigens and receptors has 

been proposed using viral vectors or by the administration 

of cytokines (Rogers et al 2002).

A very interesting example is the upregulation of the 

somatostatin receptor SSTr2 on the surface of human non-

small cell lung tumor xenografts before administration of a 

therapeutic radiolabeled antibody. Following intratumoral 

administration of an adenovirus encoding the SSTr2 gene, 

the authors showed that high levels of the somatostatin 

receptor SSTr2 were induced on the surface of cancer cells. 

Then, following intravenous administration, these cancer 

cells were targeted by an ostreotide analogue labeled with 

the beta-emitter 90Y (Rogers et al 2002). This study showed 

that upregulation of the targeting receptors on the surface 
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of cancer cells comprising the solid tumors is possible to 

achieve therapeutic effi cacy by radiolabeled antibodies with 

beta emitters that otherwise is not achievable. Somatostatin 

receptors have also been studied on ovarian cancer xenografts 

(Rogers et al 1999), and have been upregulated by ionizing 

radiation (Buchsbaum et al 2005a). The curative potential of 
90Y-based radiotherapy targeted to somatostatin expressing 

tumors has been shown in several studies (Stolz et al 1998; 

de Jong et al 2001). The approach of preactivation could 

provide a feasible answer to the radioimmunotherapy of solid 

tumors. Hopefully, current limitations in adenoviral vectors 

due to high liver toxicities would be eventually surpassed 

leading to a new direction for RIT.

Conclusions
In internal radiotherapy of cancer, a variety of diverse 

parameters characterizing the tumor topology, morphol-

ogy, and physiology need to be considered for choosing 

the optimal targeting ligand, delivery carrier, and type of 

therapeutic radionuclide for effective therapy. In addition, 

the stability of constructs, and the fate of free radionu-

clides in vivo play a signifi cant role on the success of the 

therapeutic strategy. These factors result in the design of 

different materials and constructs that are briefl y summa-

rized in this review.

Currently, clinical trials on targeted radionuclide thera-

pies are mostly based on small molecules both for targeting 

and delivery that include antibodies, smaller peptides (Wong 

2006; Dearling and Pedley 2007), or the radiolabeled biotin/

avidin pair (Paganelli et al 2007). Advancement in the area 

of internal radionuclide therapy may further be enabled by 

using different carrier materials with higher radionuclide 

loads exhibiting different behavior in vivo such as liposomes, 

dendrimers, and other structures with sizes of the order of 

several nanometers. Better understanding of the interactions 

of new constructs with the biological milieu, proof of the 

safety of new constructs, improvements in radiochemistry for 

stable and effi cient radiolabeling, progress in antibody and 

other ligand engineering and wide availability of a variety of 

radionuclides, should enable internal radiotherapy to reach 

its full potential.

References
Adam MJ, Wilbur DS. 2005. Radiohalogens for imaging and therapy. Chem 

Soc Rev, 34:153–63.
Adams GP, Schier R, McCall AM, et al. 2001. High affi nity restricts the 

localization and tumor penetration of single-chain Fv antibody mol-
ecules. Cancer Res, 61:4750–5.

Alessi P, Ebbinghaus C, Neri D. 2004. Molecular targeting of angiogenesis. 
Biochim Biophys Acta, 1654:39–49.

Allen B, Raja C, Rizvi S, et al. 2007. Tumour anti-vascular alpha therapy: 
a mechanism for the regression of solid tumours in metastatic cancer. 
Phys Med Biol, 52:L15–9.

Allen C, Dos Santos N, Gallagher R, et al. 2002. Controlling the physical 
behavior and biological performance of liposome formulations through use 
of surface grafted poly(ethylene glycol). Bioscience Rep, 22:225–50.

Allen TM. 2002. Ligand-targeted therapeutics in anticancer therapy. Nature 
Cancer Rev, 2:750–63.

Auguste DT, Prud'homme RK, Ahl PL, et al. 2003. Association of hydro-
phobically-modifi ed poly(ethylene glycol) with fusogenic liposomes. 
Biochim Biophys Acta, 1616:184–95.

Azab A-K, Srebnik M, Doviner V, et al. 2005. Targeting normal and neo-
plastic tissues in the rat jejunum and colon with boronated, cationic 
acrylamide copolymers. J Control Release, 106:14–25.

Baker MV, Gaynutdinov TI, Patel V, et al. 2005. Vascular endothelial growth 
factor selectively targets boronated dendrimers to tumor vasculature. 
Mol Cancer Ther, 4:1423–9.

Barth RF, Adams DM, Soloway AH, et al. 1994. Boronated starburst 
dendrimer-monoclonal antibody imunoconjugates: evaluation as a 
potential delivery system for neutron capture therapy. Bioconjugate 
Chem, 5:58–66.

Bethge WA and Sandmaier BM. 2005. Targeted cancer therapy using radiola-
beled monoclonal antibodies. Technol Cancer Res Treat, 4:393–405.

Bloomer WD, McLaughlin WH, Neirinckx RD, et al. 1981. Astatine-
211—tellurium radiocolloid cures experimental malignant ascites. 
Science, 212:340–1.

Borchardt P, Yuan R, Miederer M, et al. 2003. Targeted actinium-225 in vivo 
generators for therapy of ovarian cancer. Cancer Res, 63:5084.

Boswell CA and Brechbiel MW. 2005. Auger electrons: lethal, low energy, 
and coming soon to a tumor cell nucleus near you. J Nucl Med, 
46:1946–7.

Bottaro DP and Liotta LA. 2003. Cancer: Out of air is not out of action. 
Nature, 423:593–5.

Brechbiel MW. 2007. Bifunctional chelates for metal nuclides. Q J Nucl 
Med Mol Imaging, Nov 28 [Epub ahead of print].

Britz-Cunningham SH, Adelstein SJ. 2003. Molecular targeting with radio-
nuclides: state of the science. J Nucl Med, 44:1945–61.

Brooks PC, Clark RA, Cheresh DA. 1994. Requirement of vascular integrin 
alpha v beta 3 for angiogenesis. Science, 264:569–71.

Bruera E, Neumann CM, Pituskin E, et al. 1999. A randomized controlled 
trial of local injections of hyaluronidase versus placebo in cancer 
patients receiving subcutaneous hydration. Ann Oncol, 10:1255–8.

Buchsbaum DJ, Chaudhuri TR, Zinn KR. 2005a. Radiotargeted gene 
therapy. J Nucl Med, 46:179s–86s.

Buchsbaum DJ, Khazaeli M, Axworthy DB, et al. 2005b. Intraperitoneal 
pretarget radioimmunotherapy with CC49 fusion protein. Clin Cancer 
Res, 15:8180–5.

Buijs WCAM, Tibben JG, Boerman OC, et al. 1998. Dosimetric analysis 
of chimeric monoclonal antibody cMOv18 IgG in ovarian carcinoma 
patients after intraperitoneal and intravenous administration. Eur 
J Nucl Med, 25:1552–61.

Burg MA, Pasqualini R, Arap W, et al. 1999. NG2 proteoglycan-binding 
peptides target tumor neovasculature. Cancer Res, 59:2869–74.

Burrows FJ, Thorpe PE. 1993. Eradication of large solid tumors in mice 
with an immunotoxin directed against tumor vasculature. Proc Natl 
Acad Sci USA. 90:8996–9000.

Campbell AM, Bailey IH, Burton MA. 2000. Analysis of the distribution of 
intra-arterial microspheres in human liver following hepatic yttrium-90 
microsphere therapy. Phys Med Biol, 45:1023–33.

Carmeliet P, Jain RK. 2000. Angiogenesis in cancer and other diseases. 
Nature, 407:249–57.

Chunfu Z, Jinquan C, Duanzhi Y, et al. 2004. Preparation and radiolabeling 
of human serum albumin (HSA)-coated magnetite nanoparticles for 
magnetically targeted therapy. Appl Radiat Isot, 61:1255–9.

Couturier O, Supiot O, Degraef-Mougin M, et al. 2005. Cancer radioim-
munotherapy with alpha-emitting nuclides. Eur J Nucl Med Imaging, 
32:601–14.

Powered by TCPDF (www.tcpdf.org)



International Journal of Nanomedicine 2008:3(2) 197

Radionuclide carriers for targeting of cancer

Crippa F, Bolis G, Seregni E, et al. 1995. Single-dose intraperitoneal radio-
immunotherapy with the murine monoclonal antibody I-131 MOv18: 
Clinical results in patients with minimal residual disease of ovarian 
cancer. Eur J Cancer, 31:686–90.

Davies CL, Lundstrom LM, Frengen J, et al. 2004. Radiation improves the 
distribution and uptake of liposomal Doxorubicin (Caelyx) in human 
osteosarcoma xenografts. Cancer Res, 64:547–53.

de Jong M, Breeman WAP, Bernard BF, et al. 2001. Tumor response after 
[90Y-DOTA0,Tyr3]Octreotide radionuclide therapy in a transplantable 
rat tumor model is dependent on tumor size. J Nucl Med, 42:1841–6.

Dearling JLJ, Pedley RB. 2007. Technological advances in radioimmuno-
therapy. Clin Oncol, 19:457–69.

del Rosario RB, Wahl RL. 1993. Biotinylated iodo-polylysine for pretargeted 
radiation delivery. J Nucl Med, 34:1147–51.

Delgado G, Potkul R, Treat J, et al. 1989. A phase I/II study of intraperitone-
ally administered doxorubicin entrapped. Am J of Obs Gyn, 160:812.

Du J, Marquez M, Hiltunen J, et al. 2000. Radiolabeling of dextran with 
rhenium-188. Appl Radiat Isot, 53:443–8.

Duncan R, Izzo L. 2005. Dendrimer biocompatibility and toxicity. Adv 
Drug Deliv Rev, 57:2215–37.

Eikenes L, Bruland OS, Brekken C, et al. 2004. Collagenase increases the 
transcapillary pressure gradient and improves the uptake and distribu-
tion of monoclonal antibodies in human osteosarcoma xenografts. 
Cancer Res, 64:4768–73.

Eikenes L, Tari M, Tufto I, et al. 2005. Hyaluronidase induces a transcap-
illary pressure gradient and improves the distribution and uptake of 
liposomal doxorubicin (CaelyxTM) in human osteosarcoma xenografts. 
Br J Cancer, 93:81–8.

Emfi etzoglou D, Kostarelos K, Papakostas A, et al. 2005. Liposome-
mediated radiotherapeutics within avascular tumor spheroids: compara-
tive dosimetry study for various radionuclides, liposome systems, and 
a targeting antibody. J Nucl Med, 46:89–97.

Epenetos A, Munro A, Stewart S, et al. 1987. Antibody-guided irradiation 
of advanced ovarian cancer with intraperitoneally administered radio-
labeled monoclonal antibodies. J Clin Oncol, 5:1890–9.

Faraggi G, Gardin I, de Labriolle-Vaylet C, et al. 1994. The infl uence of 
tracer localization on the electron dose rate delivered to the cell nucleus. 
J Nucl Med, 35:113–19.

Feakes DA, Shelly K, Knobler CB, et al. 1994. Na3[B20H17NH3]: Syn-
thesis and liposomal delivery to murine tumors. Proc Natl Acad Sci 
USA, 91:3029–33.

Folkman J. 1971. Tumor angiogenesis: therapeutic implications. N Engl 
J Med, 285:1182–6.

Folkman J. 1990. What is the evidence that tumors are angiogenesis depen-
dent? J Natl Cancer Inst, 82:4–6.

Gabizon A, Shmeeda H, Barenholz Y. 2003. Pharmacokinetics of pegylated 
liposomal Doxorubicin: review of animal and human studies. Clin 
Pharmacokinet, 42:419–36.

Gillies ER, Frechet JMJ. 2005. Dendrimers and dendritic polymers in drug 
delivery. Drug Discov Today, 10:35–43.

Goldenberg DM. 2002. Targeted therapy of cancer with radiolabeled anti-
bodies. J Nucl Med, 43:693–713.

Goldenberg DM, Sharkey RM, Paganelli G, et al. 2006. Antibody pretarget-
ing advances cancer radioimmunodetection and radioimmunotherapy. 
J Clin Oncol, 24:823–34.

Haefeli UO, Sweeney SM, Beresford BA, et al. 1995. Effective targeting 
of magnetic radioactive Yttrium-90 microspheres to tumor cells by 
an externally applied magnetic fi eld. Preliminary in vitro and in vivo 
results. Nucl Med Biol, 22:147–55.

Haefeli UO, Casillas S, Dietz DW, et al. 1999. Hepatic tumor radioembo-
lization in a rat model using radioactive rhenium (186Re/188Re) glass 
microspheres. Int J Radiation Oncology Biol Phys, 44:189–99.

Haefeli UO, Pauer G, Failing S, et al. 2001. Radiolabeling of magnetic 
particle with rhenium-188 for cancer therapy. J Magn Magn Mater, 
225:73–8.

Hallahan D, Shimian Q, Geng L, et al. 2001a. Radiation-mediated control 
of drug delivery. Am J Clin Oncol, 24:473–80.

Hallahan D, Geng L, Qu S, et al. 2003. Integrin-mediated targeting of drug 
delivery to irradiated tumor blood vessels. Cancer Cell, 3:63–74.

Hallahan DE, Geng L, Cmelak A, et al. 2001b. Targeting drug delivery to 
radiation-induced neoantigens in tumor microvasculature. J Control 
Release, 74:183–91.

Hartman T, Carlsson J. 1994. Radiation dose heterogeneity in receptor and 
antigen mediated boron neutron capture therapy. Radiother Oncol, 
31:61–75.

Hawthorne MF, Shelly K. 1997. Liposomes as drug delivery vehicles for 
boron agents. J Neurooncol, 33:53–8.

Hei TK, Persaud R, Zhou H, et al. 2004. Genotoxicity in the eyes of bystander 
cells. Mutat Res, 568:111–20.

Henriksen G, Bruland OS, Larsen RH. 2004a. Thorium- and Actinium 
polyphosphate compounds as bone-seeking alpha particle emitting 
agents. Anticancer Res, 24:101–5.

Henriksen G, Schoultz BW, Michaelsen TE, et al. 2004b. Sterically sta-
bilized liposomes as a carrier for alpha-emitting radium and actinium 
radionuclides. Nucl Med Biol, 31:441–9.

Hobbs SK, Monsky WL, Yuan F, et al. 1998. Regulation of transport 
pathways in tumor vessels: Role of tumor type and microenvironment. 
PNAS, 95:4607–12.

Hobson B, Denekamp J. 1984. Endothelial proliferation in tumours and nor-
mal tissues: continuous labelling studies. Br J Cancer, 49:405–13.

Houle S, Yip T-CK, Shepherd FA, et al. 1989. Hepatocellular carcinoma: 
pilot trial of treatment with Yttrium-90 microspheres. Radiology, 
172:857–60.

Humm JL. 1987. A microdosimetric model of astatine-211 labeled antibodies 
for radioimmunotherapy. Int J Radiat Oncol Biol Phys, 13:1767–73.

Humm JL, Chin LM. 1993. A model of cell inactivation by alpha-particle 
internal emitters. Radiat Res, 134:143–50.

Hwang KJ, Merriam JE, Beaumier PL, et al. 1982. Encapsulation, with high 
effi ciency, of radioactive metal ions in liposomes. Biochim Biophys 
Acta, 716:101–9.

Hynes NE, Lane HA. 2005. ERBB receptors and cancer: the complexity of 
targeted inhibitors. Nature Rev Cancer, 5:341–54.

Jaggi JS, Kappel BJ, McDevitt MR, et al. 2005. Efforts to control the errent 
products of a targeted in vivo generator. Cancer Res, 65:4888–95.

Jain RK, Munn LL, Fukumura D. 2002. Dissecting tumor pathophysiology 
using intravital microscopy. Nature Rev Cancer, 2:266–76.

Jain RK. 2005. Normalization of tumor vasculature: an emerging concept 
in antiangiogenic therapy. Science, 307:58–62.

Janssen M, Oyen W, Dijkgraaf I, et al. 2002. Tumor targeting with radiola-
beled alpha v beta 3 integrin binding peptides in a nude mouse model. 
Cancer Res, 62:6146–51.

Janssen M, Frielink C, Dijkgraaf I, et al. 2004. Improved tumor targeting 
of radiolabeled RGD peptides using rapid dose fractionation. Cancer 
Biother Radiopharm, 19:399–404.

Javid M, Brownell GL, Sweet WH. 1952. The possible use of neutron 
capture isotopes such as boron-10 in the treatment of neoplasms: II. 
computation of the radiation energy and estimates of effects in normal 
and neoplastic brain. J Clin Invest, 31:603–10.

Jhanwar YS, Divgi C. 2005. Current status of therapy of solid tumors. 
J Nucl Med, 46:141s–50s.

Jonasdottir T, Fisher D, Borrebaek J, et al. 2006. First in vivo evaluation 
of liposome-encapsulated 223Ra as a potential alpha-particle-emitting 
cancer therapeutic agent. Anticancer Res, 26:2841–8.

Justus E, Awad D, Hohnholt M, et al. 2007. Synthesis, liposomal preparation, 
and in vitro toxicity of two novel dodecaborate cluster lipids for boron 
neutron capture therapy. Bioconjugate Chem, 18:1287–93.

Kalofonos H, Rowlinson G, Epenetos A. 1990. Enhancement of monoclonal 
antibody uptake in human colon tumor xenografts following irradiation. 
Cancer Res, 50:159–63.

Kassis AI, Sastry KSR, Adelstein SJ. 1987. Kinetics of uptake, retention, and 
radiotoxicity of I-125 UDR in mammalian cells: implications of local-
ized energy deposition by Auger processes. Radiat Res, 109:78–89.

Kassis AI. 2004. The amazing world of Auger electrons. Int J Radiat Biol, 
80:789–803.

Powered by TCPDF (www.tcpdf.org)



International Journal of Nanomedicine 2008:3(2)198

Sofou

Kassis AI, Adelstein SJ. 2005. Radiobiologic principles in radionuclide 
therapy. J Nucl Med, 46:4s–12s.

Kennel SJ, Mirzadeh S. 1998. Vascular targeted radioimmunotherapy with 
213Bi – an alpha-particle emitter. Nucl Med Biol, 25:241–6.

Kirpotin DB, Drummond DC, Shao Y, et al. 2006. Antibody targeting of 
long-circulating lipidic nanoparticles does not increase tumor localiza-
tion but does increase internalization in animal models. Cancer Res, 
66:6732–40.

Kobayashi H, Wu C, Kim M-K, et al. 1999. Evaluation of the in vivo evalu-
ation of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA 
and its conjugation with anti-Tac monoclonal antibody. Bioconjugate 
Chem, 10:103–11.

Koivunen E, Wang B, Ruoslahti E. 1995. Phage libraries displaying cyclic 
peptides with different ring sizes: ligand specifi cities of the RDG-
directed integrins. Biotechnology, 13:265–70.

Kolbert KS, Hamacher KA, Jurcic JG, et al. 2001. Parametric Images of 
Antibody Pharmacokinetics in Bi213-HuM195 Therapy of Leukemia. 
J Nucl Med, 42:27–32.

Kolbert KS, Watson T, Matei C, et al. 2003. Murine S factors for liver, 
spleen, and kidney. J Nucl Med, 44:784–91.

Koning GA, Fretz MM, Woroniecka U, et al. 2004. Targeting liposomes 
to tumor endothelial cells for neutron capture therapy. Appl Radiat 
Isot, 61:963–7.

Koppe MJ, Postema EJ, Aarts F, et al. 2005. Antibody-guided radiation 
therapy of cancer. Cancer Metastasis Rev, 24:539–67.

Kullberg EB, Wei Q, Capala J, et al. 2005. EGF-receptor targeted liposomes 
with boronated acridine: growth inhibition of cultured glioma cells after 
neutron irradiation. Int J Radiat Biol, 81:621–9.

Kvols LK. 2005. Radiation sensitizers: a selective review of molecules 
targeting DNA and non-DNA targets. J Nucl Med, 46:187s–90s.

Lasic DD. 1993 Liposomes from Physics to Applications. Amsterdam, 
Elsevier.

Lasic DD, Martin F (eds). 1995. Stealth liposomes, Boca Raton, Fla, CRC 
Pr.

Li C-Y, Shan S, Huang Q, et al. 2000. Initial stages of tumor cell-induced 
angiogenesis: Evaluation via skin window chambers in rodent models. 
J Natl Cancer Inst, 92:143–7.

Li J, Huang S, Armstrong EA, et al. 2005. Angiogenesis and radiation 
response modulation after vascular endothelial growth factor receptor-2 
(VEGF-2) blockade. int J Radiat Oncology Biol Phys, 62:1477–85.

Lin G, Lunderquist A, Hagerstrand I, et al. 1984. Postmortem examination 
of the blood supply and vascular pattern of small liver metastases in 
man. Surgery, 96:517–26.

Lindegren S, Andersson H, Jacobsson L, et al. 2002. Synthesis and 
biodistribution of 211At-labeled, biotinylated, and charge-modifi ed 
poly-L-lysine: evaluation for use as an effector molecule in pretargeted 
intraperitoneal tumor therapy. Bioconjugate Chem, 13:502–9.

Lindegren S, Karlsson B, Jacobsson L, et al. 2003. 211At-labeled and 
biotinylated effector molecules for pretargeted radioimmunotherapy 
using poly-L- and poly-D-lysine as multicarriers. Clin Cancer Res, 
9:3873s–9.

Linden O, Kurkus J, Garkavij M, et al. 2005. A novel platform for radioim-
munotherapy: extracorporeal depletion of biotinylated and 90Y-labeled 
Rituximab in patients with refractory B-cell lymphoma. Cancer Biother 
Radiopharm, 20:457–66.

Line BR, Mitra A, Nan A, et al. 2005. Targeting tumor angiogenesis: 
comparison of peptide and polymer-peptide conjugates. J Nucl Med, 
46:1552–60.

Macklis RM, Kinsey BM, Kassis AI, et al. 1988. Radioimmunotherapy with 
alpha-particle-emitting immunoconjugates. Science, 240:1024–6.

Maeda H, Wu J, Sawa T, et al. 2000. Tumor vascular permeability and 
the EPR effect in macromolecular therapeutics: a review. J Control 
Release, 65:271–84.

Malik N, Wiwattanapatapee R, Klopsch R, et al. 2000. Relationship between 
structure and biocompatibility in vitro, and preliminary studies on the 
biodistribution of 125I-labelled polyamidoamine dendrimers in vivo 
J Control Release, 65:133–48.

Mamede M, Saga T, Kobayashi H, et al. 2003. Radiolabeling of avidin with 
very high specifi c activity for internal radiation therapy of intraperito-
neal disseminated tumors. Clin Cancer Res, 9:3756–62.

Mantravadi RVP, Spigos DG, Tan WS, et al. 1982. Intraarterial Yttrium-90 
in the treatment of hepatic malignancy. Radiolgy, 142:783–6.

Maruyama K, Ishida O, Kasaoka S, et al. 2004. Intracellular targeting of 
sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by 
transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). 
J Control Release, 98:195–207.

McDevitt MR, Ma D, Lai LT, et al. 2001. Tumor therapy with targeted 
atomic nanogenerators. Science, 294:1537–40.

Meredith RF, Partridge EE, Alvarez RD, et al. 1996. Intraperitoneal radio-
immunotherapy of ovarian cancer with lutetium-177-CC49. J Nucl 
Med, 37:1491–6.

Mitra A, Nan A, Papadimitriou JC, et al. 2006. Polymer-peptide conju-
gates for angiogenesis targeted tumor radiotherapy. Nucl Med Biol, 
33:43–52.

Mulford DA, Scheinberg DA, Jurcic JG. 2005. The promise of targeted 
alpha-particle therapy. J Nucl Med, 46:199s–204s.

Murthy R, Nunez R, Szklaruk J, et al. 2005. Yttrium-90 microsphere therapy 
for hepatic malignancy: Devices, indications, technical considerations, 
and potential complications. Radiographics %R 101148/rg25si055515, 
25:S41–55.

Netti PA, Berk DA, Swartz MA, et al. 2000. Role of extracellular matrix 
assembly in interstitial transport in solid tumors. Cancer Res, 
60:2497–503.

Nieder C, Wiedenmann N, Andratschke N, et al. 2006. Current status of 
angiogenesis inhibitors combined with radiation therapy. Cancer Treat 
Rev, 32:348–64.

Nikula TK, McDevitt MR, Finn RD, et al. 1999. Alpha-emitting bismuth 
cyclohexylbenzyl DTPA constructs of recombinant humanized anti-
CD33 antibodies: pharmacokinetics, bioactivity, toxicity and chemistry. 
J Nucl Med, 40:166–76.

Noguchi Y, Wu J, Duncan R, et al. 1998. Early phase tumor accumulation 
of macromolecules: A great difference between the tumor vs.normal 
tissue in their clearance rate. Jpn J Cancer Res, 89:307–14.

Normanno N, De Luca A, Bianco C, et al. 2006. Epidermal growth factor 
receptor (EGFR) signaling in cancer. Gene, 366:2–16.

Nunez MI, Villalobos M, Olea N, et al. 1995. Radiation-induced DNA 
double-strand break rejoining in human tumour cells. Br J Cancer, 
71:311–16.

Paganelli G, Ferrari M, Cremonesi M, et al. 2007. IART(R): Intraoperative 
avidination for radionuclide treatment. A new way of partial breast 
irradiation. The Breast, 16:17–26.

Pak RH, Primus FJ, Rickard-Dickson KJ, et al. 1995. Preparation and prop-
erties of nido-carborane-specifi c monoclonal antibodies for potential 
use in boron neutron capture therapy for cancer. Proc Natl Acad Sci, 
92:6986–90.

Palm S, Enmon R, Scheinberg DA, et al. 2002. Modeling alpha-emitter 
labeled antiPSMA antibody (225Ac-J591) targeting of prostate micro-
metastases: microdosimetric analysis of spheroid response. Cancer 
Biother Radiopharm, 17:488.

Palm S, Back T, Claesson I, et al. 2007. Therapeutic effi cacy of astatine-
211-labeled trastuzumab on radioresistant SKOV-3 tumors in nude 
mice. Int J Radiat Oncol Biol Phys, 69:572–9.

Pan XQ, Wang H, Lee RJ. 2002a. Boron delivery to a murine lung car-
cinoma using folate receptor-targeted liposomes. Anticancer Res, 
22:1629–33.

Pan XQ, Wang H, Shukla S, et al. 2002b. Boron-containing folate recep-
tor-targeted liposomes as potential delivery agents for neutron capture 
therapy. Bioconjugate Chem, 13:435–42.

Pattillo CB, Sari-Sarraf F, Nallamothu R, et al. 2005. Targeting of the 
antivascular drug combretastatin to irradiated tumors results in tumor 
growth delay. Pharm Res, 22:1117–20.

Paxton RJ, Beatty BG, Varadarajan A, et al. 1992. Carboranyl peptide-anti-
body conjugates for neutron-capture therapy: preparation, characteriza-
tion, and in vivo evaluation. Bioconjug Chem, 3:241–7.

Powered by TCPDF (www.tcpdf.org)



International Journal of Nanomedicine 2008:3(2) 199

Radionuclide carriers for targeting of cancer

Pohlman B, Sweetenham J, Macklis RM. 2006. Review of clinical radioim-
munotherapy. Expert Rev Anticancer Ther, 6:445–61.

Reubi JC, Maecke HR, Krenning EP. 2005. Candidates for peptide receptor 
radiotherapy today and in the future. J Nucl Med, 46:67s–75s.

Ristori S, Oberdisse J, Grillo I, et al. 2005. Structural characterization of 
cationic liposomes loaded with sugar-based carboranes. Biophys J, 
88:535–47.

Rogers BE, McLean SF, Kirkman RL, et al. 1999. In vivo localization of 
[111In]-DTPA-D-Phe -Octreotide to human ovarian tumor xenografts 
induced to express the somatostatin receptor subtype 2 using an adeno-
viral vector. Clin Cancer Res, 5:383–93.

Rogers BE, Zinn KR, Lin CY, et al. 2002. Targeted radiotherapy with 
[(90)Y]-SMT 487 in mice bearing human nonsmall cell lung tumor 
xenografts induced to express human somatostatin receptor subtype 2 
with an adenoviral vector. Cancer, 94:1298–305.

Rosen LS. 2005. VEGF-targeted therapy: therapeutic potential and recent 
advances. Oncologist, 10:382–91.

Ruoslathi E and Pierschbacher MD. 1986. Arg-Gly-Asp: a versatile cell 
recognition signal. Cell, 44:517–18.

Ruoslathi E. 2002. Specialization of tumour vasculature. Nature Rev 
Cancer, 2:83–90.

Ryan MT, Poston JWS (eds). 2005. A half century of health physics, Lip-
pincott Williams and Wilkins.

Salem R, Thurston KG, Carr BI, et al. 2002. Yttrium-90 microspheres: 
Radiation therapy for unresectable liver cancer. J Vasc Interv Radiol, 
13:223S–9S.

Scott PA, Harris AL. 1994. Current approaches to taargetign cancer using 
antiangiogenesis therapies. Cancer Treat Rev, 20:393–412.

Sgouros G. 2002. Radiolabeled antibodies, overview. Encyclopedia of 
Cancer. Elsevier Science.

Sgouros G. 2005. Dosimetry of internal emitters. J Nucl Med, 46:18s–27s.
Sgouros G, Knox SJ, Joiner MC, et al. 2007. MIRD continuing education: 

Bystander and low dose-rate effects: Are these relevant to radionuclide 
therapy? J Nucl Med, 48:1683–91.

Sharkey RM, Goldenberg DM. 2005. Perspectives on cancer therapy with 
radiolabeled monoclonal antibodies. J Nucl Med, 46:115s–27s.

Shukla S, Wu G, Chatterjee M, et al. 2003. Synthesis and biological evaluation 
of folate receptor-targeted boronated PAMAM dendrimers as potential 
agents for neutron capture therapy. Bioconjugate Chem, 14:158–67.

Sims DE. 1986. The pericyte: a review. Tissue Cell, 18:153–74.
Snyder AR. 2004. Review of radiation-induced bystander effects. Hum 

Exp Toxicol, 23:87–9.
Sofou S, Enmon RM, McDevitt MR, et al. 2004a. Multivesicular radioim-

munoliposomes with encapsulated Actinium-225 for targeted alpha-
particle therapy of intraperitoneal micrometastatic cancer. Cancer 
Biother Radiopharm, 19:s518–9.

Sofou S, Thomas JL, Lin H-Y, et al. 2004b. Engineered liposomes for poten-
tial α-particle therapy of metastatic cancer. J Nucl Med, 45:253–60.

Sofou S, Kappel BJ, Jaggi JS, et al. 2007. Enhanced retention of the alpha-
particle-emitting daughters of actinium-225 by liposome carriers. 
Bioconjugate Chem, 18:2061–7.

Sofou S. 2007. Surface-active liposomes for targeted cancer therapy. 
Nanomed, 2:711–24

Søyland C, Hassfjell SP. 2000. Survival of human lung epithelial cells 
following in vitro alpha-particle irradiation with absolute determina-
tion of the number of alpha-particle traversals of individual cells. Int 
J Radiat Biol, 76:1315–22.

Stolz B, Weckbeckre G, Smith-Jones PM, et al. 1998. The somatostatin 
receptor-targeted radiotherapeutic [90y-DOTA-DPhe1, Tyr3]octreotide 
(90Y-SMT 487) eradicates experimental rat pancreatic CA 20948 
tumours. Eur J Nucl Med, 25:668–74.

Supiot O, Gouard S, Charrier J, et al. 2005. Mechanisms of cell sensitization 
to alpha radioimmunotherapy by doxorubicin or paclitaxel in multiple 
myeloma cell lines. Clin Cancer Res, 11:7047s–52s.

Supiot S, Thillays F, Rio E, et al. 2007. Gemcitabine radiosensitizes mul-
tiple myeloma cells to low let, but not high let, irradiation. Radiother 
Oncol, 83:97–101.

Thirumamagal BTS, Zhao XB, Bandyopadhyaya AK, et al. 2006. Recep-
tor-targeted liposomal delivery of boron-containing cholesterol mim-
ics for boron neutron capture therapy (BNCT). Bioconjugate Chem, 
17:1141–50.

Thorpe PE, Burrows FJ. 1995. Antibody-directed targeting of the vasculature 
of solid tumors Breast Cancer Res Treat, 36:237–51.

Thurber GM, Zajic SC, Wittrup KD. 2007. Theoretic criteria for antibody 
penetration into solid tumors and micrometastases. J Nucl Med, 
48:995–9.

Tolpin EL, Wellum GR, Dohan FC Jr, et al. 1975. Boron neutron capture 
therapy of cerebral glyomals: II. utilization of the blood-brain barrier 
and tumor-specifi c antigens for the selective concentration of boron in 
gliomas. Oncology, 32:223–46.

Verschraegen C, Kumagai S, Davidson R, et al. 2003. Phase I clinical and 
pharmacological study of intraperitoneal cis-bis-neodecanoato( trans- 
R, R-1, 2-diaminocyclohexane)-platinum II entrapped in multilamellar 
liposome vesicles. J Cancer Res Clin Oncol, 129:549–55.

Wachsberger P, Burd R, Dicker AP. 2003. Tumor response to ionizing 
radiation combined with antiangiogenesis or vascular targeting agents: 
Exploring mechanisms of Interaction. Clin Cancer Res, 9:1957–71.

Wester HJ, Kessler H. 2005. Molecular targeting with peptides or peptide-
polymer conjugates: just a question of size? J Nucl Med, 46:1940–5.

Wilbur DS, Pathare PM, Hamlin DK, et al. 1998. Biotin reagent for antibody 
pretargeting. 3. synthesis, radioiodination, and evaluation of biotinylated 
starburst dendrimers. Bioconjugate Chem, 9:813–25.

Wong JYC. 2006. Systemic targeted radionuclide therapy: Potential new 
areas. Int J Radiat Oncol Biol Phys, 66:S74–S82.

Xu FJ, Pirollo KF, Chang EH. 2001. Tumor-targeted p53-gene therapy 
enhances the effi cacy of conventional chemo/radiotherapy. J Control 
Release, 74:115–28.

Xu LY, Butler NJ, Makrigiorgos GM, et al. 2002. Bystander effect pro-
duced by radiolabeled tumor cells in vivo. Proc Natl Acad Sci USA, 
99:13765–70.

Yinghuai Z, Peng AT, Carpenter K, et al. 2005. Substituted carborane-
appended water-soluble single-wall carbon nanotubes: new approach 
to boron neutron capture therapy drug delivery. J Am Chem Soc, 
127:9875–80.

Zaidi H, Sgouros G (eds). 2003. Therapeutic applications of Monte Carlo 
calculations in nuclear medicine, Bristol, IoP.

Zamenhof RG. 1997. Microdosimetry for boron neutron capture therapy: a 
review. J Neurooncol, 33:81–92.

Zhang J-S, Liu F, Huang L. 2005. Implications of pharmacokinetic behav-
ior of lipoplex for its infl ammatory toxicity. Adv Drug Deliv Rev, 
57:689–98.

Znati CA, Rosenstein M, McKee TD, et al. 2003. Irradiation reduces inter-
stitial fl uid transport and increases collagen content in tumors. Clin 
Cancer Res, 9:5508–13.

Powered by TCPDF (www.tcpdf.org)



Powered by TCPDF (www.tcpdf.org)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


