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Abstract: Ultrasound-mediated drug delivery is a novel technique for enhancing the penetration 

of drugs into diseased tissue beds noninvasively. By encapsulating drugs into microsized and 

nanosized liposomes, the therapeutic can be shielded from degradation within the vasculature 

until delivery to a target site by ultrasound exposure. Traditional in vitro or ex vivo techniques 

to quantify this delivery profile include optical approaches, cell culture, and electrophysiology. 

Here, we demonstrate an approach to characterize the degree of nitric oxide (NO) delivery to 

porcine carotid tissue by direct measurement of ex vivo vascular tone. An ex vivo perfusion 

model was adapted to assess ultrasound-mediated delivery of NO. This potent vasodilator was 

coencapsulated with inert octafluoropropane gas to produce acoustically active bubble liposomes. 

Porcine carotid arteries were excised post mortem and mounted in a physiologic buffer solution. 

Vascular tone was assessed in real time by coupling the artery to an isometric force transducer. 

NO-loaded bubble liposomes were infused into the lumen of the artery, which was exposed to 

1 MHz pulsed ultrasound at a peak-to-peak acoustic pressure amplitude of 0.34 MPa. Acoustic 

cavitation emissions were monitored passively. Changes in vascular tone were measured and 

compared with control and sham NO bubble liposome exposures. Our results demonstrate that 

ultrasound-triggered NO release from bubble liposomes induces potent vasorelaxation within 

porcine carotid arteries (maximal relaxation 31%±8%), which was significantly stronger than 

vasorelaxation due to NO release from bubble liposomes in the absence of ultrasound (maximal 

relaxation 7%±3%), and comparable with relaxation due to 12 μM sodium nitroprusside infu-

sions (maximal relaxation 32%±3%). This approach is a valuable mechanistic tool for assessing 

the extent of drug release and delivery to the vasculature caused by ultrasound.

Keywords: ultrasound-mediated drug delivery, bubble liposomes, nitric oxide

Introduction
Ultrasound-mediated drug delivery
Ultrasound has been investigated as a method for triggering enhanced drug delivery 

within the human vasculature. This technique is broadly appealing, given the poten-

tial of ultrasound to control drug delivery spatially and temporally in a noninvasive 

manner. Ultrasound-mediated drug delivery (UMDD) has been demonstrated in a 

number of tissue beds, including the blood–brain barrier, cardiac tissue, prostate, and 

large arteries.

Acoustic cavitation is a physical mechanism that is hypothesized to mediate 

UMDD.1–4 Cavitation refers to nonlinear bubble activity that occurs within the vascu-

lature upon ultrasound exposure and can exert mechanical stress on nearby cells and 

junctions. Mechanical stress can trigger the reduction of barriers to drug delivery, such 
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as endothelial tight junctions or phospholipid membranes, 

via transient permeabilization. Cavitation can be nucleated 

at moderate peak-to-peak acoustic pressure amplitudes 

(1 MPa) by ultrasound contrast agents.5–8

Nitric oxide (NO) is a molecule that plays a mechanistic 

role in UMDD. A potent vasodilating gas, NO is involved 

in the regulation of paracellular and transcellular transport 

pathways,1,9 and is implicated as a regulatory promoter of 

hyperpermeability.3,10 Attenuation of NO production in the 

etiology of progression5,11 of atherosclerosis and diabetic 

vascular disease1,2,12–14 further highlights the need for novel 

therapeutic NO modulation and delivery strategies. 

Drug delivery quantification
Strategies to study ultrasound-mediated drug release and 

delivery in vitro and ex vivo have involved optical and elec-

trophysiological techniques.3,4,15–19 Optical techniques, such 

as fluorescence16,20,21 or luminescence,18,22,23 take advantage 

of the native optical properties of the therapeutic or conjuga-

tion of tracer molecules. Electrophysiological approaches, 

such as voltage-clamp techniques,19,24,25 directly assess the 

changes in membrane potential provoked during UMDD, 

but often require isolated cells cultured in vitro, where cel-

lular processes can vary from in vivo conditions.26–28 In vivo 

animal models of UMDD provide relevant bioeffect informa-

tion, but are costly and subject to considerable intersubject 

variability. The ability to detect and monitor the response of 

intact, isolated vascular tissue in real time would constitute 

a significant advancement in the study of UMDD.

Isolated tissue bath perfusion systems have been used 

extensively to characterize contractility changes induced 

by a therapeutic20,29–33 in a variety of muscular tissue 

beds, including gastric,1,2,12–14 peripheral vascular,3,4,15–19 

and cardiovascular16,20,21 beds. In these systems, dose-

 dependent changes in active muscular tension can be 

characterized in response to vasorelaxing agents such as 

bradykinin,18,22,23 sodium nitroprusside,19,24,25 nitroglycerin,26–28  

and NO.20,29–33 Adaptation of the isolated tissue bath model 

to drug delivery studies could provide relevant, real-time 

quantitative data on the drug release and delivery profiles 

triggered by ultrasound. We hypothesize that these isolated 

tissue bath systems can be used to characterize NO-mediated 

changes in carotid vascular tone upon ultrasound exposure. 

Materials and methods
Tissue bath system
Due to their similarity to human arteries, ease of excision, 

and robust post mortem viability,31 porcine carotid  arteries 

were chosen as the model artery to study NO delivery. 

Carotid arteries were obtained post mortem from young 

Yorkshire pigs (~20 kg) according to a protocol approved 

by the Institutional Animal Care and Use Committee at the 

Cincinnati Department of Veterans Affairs Medical Center 

(Animal Welfare Assurance Number A3446-01). Seven 

pigs were initially anesthetized with intravenous ketamine 

30 mg/kg, followed by pentobarbital 35 mg/kg for deep 

surgical anesthesia. Prior to artery excision, the animals 

were euthanized with saturated KCl solution (~[KCl]
in vivo

 

0.18 M). Segments of porcine carotid tissue were harvested 

immediately following sacrifice and stored in ice-cold, oxy-

genated Krebs–Henseleit buffer (KHB, NaCl 115.9 mM; KCl 

5.4 mM; MgSO
4
-7H

2
O 1.2 mM; NaHCO

3
 25 mM; d-glucose 

11.1 mM; NaH
2
PO

4
 0.5 mM) until use within 18 hours of 

excision from the animal. Previous investigators32 have sug-

gested that arteries remain viable for up to 3 days if obtained 

and handled in this manner. The tissue was dissected free of 

loose adventitia and connective tissue, and segmented into 

rings. These rings were cut to a length between 3.95 mM and 

4.05 mM; the mean wet mass after blotting was 20.5 mg with 

a standard deviation of 2.6 mg. Each segment was mounted 

on two rigid, stainless-steel wires. The bottom wire was fixed 

to the tissue bath, and the top wire was coupled to an isometric 

force transducer (Radnoti LLC, Monrovia, CA, USA) for 

measurement of arterial tension. The electronic configura-

tion is depicted in Figure 1. The tension signal was sampled 

digitally at 20 Hz (LabChart 6; AD Instruments, Colorado 

Springs, CO, USA) and saved to a PC for post-processing. 

The carotid segment was submerged in a custom reservoir 

filled with KHB maintained at physiologic temperature with 

continuous bubbling of a 95% O
2
/5% CO

2
 gas mixture to 

maintain physiologic pH (range 7.35–7.45). 

Following mounting of the artery and submersion in 

physiologic KHB, healthy arteries underwent a brief con-

traction and relaxation cycle.32 Artery rings not exhibiting 

this behavior were deemed unfit for experimentation and 

discarded. Prior to treatment, the arterial ring was pre-

stretched to relieve the passive elastic component of arterial 

tension in a manner similar to that described by Herlihy and 

Murphy.32 Briefly, the artery was stretched incrementally by 

translating the force transducer with a micropositioning stage 

(Radnoti LLC). To equilibrate the artery within physiologic 

buffer, the artery was alternately contracted and relaxed by 

serial infusions of KHB and KHB containing additional 

KCl, substituted in an equimolar fashion for NaCl. KCl was 

chosen as the optimal contractile agent in this biomedical 

engineering study due to its ability to induce rapid smooth 
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muscle constriction consistently across carotid arteries 

excised from different pigs of the same breed. Each artery 

was contracted initially to steady state using KHB containing 

50 mM KCl after each increment. Following a KHB wash, 

this process was repeated until a maximum KCl contraction 

was achieved. Healthy arteries consistently responded to 

precontraction with 50 mM KCl-doped KHB; however, the 

extent of precontraction was variable (range 200–330 mN). 

The basal ring tension that produced a maximum contrac-

tion tension was determined to be 75 mN. Thus, subsequent 

rings were manually prestretched to this basal tension upon 

mounting.

Bubble liposomes
Bubble liposomes were manufactured according to the 

method described by Endo-Takahashi et al34 for bubble 

liposomes. This liposomal formulation consisted of dipalmi-

toylphosphatidylcholine (DPPC), N-[1-(2,3-dioleoyloxy)

propyl]-N,N,N-trimethylammonium (DOTAP), polyethylene 

glycol (PEG) 2000, and PEG 750 in a 79:15:3:3 molar ratio. 

After manufacturing, 1 mL (1 mg lipid) of the liposomal 

emulsion was pipetted into glass vials, which were evacu-

ated of headspace air with a laboratory vacuum and stored 

at 4°C until use. Immediately prior to use, the vials were 

warmed to room temperature and 2.5 mL of gas was injected 

into the vial headspace through a rubber septum. For NO-

loaded bubble liposomes (NOBLs), this gas consisted of a 

50:50 volume ratio of NO gas (Sigma-Aldrich, St Louis, MO, 

USA) and octafluoropropane (C
3
F

8
, or OFP) gas (Specialty 

Gases of America, Toledo, OH, USA). To assess the effect of 

 cavitation alone (without NO) on vasorelaxation, C
3
F

8
 bubble 

liposomes were also manufactured by injecting 2.5 mL of 

C
3
F

8
. Following this step, the vial was mechanically agitated 

by shaking vigorously for 45 seconds (Vialmix®, Lantheus 

Medical Imaging, North Billerica, MA, USA). This agitation 

step heated the emulsion slightly, so the vial was allowed 

to equilibrate to room temperature. Immediately prior to 

experimental use, 500 μL of the liposomal emulsion was 

diluted into oxygenated (pO
2
: 722 mmHg) room temperature 

KHB to a final concentration of 0.05 mg lipid/mL for infu-

sion into the system. 

NOBl characterization
A sample of the NOBL suspension was diluted (1:1000; v/v) 

into room temperature, aerated phosphate-buffered saline 

(Sigma-Aldrich) and the size distribution was measured 

using an impedance-based particle sizer (Multisizer 4, 

30 μm aperture; Beckman Coulter, Brea, CA, USA).  

Each measurement analyzed 100 μL of the diluted sample 

through a 30 μm aperture over 30 seconds. Each measure-

ment produced a number density histogram, corrected for 

the dilution, with bins logarithmically spaced between 

0.6 μm and 18 μm. This histogram was transformed into 

a volume-weighted distribution for further analysis. The 

results from three measurements, each using a fresh vial of 

NOBLs, were averaged to produce a final volume-weighted 

size distribution.

The frequency-dependent attenuation coefficient, α(f) 

in dB/cm, was determined using a broadband substitu-

tion technique,35 the components of which were described 
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Figure 1 Electronic configuration of the ultrasound tissue bath system.
Notes: Two submersible ultrasound transducers are coupled to the reservoir: a transmit transducer (1 Mhz, 3% duty cycle, blue) focuses on the lumen of the artery, while 
a second receive transducer (7 Mhz, orange) detects cavitation emissions from nitric oxide-loaded bubble liposomes perfused within the vessel lumen (red) via a 26-gauge 
blunt injection needle.
Abbreviation: Us, ultrasound.
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 previously in Raymond et al.36 Briefly, NOBLs were diluted 

(1:500) into a reservoir containing aerated phosphate-buffered 

saline, stirred, and allowed to flow by gravity into a sample 

chamber with acoustically transparent polycarbonate film 

windows (CLINIcell 25, Mabio, Tourcoing, France). The res-

ervoir, sample chamber, and transducers were mounted in a 

test tank filled with distilled water maintained at 37°C±0.5°C 

using a circulating water bath (Neslab EX, Newington, NH, 

USA). A pair of broadband transducers (PI-20, Olympus 

NDT, Waltham, MA, USA) was used to acquire the through-

transmission spectrum over the frequency range of 1–30 MHz 

(31 KPa peak negative pulse pressure; 33 dB dynamic range). 

The attenuation spectrum was computed from the received 

amplitude spectra in the absence (diluent alone) and presence 

of the bubble liposomes, respectively. Acoustic attenuation 

measurements were made in triplicate and a separate vial of 

NOBLs was used for each measurement.

hemoglobin
The short half-life (1 second) of NO in the presence of 

hemoglobin and oxygen in vivo limits the spatial extent 

over which NO can be effective as a signaling molecule.37 In 

order to mimic the in vivo milieu more closely and to quench 

nonencapsulated NO, 1 g/L hemoglobin (porcine, Sigma-

Aldrich) was added to the reservoir prior to each treatment. 

We observed that hemoglobin concentrations greater than 

1 g/L produced a negligible decrease in vasorelaxation during 

NOBL + KHB infusions and occasionally caused vasospas-

mic contractions. Thus, 1 g/L hemoglobin was used in all 

subsequent treatments. 

Ultrasound exposure and cavitation 
detection
To reveal the mechanism of ultrasound-mediated drug 

release and delivery of NO to vascular tissue, two ultrasound 

transducers were coupled to the tissue bath reservoir. One 

transducer was used to deliver pulsed ultrasound to nucleate 

cavitation from the liposomes and a second transducer was 

used to monitor the acoustic emissions passively for evidence 

of acoustic cavitation. The experimental configuration is 

depicted in Figure 1. Prior to each experiment, a calibrated 

1 MHz therapy transducer (Olympus Panametrics, Waltham, 

MA, USA) was aligned confocally with a 7.5 MHz passive 

cavitation detector (PCD; Olympus Panametrics) using an 

ultrasonic pulser receiver (5077PR; Olympus NDT). The 

confocal point was positioned in the axial center of the 

carotid ring using a three-axis translation stage (Newport 423, 

Irvine, CA, USA). This geometry was chosen to ensure that 

the ultrasound therapy field encompassed the entire carotid 

artery, while cavitation emissions were detected primarily 

from the lumen. During experimental treatment, a function 

generator (Agilent Technologies, Santa Clara, CA, USA) 

supplied a sinusoidal signal (30 cycles, 100 Hz pulse rep-

etition frequency) that was amplified (750A250; Amplifier 

Research, Souderton, PA, USA) and used to drive the 1 MHz 

therapy transducer. Acoustic scattering within the tissue bath 

reservoir affected the beam profile slightly. Therefore, an in 

situ pressure field calibration was performed in the absence 

of the artery ring and wires (Figure 2). 

During ultrasound exposure, acoustic emissions were 

detected by the PCD, high-pass filtered (1 MHz high-pass, 

#07766 TTE, Los Angeles, CA, USA), amplified (10×, Model 

5185, Signal Recovery, Oak Ridge, TN, USA), and sampled 

at 20 MHz with an oscilloscope (LeCroy Model LT372, 

Chestnut Ridge, NY, USA). Sequences of 128 voltage time 

traces were saved to a PC for post-processing (Figure 3A). To 

enable cavitation detection spaced more consistently in time, 

one of every four pulses was saved. The traces were analyzed 

using a custom MatLab (The Mathworks Inc, Natick, MA, 

USA) script to extract spectral information associated with 

specific modes of bubble activity. A window (Blackman win-

dow, MatLab) was applied to each scattered pulse (Figure 3B) 

and transformed into the frequency domain. Each frequency 

spectrum was scaled to account for the energy lost due to 

windowing. A frequency domain comb filter was applied to 

the power spectrum (Figure 3C) to extract the ultraharmonic 

(100 kHz bands at odd multiples of 500 kHz) and broadband 
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(50 kHz bands between harmonic and ultraharmonic frequen-

cies) components of the spectrum. The energy contained in 

the ultraharmonic and broadband signals was associated with 

stable and inertial cavitation, respectively.38,39 This process 

is depicted graphically in Figure 3.

Ultrasound parameters were chosen to promote stable 

cavitation nucleated by the NOBLs within the lumen of 

the arterial ring over the 55-second treatment. A 30-cycle 

therapy pulse was chosen to minimize standing waves  

in the reservoir. To determine the optimal acoustic pressure 

to promote stable cavitation, a dose-escalation approach 

was employed. An artery was mounted within the reservoir 

filled with oxygenated KHB containing 1 g/L hemoglobin. 

NOBL infusions (0.2 mL/min) with concurrent ultrasound 

exposure and cavitation detection were performed serially. 

Between each treatment, the reservoir was flushed with 

fresh hemoglobin-doped KHB and the acoustic pressure 

increased incrementally. This process was repeated at peak-

to-peak acoustic pressure amplitudes ranging from 0 MPa 

to 0.38 MPa. The peak-to-peak acoustic pressure amplitude 

that promoted maximal ultraharmonic energy over the 

50-second ultrasound exposure (0.34 MPa) was chosen for 

all subsequent exposures.

Treatment
During treatment, the lumen of each artery was infused for 

55 seconds with randomized combinations of buffer alone, 

buffer with NOBLs, or buffer with 12 μΜ sodium nitroprus-

side (Sigma-Aldrich) using a 24-gauge blunt hypodermic 

needle connected to a syringe pump (KD Scientific, #23; 

Canning Vale, Australia). After 5 seconds of infusion, 

ultrasound or sham exposure and cavitation detection com-

menced. This experimental procedure is diagrammed in 

Figure 4.

Tension analysis
Arterial ring tension was analyzed using a custom MatLab 

script. Each tension curve was normalized to the maximum 

tension produced by 50 mM KCl KHB using Equation 1,

 % Relaxation = 
T T t

T T
MAX

MAX BASAL

−
−

( )
 (1)

where T
MAX

 is the initial tension produced by KCl contraction, 

T(t) is the arterial tension as a function of time, and T
BASAL

 is 

the basal tension after manual stretching (75 mN). A repre-

sentative tension curve for each treatment is given in Figure 5.  

For each treatment, the minimum value percent relaxation, 

ie, maximal relaxation, was used to compare across treatment 

groups. This metric has been used previously to compare 

treatments in NO-related vascular tension studies.40 

statistical analyses
In general, the mean and standard deviation of each data 

set was reported. Statistical analyses were performed using 

MatLab (Statistical Toolbox). Normal distributions were 

confirmed using Lilliefors test, with a threshold P-value of 

0.05. Differences in means between treatment groups were 

analyzed using a one-way unbalanced analysis of variance. 

P-values less than 0.05 were considered to be statistically 

significant. Subsequently, pairwise comparisons with a 

Bonferroni correction were performed to compare across 

individual treatments to minimize the family-wise error rate 

for multiple comparisons. 

Linear regression was performed to test for a correlation 

between maximal relaxation and (a) wet tissue weight, (b) 

35 mM KCl tension, and (c) cavitation energy. A one-way 

unbalanced analysis of variance was used to test for sig-

nificant correlations. For these tests, the P-value, f-statistic 

(F
stat

), and degrees of freedom (df) are reported. Spearman’s 

rank correlation coefficients (ρ) were computed to test for 

monotonic statistical relationships. The null hypothesis of no 

correlation was tested to produce a P-value; values below 

0.05 were considered to be statistically significant.

Results
liposome characterization
As depicted in Figure 6A, NOBLs had a broad, bimodal 

volume-weighted size distribution, ranging in diameter from 

Experimental treatmentArtery preparation

Tension
measurement 

Artery equilibration 

KCl contraction

Hemoglobin (1 g/L)
added to reservoir

Time (seconds)5550–120–240–7,200

Treatment infusion

Ultrasound
exposure

Cavitation
detection

Figure 4 Timeline of procedures performed during a typical experimental exposure.
Notes: repeated measurements were made in series following 35 mM potassium chloride washes, followed by tension equilibration.
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approximately 1.5 μm to 15 μm. The peak volume density 

occurred at a diameter of 2.5 μm. A separate population of 

particles existed at 11 μm, diminishing in diameter above 

15 μm. 

Figure 6B shows the measured attenuation coefficient as 

a function of frequency for NOBLs (n=3). NOBLs attenu-

ated ultrasound across the 33 dB bandwidth of the system 

(1–30 MHz). A strong, broad resonance peak (α =13.0 dB/cm)  

was observed at 5 MHz. A second resonance peak  

(α =12.3 dB/cm) was observed near 28 MHz. NOBLs attenu-

ated weakly between these two frequencies.

cavitation
In general, ultraharmonic and broadband acoustic emissions 

within the arterial lumen persisted throughout the 50-second 

exposures in all eight ultrasound-treated arteries. Figures 7A 

and B show representative traces of the ultraharmonic and 

broadband acoustic power detected by the PCD as a func-

tion of time. A representative spectrum, averaged over the 

55-second treatment, is depicted in Figure 3C. Ultraharmonic 

energy was typically strong, yet variable, during the first few 

seconds of ultrasound exposure, and remained steady for the 

duration of the 50-second exposure. Within the NOBL +  

ultrasound treatment group, no correlation was observed 

between maximal relaxation and the average spectral 

 emissions (ultraharmonic, ρ=-0.45, P=0.21; harmonic,  

ρ=-0.46, P=0.25; broadband, ρ=-0.50, P=0.21).

Vasorelaxation
Seven carotid rings each from seven separate pigs were 

exposed to each experimental treatment, as shown in Figure 8. 

Carotid rings relaxed in response to treatments in a character-

istic manner, ie, a sharp tension decrease followed by steady 

restoration to the tension level induced by 35 mM KCl pre-

contraction. Neither the order of treatment nor the time post-

excision from the animal (ρ=-0.45, P=0.21) resulted in an 

apparent trend in maximal relaxation. Relaxation after 12 μM 

sodium nitroprusside infusions was significantly stronger 

(32%±5%) than NOBL infusions (P0.01, F
stat

 =104.15, df 

=13) and sham control treatments, which consisted of buffer 

and NOBLs (7%±3%), buffer and ultrasound (1%±2%), or 

C
3
F

8
 bubble liposomes and ultrasound exposure (2%±1%). 

Arterial rings exposed to NOBLs + ultrasound experienced 

Pe
rc

en
t t

en
si

on
 (r

el
at

iv
e 

m
ax

 K
C

l)

Time after treatment (seconds)
0

–60

–50

–40

–30

–20

–10

0

50 100 150 200 250 300 350 400

Buffer + US

Buffer + NOBLs
NOBLs + US
12 µM SNP

Figure 5 representative tension reduction (relative to the maximum Kcl 
contraction tension) for buffer + Us, buffer + NOBls, NOBls + Us (peak-to-peak 
acoustic pressure amplitude 0.34 MPa), and control agonist sodium nitroprusside. 
each treatment’s minimum tension (maximal relaxation) was used for grouped 
analysis.
Abbreviations: sNP, sodium nitroprusside; NOBls, nitric-oxide loaded bubble 
liposomes; Us, ultrasound.

Frequency (MHz)
1

0

5

10

15

5 10 20 30

A
tte

nu
at

io
n 

co
ef

fic
ie

nt
 α

  
(d

B
/c

m
)

B

Vo
lu

m
e/

10
7  (

μm
3 /m

L)

N
um

be
r/1

07  (
pe

r m
L)

Diameter (µm)
0.6 1 2 3 54 6 10 18 0

2

4

6

86

4.5

3

1.5

0

A

Figure 6 (A) size distribution (n=3) of the NOBls, weighted by volume (black) and number density (gray).
Notes: The presence of particles 4 μM (by volume) agrees with endo-Takahashi et al.34 Dots indicate one standard deviation. (B) acoustic attenuation as a function of 
frequency, as determined using the system described in raymond et al.36
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strong maximal relaxation (31%±8%) that was significantly 

greater than buffer and NOBLs (P0.001, F
stat 

=29.01, 

df =13) and statistically identical to treatment with 12 μΜ 

sodium nitroprusside (P=0.18, F
stat 

=2.06, df =13). Across all 

experimental samples, no correlation was observed between 

the maximal relaxation and precontraction tension (P=0.82, 

F
stat 

=0.05, df =21) or wet tissue weight (P=0.33, F
stat 

=0.98, 

df =21). 

Discussion
liposome characterization
The characteristics of NOBLs can be compared directly with 

previously reported data on C
3
F

8
-loaded bubble liposomes 

manufactured using similar methods. Endo-Takahashi  

et al34 reported a volume-weighted size distribution peak 

at 749 nm with a significant volume-weighted population 

greater than 4 μm. The bubble liposomes of Endo-Takahashi 

et al34 containing only C
3
F

8
, are smaller than the NOBLs 

described in this study (Figure 6A). NOBLs have a bimodal 

volume-weighted size distribution with a primary peak at 

2.5 μm and variable, secondary peak at 11 μm. This size dis-

tribution has implications for clinical translation: nanosized 

NOBLs are small enough to pass through the pulmonary 

capillary bed41 yet large enough to permit strong cavitation 

nucleation from 1 MHz ultrasound exposure.7 In future 

studies, subpopulations of the bimodal distribution could 
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Figure 7 spectral analysis of scattered acoustic signal from NOBls.
Notes: averaged spectrum of detected cavitation emissions across a 50-second ultrasound exposure during NOBl infusion into the lumen of a carotid artery (solid), 
compared to spectral emission from sham ultrasound exposures (buffer + ultrasound alone, dotted). (A) Ultraharmonic (eg, 3f/2, 5f/2.) and (B) broadband frequency 
components of the transmitted fundamental frequency (f, 1 Mhz) were consistently observed, indicating strong, persistent nonlinear bubble activity. Black circles indicate the 
mean of the local data group, bars indicate ± one standard deviation.
Abbreviation: NOBls, nitric oxide-loaded bubble liposomes.
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be isolated by differential centrifugation42 to avoid unde-

sired retention in micron-sized capillaries. However, these 

techniques present a trade-off between frequency-dependent  

ultrasound response and drug-loading capability, which are 

both highly dependent on particle size.43 

The size discrepancy between the primary peaks 

could be explained by the use of a NO/C
3
F

8
 blend in this 

study, compared with C
3
F

8
 alone used in the report by  

Endo-Takahashi et al.34 NO is more soluble in lipid than in 

aqueous solution,44 yet reacts more readily with oxygen in 

these environments. NO is further soluble in perfluorocarbon, 

demonstrated by prolonged release profiles in an in vivo ham-

ster model.45 In this study, efforts were made to ensure that 

the procedure used to manufacture NO/octafluoropropane-

loaded liposomes mimicked closely the procedure outlined 

by Endo-Takahashi et al.34 Kim et al describe an alternative 

method to encapsulate NO within echogenic liposomes 

which minimizes oxidation and degradation of NO prior 

to experimental use.46 Future work should implement these 

procedures and tailor the gas and lipid composition in NOBL 

formulations to achieve an optimal release profile and size 

distribution to improve therapeutic benefit.

Using this liposomal formulation, the pharmacokinetics 

of NOBLs in vivo are unclear. The peak number density of 

NOBLs occurred at 600 nm, which was the lower limit of 

size detection used here. Particles in this size range, capable 

of retention within tumor vasculature,47 can effectively 

attenuate ultrasound at theragnostic frequencies.48 Further, 

DOTAP, a cationic lipid, likely conferred an affinity to 

the anionic endothelial glycocalyx.49 This strong affinity 

for the vascular walls would decrease circulation time in 

vivo,50 possibly necessitating local infusion, which would 

limit the applicability of NOBLs to tissues downstream from 

traditional intra-arterial access sites. Enhanced targeting and 

localization near the endothelium could also be achieved 

ultrasonically by use of acoustic pulses to optimize radiation 

force51 and acoustic streaming.52 The presence of long chain 

(PEG 2000) and short chain (PEG 500) polyethylene glycol 

has been used in liposomal formulations to mitigate potential 

immunogenicity and antigenicity, thus prolonging circulation 

time.53 In our model, bubble liposomes were injected directly 

into the lumen of the arterial ring, where they were exposed 

to 30 cycle pulses of 1 MHz ultrasound at a peak-to-peak 

acoustic pressure amplitude of 0.34 MPa. Hemoglobin at in 

vivo concentrations would completely quench NO produced 

within the lumen of a blood vessel, thus necessitating NO 

delivery in close proximity to the endothelium.15,54 Future 

studies investigating ultrasound-mediated NO release from 

liposomes should consider these issues.

Ultrasound exposure and cavitation
The data presented here demonstrate that strong relaxation 

by NO-loaded liposomes can be enhanced by ultrasound 

exposure at acoustic pressures lower than previously 
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Figure 8 carotid artery vasorelaxation as a function of treatment.
Notes: Data means are indicated by horizontal dotted lines and boxes indicate the 25th and 75th percentiles. The range of adjacent data is indicated by error bars. seven 
arterial rings from seven pigs were used for all treatments. Statistically significant differences in data means (P0.05) were observed between all data sets except (A) buffer + 
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described.46,55 In this study, vascular relaxation was trig-

gered from NOBLs with pulsed ultrasound at a peak-to-peak 

acoustic pressure amplitude of 0.34 MPa. Despite the detec-

tion of strong cavitation at this acoustic pressure, the precise 

mechanism of NO release and delivery remains unclear. 

Smith et al describe acoustically driven diffusion at moder-

ate acoustic pressures,56,57 and other investigators7,58,59 have 

postulated that the lipid shell of microbubbles must first be 

ruptured before cavitation nucleation can occur, liberating 

encapsulated gas during rapid fragmentation. At a 0.34 MPa 

pressure exposure, it is likely that NO was released from 

the bubble liposomes gradually over a number of acoustic 

cycles. Radhakrishnan et al60 have detected loss of echoge-

nicity from contrast agents at acoustic pressures below the 

stable and inertial cavitation thresholds. In their experiments 

using Definity® and echogenic liposomes, the onset of stable 

and inertial cavitation was concomitant with an 80% loss of 

echogenicity. Thus, the release of NO from bubble liposomes 

could also occur at acoustic peak-to-peak pressures lower 

than the 0.34 MPa utilized in the present study. The mini-

mum pressure amplitude that triggers the delivery of NO to 

vascular tissue warrants further elucidation. 

In this study, C
3
F

8
 stabilized NO within the bubble 

liposomes prior to activation by ultrasound. The different 

properties of these gases (eg, molecular size, solubility) 

could promote a differential diffusion profile during acousti-

cally driven oscillation. Upon membrane distention during 

volumetric bubble expansion, NO would likely dissolve more 

readily in the surrounding aqueous medium due to its high 

solubility. Also, after liberation of NO, the residual C
3
F

8
 bub-

ble activity could promote microstreaming and enhanced 

convection and penetration into nearby vascular tissue. The 

diffusivity of NO, roughly 3,300 μm2 per second in muscular  

tissue,24,54,61 is high enough to support a linear diffusion dis-

tance of roughly 250 μm (approximate radial depth of porcine 

carotid smooth muscle cells11,62) over several seconds. NOBL 

infusions with ultrasound exposure consistently caused sharp 

decreases in vascular tension, typically occurring in the order 

of tens of seconds, followed by a steady tension restoration 

period, which lasted several minutes (Figure 5).

Vasorelaxation
Arterial segments relaxed significantly more when treated 

with NOBL infusions in the presence of pulsed ultrasound, 

compared with infusions with NOBLs alone (Figure 8). The 

ability of ultrasound to promote the delivery of encapsulated 

NO to vascular tissue agrees with observations by previous 

investigators.46,63,64 Kim et al46 using NO-loaded echogenic 

liposomes, demonstrated increased vasodilation of rabbit 

carotids after exposure to 5.7 MHz color Doppler ultrasound 

at a peak negative acoustic pressure of 0.35 MPa. Huang 

et al used a mixture of NO and argon gas to encapsulate 

NO and trigger effective release to porcine carotid tissue.55  

In this study, the release of NO from the liposome into the 

surrounding medium was decreased by roughly 65% using 

the argon/NO mixture. At lower peak-to-peak pressure 

amplitudes (0.40 MPa), other encapsulated bioactive 

gases, such as xenon, have been shown to exhibit enhanced 

release and delivery profiles with ultrasound.16,56,65 Other 

studies have demonstrated the feasibility of encapsulat-

ing NO or NO-yielding molecules to prevent physiologic 

degradation.58,66 For example, McKinlay et al demonstrated 

strong vasorelaxation of porcine coronary rings incubated 

with NO bound within a porous organic metal frame-

work.58 Consequently, future studies should focus on eluci-

dating the mechanisms of NO release from NOBLs, so that 

efficient exposure protocols can be developed to translate 

ultrasound-mediated NO delivery into the clinic.

system development
Although the ultrasound tissue bath system is capable of 

providing real-time feedback on NO delivery to vascular 

tissue, it has a few limitations. Here, a volatile anesthetic was 

used to sedate the animals prior to carotid excision, which 

can reduce endothelium function significantly by inhibit-

ing endothelial production of NO.12,24 Cavitation near the  

vascular endothelium during UMDD11,14,67 is hypothesized to 

liberate endothelial NO synthase from membrane-bound pro-

teins, such as caveolin-1.46,63,64 Increased cytosolic endothe-

lial NO synthase results in increased endothelium-derived 

NO,10,68 an effect likely absent in our model. Future studies 

should employ sedatives that do not adversely affect endothelial 

response, or should use abattoir-derived vascular tissue.

During arterial precontraction, porcine hemoglobin was 

diluted into the reservoir to a concentration of 1 g/L. At this 

concentration, arteries consistently re-established equilibrium 

contraction tension following NO-induced vasorelaxation. 

This was likely due to the quenching of excess NO by hemo-

globin, a reaction well documented in vivo.16,40,65 Because 

free hemoglobin quenches NO a thousand times faster than 

hemoglobin within intact erythrocytes,60,69 the presence of free 

hemoglobin in the bath likely resulted in a weaker vasorelax-

ation than expected in vivo in the absence of hemolysis. 

At higher hemoglobin concentrations (40 g/L) or in 

whole blood (120 g/L31,40), arteries routinely experienced 

periodic contractions that prevented restoration of tension 
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to equilibrium. This effect was likely indicative of vasos-

pasm, which has been documented in cerebral arteries as a 

result of subarachnoid hemorrhage.12 While this effect was 

a limitation in our model, Fathi et al67 describe a potential 

role of NO delivery to treat cerebral tissue following suba-

rachnoid hemorrhage. Also, using intact erythrocytes, Kim 

et al describe a technique to release NO from loaded echo-

genic liposomes within the rabbit carotid artery to reduce 

ischemic neurologic deficits.46 Intact, fresh erythrocytes also 

ensure the presence of viable oxyhemoglobin to bind NO 

efficiently.68 Future applications of this ultrasound tissue 

bath model should implement hemoglobin in the form of 

intact erythrocytes to ease the transition to possible clinical 

applications, such as localized ultrasound-mediated delivery 

of NO for arresting development of atheroma,1,4,13 induction 

of vascular hyperpermeability,1,3 or treatment of vasospasm 

after subarachnoid hemorrhage.68 

The system described here also implemented an infusion 

of treatment combinations directly to the lumen of the ves-

sel. This approach, while likely difficult to replicate in vivo, 

ensured steady replenishment of drugs and bubbles during 

experimental treatment, and permitted simple adaptation of a 

previously established tissue perfusion model. An infusion of 

12 μM sodium nitroprusside, directly infused into the lumen 

of the artery, likely only remained in the arterial lumen for 

a few seconds before being dispersed throughout the large 

reservoir filled with Krebs buffer. Together, these changes 

may have resulted in a much lower amount of sodium nitro-

prusside, and its product NO, delivered to the vascular rings 

compared with preparations using sodium nitroprusside in 

traditional tissue bath systems.

smooth muscle relaxation
In vivo, NO-mediated modulation of smooth muscle tone 

is well described by two biochemical pathways: (a) stimu-

lation of guanosine 3′:5′ cyclic monophosphate (cGMP) 

and adenosine 3′:5′ cyclic monophosphate and (b) direct 

modulation of calcium-activated, potassium channel (K+
Ca

) 

permeability.40 Bolotina et al describe the effect of exog-

enous NO on cGMP and K+
Ca

. These authors observed that  

cGMP-mediated vasorelaxations from exposure to NO were 

transient in nature and concentration-dependent, as deter-

mined by quantifying maximal relaxation,69 which is the 

metric used here. According to Tare et al the K+
Ca 

pathway can 

affect the temporal nature of NO-mediated vasorelaxation, an 

interesting future application of this novel system. Accord-

ingly, these authors integrated vasorelaxation over time to 

quantify integrated relaxation.40 Due to the potential for 

sensitivity to the K+
Ca

-dependent pathway of NO-mediated 

vasorelaxation, integrated relaxation could be considered as a 

potential metric in future applications of this system, and may 

assist in understanding the temporal nature of ultrasound-

mediated NO release from bubble liposomes.

Conclusion
The ultrasound tissue bath system described here dem-

onstrates a novel, effective technique to characterize 

ultrasound-mediated delivery of a bioactive gas to vascular 

tissue. Ultrasound tissue bath systems can be used to monitor 

UMDD in real time. The data presented demonstrate that NO 

can be released from bubble liposomes with 1 MHz pulsed 

ultrasound exposure and deposited into vascular tissue. NO 

penetration into tissue causes potent vasorelaxation, which 

manifests as a change in isometric vascular tension. Future 

studies using this technique may focus on monitoring the 

delivery of other bioactive agents that cause vasorelaxation, 

such as proteins, cells, or nucleic material.
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