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Abstract: In the developed world, age-related macular degeneration (AMD) is one of the major 

causes of irreversible blindness in the elderly. Although management of neovascular AMD 

(wet AMD) has dramatically progressed, there is still no effective treatment for nonneovascular 

AMD (dry AMD), which is characterized by retinal pigment epithelial (RPE) cell death (or 

dysfunction) and microenvironmental disruption in the retina. Therefore, RPE replacement and 

microenvironmental regulation represent viable treatments for dry AMD. Recent advances in cell 

biology have demonstrated that RPE cells can be easily generated from several cell types (pluri-

potent stem cells, multipotent stem cells, or even somatic cells) by spontaneous differentiation, 

coculturing, defined factors or cell reprogramming, respectively. Additionally, in vivo studies 

also showed that the restoration of visual function could be obtained by transplanting functional 

RPE cells into the subretinal space of recipient. More importantly, clinical trials approved by the 

US government have shown promising prospects in RPE transplantation. However, key issues 

such as implantation techniques, immune rejection, and xeno-free techniques are still needed 

to be further investigated. This review will summarize recent advances in cell transplantation 

for dry AMD. The obstacles and prospects in this field will also be discussed.

Keywords: stem cell, age-related macular degeneration, retinal pigment epithelium, cell 

reprogramming, clinical trial

Background
In the Western world, age-related macular degeneration (AMD) is one of the leading 

causes of blindness in the elderly. The incidence rate of AMD has continued to increase 

in the past decades.1–4 According to the presence or absence of choroidal neovascu-

larization, advanced AMD can be generally classified into two types: dry AMD and 

wet AMD. Wet AMD could be controlled by drugs that target the vascular endothelial 

growth factor (VEGF), photodynamic therapy, laser photocoagulation, and vitrectomy 

at different phases. Dry AMD, which is primarily attributed to the accumulation of 

reactive oxygen species and lipid peroxide, can evoke chronic inflammations in the 

retina and lead to apoptosis of the retinal pigment epithelial (RPE) cells, and finally 

damages the photoreceptors.5 Currently, no treatments can reverse dry AMD, regard-

less of the fact that dietary supplementation with defined vitamins and antioxidants 

has been shown to alleviate progression.6 Therefore, RPE replacement and retinal 

microenvironmental regulation represent potential new approaches for dry AMD.

Functional RPE cells could be generated from stem cells or somatic cells by spon-

taneous differentiation,7–16 coculturing,17 defined factors,18–22 or cell reprogramming.23 

Source of RPE cells for transplantation seems to be unlimited. More importantly, 

a clinical trial approved by the US government has shown promising prospects in 

RPE transplantation.24 However, xeno-free techniques,11,12 implantation techniques, 

immune rejection,25–27 and the safety issues are still under debate.
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In addition, mesenchymal stem cells (MSCs) have various 

biological effects,28 such as immunoregulation, antiapopto-

sis of neurons, and neurotrophin secretion. In vivo studies 

also have suggested that MSCs could recover and regulate 

the retinal microenvironment in different models of retinal 

degeneration.29,30 Moreover, MSCs are also ideal vehicles in 

cell engineering. Gene-modified MSCs always have specific 

functions and could be utilized in AMD treatments.31–34

This review will focus on the following aspects: 1) RPE 

transplantation and 2) stem cell-based retinal microenviron-

mental regulation.

RPE transplantation
Healthy and vigorous RPE cells are ideal donors for trans-

plantation, and pre-AMD is a viable therapeutic target. 

According to the cell source, they could be divided into 

1) autologous RPE cells, 2) stem cell-derived RPE cells, and 

3) reprogrammed RPE cells.

Autologous RPe cells
As the diseased RPE is a major component of dry AMD, 

several attempts have been made to replace the aged RPE 

cells located at the macula. Macular translocation surgery is 

conducted by the detachment and rotation of neural retina 

from the diseased macular RPE layer to another healthy 

place.35–37 After up to 5 years of follow-up, three Snellen lines 

of improvement in best corrected visual acuity were obtained 

in some patients.38–40 However, high complication rates were 

noticed, such as macular edema, retinal detachment, double 

vision, and cataract formation.38–40 Nonetheless, successes in 

macular translocation demonstrated that 1) healthy RPE cells 

were located in the diseased retina and 2) these healthy RPE 

cells could restore the visual function in AMD patients.

Thereafter, autologous RPE transplantation as an alterna-

tive surgical approach was widely studied. It is accomplished 

by collecting healthy RPE cells in the peripheral retina and 

transplanting them into the subretinal space at the diseased 

macula.41–45 The clinical outcomes are similar to those of the 

macular translocation: maintenance or slight elevations in 

visual acuity were reported in several trials after 3 or 4 years 

of follow-up.41–44 Although autologous RPE transplantation 

has a relatively low rate of complication when compared 

with macular translocation, there are some remarkable draw-

backs: 1) The initial harvesting of RPE cells from patients 

increases the length of the surgical procedure and the risk of 

postsurgery complications, such as cataract formation and 

retinal detachment. 2) No evidence could demonstrate that 

the transplanted RPE cells in suspension can first attach to the 

diseased Bruch’s membrane and form the desired monolayer 

which is required for optimal RPE function. In contrast, these 

cells always clump into rosettes46 or undergo anoikis,47 a 

form of apoptosis specific to anchorage-dependent cells that 

are dissociated from their usual extracellular matrix. 3) The 

cells being harvested are the same age as the cells they are 

designed to be replaced. 4) Autologous RPE transplantation 

requires more than 60,000 viable RPE cells. It is quite dif-

ficult to collect enough cells to repopulate the entire macula 

adequately.

Stem cell-derived RPe cells
RPE cells from the patients might be insufficient for trans-

plantation, and highly efficient protocols for generating 

functional RPE cells are eagerly required. Stem cells are 

able to differentiate into several cell types as well as self-

renew. According to their potential, they can be generally 

classified into pluripotent stem cells (embryonic stem cells 

[ESCs] and induced pluripotent stem cells [iPSCs]) and 

multipotent stem cells (neural stem cells, MSCs, and so 

on). Recent studies have revealed that 1) functional RPE 

cells could be differentiated from pluripotent stem cells or 

multipotent stem cells by defined protocols and 2) visual 

function could be restored in vivo by transplantation of stem 

cell-derived RPE cells.

eSC-derived RPe cells
ESCs have extensive abilities to differentiate into all three 

germ layers. In the past decade, with the development of cell 

sciences, ESCs manifest extremely attractive prospects in the 

treatment of degenerative diseases. Several defined protocols 

were conducted to generate mature RPE cells from ESCs.

Spontaneous differentiation
Adherent culture
In natural conditions, ESCs can spontaneously differentiate 

into RPE-like cells by adherent culturing. This was originally 

reported by Kawasaki et al.7 They found that about 8%±4% 

of pigmented cells could be generated from primate ESCs by 

coculturing with PA6 stromal cells. The ESC-derived RPE 

cells were hexagonal and contained significant amounts of 

pigment. They also expressed the mature markers of RPE 

cell: ZO-1, RPE65, CRALBP, and MerTK. Electron micro-

scopy revealed that these cells had extensive microvilli and 

were able to phagocytose latex beads. After transplanting 

into the subretinal space of RCS (Royal College of Surgeons, 

London, UK) rats (a well-known model of RPE degenera-

tion, which has a mutation in MerTK, characterized by loss 
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of phagocytic function of RPE cells), the grafted RPE cells 

increased the survival of host photoreceptors. Histologic 

analyses and behavioral tests further confirmed this.8 This 

protocol has multiple advantages: 1) the techniques were 

relatively simple, and ESCs were only seeded onto the PA6 

stromal cells feeder to form colonies; 2) neural differentia-

tion of ESCs is efficient and speedy; and 3) no exogenous 

reagent was used. But harvested cells could be contaminated 

by PA6 stromal cells.

Human RPE cells also could be differentiated from human 

ESCs (hESCs) by similar ways: hESCs were seeded on an 

inactivated feeder and allowed to overgrow until confluent 

(approximately 2 weeks). Then, the basic fibroblast growth 

factor was removed from the medium, and the cells were 

allowed to differentiate spontaneously. After 4–5 weeks, 

pigmented foci could be observed. When these cells were 

transplanted into the subretinal space of RCS rats, the cells 

displayed polarity and integrated well into the host retina. 

More importantly, these cells showed phagocytic functions. 

Improvement in visual performance was 100% over untreated 

controls (spatial acuity was approximately 70% that of nor-

mal nondystrophic rats). In the safety evaluation, teratoma 

formation and other pathological changes were not observed 

under immunosupression.9,10 Although the efficiency is rela-

tively low, a significant advantage of this protocol is that no 

additional reagents (such as Wnt or nodal inhibitors) were 

supplemented. This protocol mimics the natural generation 

of RPE cells and avoids the potential contaminations from 

recombinant proteins or small molecules which were used 

in other protocols.

However, most of the published protocols used mouse 

embryonic fibroblast cells as the feeder layer for hESCs 

and human induced pluripotent stem cells (hiPSCs). Xeno-

products used in the differentiation processes pose further 

challenges, because animal-derived components may carry 

factors such as sialic acid or Neu5Gc, causing unwanted 

immunogenicity of the cells,48,49 or even animal pathogens. 

Recently, Vaajasaari et al11 and Zhang et al12 reported the dif-

ferentiation of functional RPE-like cells from several hESC 

lines and one hiPSC line in defined and xeno-free conditions, 

providing an important step toward a defined and xeno-free 

culture and differentiation process, enabling easy translation 

to clinical-quality cell production under Good Manufacturing 

Practice regulations.

Suspension culture
RPE cells could also be spontaneously differentiated from 

ESCs by embryonic formation. ESCs were seeded onto a 

petri dish in the absence of a differentiation antagonist to 

form embryonic bodies (EBs). Three-dimensional suspen-

sion aggregates can mimic embryonic development in vivo. 

To yield more cells of neuroectodermal lineage, the EBs 

are replated to a coated dish containing neural differentia-

tion media (coated with extracellular matrix) for adherent 

culturing.13,14 Pigmented cells could be found thereafter. In 

2011, Advanced Cell Technology (Santa Monica, CA, USA) 

performed Phase I/II clinical trials by using this protocol to 

elucidate the efficiencies of hESC-derived RPE transplanta-

tion on dry AMD and Stargardt’s disease (registration num-

bers NCT01345006 and NCT01344993).50 Subsequently, 

Schwartz et al24 published the preliminary results of their 

study, in which two patients (dry AMD and Stargardt’s 

disease, respectively) received subretinal transplantation of 

5×104 induced RPE cells by vitrectomy. Efficiency evalua-

tions: the cells survived after 4 months of follow-up. The 

best corrected visual acuities of both patients were slightly 

improved: 7-letter improvements were achieved in the AMD 

patient (from 21 to 28 letters) and 5-letter improvements were 

achieved for the patient with Stargardt’s disease (evaluated 

by the Early Treatment for Diabetic Retinopathy Study visual 

chart). Safety evaluations: no teratoma formation and immu-

nologic rejection were noticed in both cases. The investigators 

also found that the phase of cell differentiation was directly 

associated with cellular attachment and survival: RPE cells 

with mild depigmentation have better proliferative and adher-

ent abilities. Therefore, choosing donor cells at optimal stages 

is a crucial step for successful transplantation. Also, hESCs 

used for differentiation should not contain pathogenic genes, 

and RPE cell purification is an additional concern.

Subsequently, with the establishment of a three-dimensional 

culture system, Eiraku et al51 reported that the optic cup and 

mature RPE layers could be spontaneously generated by a 

three-dimensional culture of mouse ESC aggregates. Zhu et al52  

demonstrated the utility of this epithelial culture approach by 

achieving a quantitative production of RPE cells from hESCs 

within 30 days. Direct transplantation of this RPE into a rat 

model of retinal degeneration without any selection or expan-

sion of the cells results in the formation of a donor-derived 

RPE monolayer that rescues photoreceptor cells. The cyst 

method for neuroepithelial differentiation of pluripotent 

stem cells is not only of importance for RPE generation but 

will also be relevant to the production of other neuronal cell 

types and for reconstituting complex patterning events from 

three-dimensional neuroepithelia.

However, three-dimensional culturing is time-consuming 

and expensive. To enhance the efficiency of RPE generation, 
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Cho et al53 conducted a protocol which indicated that RPE 

cells could be obtained from spherical neural masses. The 

target cells showed polygonal-shaped epithelial monolayer, 

and electron microscopy revealed apical microvilli, pigment 

granules, and tight junctions. These cells also expressed 

molecular markers of RPE, including ZO-1, RPE65, and 

bestrophin. On functional evaluation, these cells showed 

phagocytosis of isolated photoreceptor outer segment (POS) 

and secretion of soluble factors such as pigment epithelium-

derived factor (PEDF) and VEGF. This protocol has remark-

able merits: 1) Spherical neural masses have the capability 

of expansion for long periods without loss of differentiation 

capability and 2) they are easy to store and thaw, and there is 

no need for feeder cells. Thus, it could be an efficient strategy 

for obtaining functional RPE cells for retinal regenerative 

therapy.

Directed differentiation
ESCs also can directly differentiate into RPE-like cells by 

supplementing with defined factors.18,19 Early studies using 

stepwise differentiation protocols were based on models of 

telencephalic cell derived from ESCs, and combined EB 

formation with subsequent culture of attached cells in media 

containing proteins which control specification of neuronal 

lineage (such as Dkk1, a Wnt antagonist; LeftyA, a nodal 

antagonist). In 2005, Ikeda et al18 conducted a protocol by 

which retinal precursors could be directly differentiated 

from mouse ESCs by supplementing Dkk1 and LeftyA 

under serum-free, feeder-free conditions; 16% of the total 

cells could be differentiated into retinal precursor cells (Rax 

positive). After optimizing the protocols, the efficiency of 

differentiation has been greatly elevated.19

In addition, insulin-like growth factor signaling path-

ways and transforming growth factor beta (TGFβ) signaling 

pathways (such as bone morphogenetic protein antagonists, 

nicotinamide, and Activin A) were also reported to play 

important roles in RPE differentiation. Using Noggin (a bone 

morphogenetic protein antagonist), Dkk1-1, and insulin-like 

growth factor 1, Lamba et al54 found that up to 80% of the 

H1 line can be directed to the retinal progenitor fate, and 

express a gene expression profile similar to that of progenitors 

derived from human fetal retina. The most prominent benefit 

of this protocol is that high percentages of target cells were 

generated from hESCs within a short period. In another study, 

Idelson et al55 revealed that nicotinamide (belonging to TGFβ 

superfamily), which presumably patterns RPE development 

during embryogenesis, promotes the differentiation of hESCs 

to neural and subsequently to RPE fate. The hESC-derived 

RPE cells exhibited a morphology, marker expression, and 

function similar to those of authentic RPE and restored retinal 

structure and function after transplantation in vivo. Activin A,  

a member of the TGFβ superfamily, is another critical factor 

in RPE differentiation. It was secreted by the extracellular 

mesenchyme during optic cup development. With the addi-

tion of Activin A, the yield of RPE cells increased.55 Alter-

natively, Activin A may serve to maintain the differentiated 

RPE cell phenotype in culture.56

Although protocols mentioned so far have become more 

efficient than the report in 2004, they are still a bit time-

consuming and inefficient. In a recent study, Buchholz et al57  

found that supplementing with defined factors at specific 

times could yield approximately 80% of the cells to an RPE 

phenotype within 2 weeks. They also noticed that culturing 

with more non-RPE cells led to faster RPE pigmentation, 

suggesting that these cells may secrete factors that activate 

melanogenesis.

However, the defined factors in these protocols are all 

derived from animal cells or Escherichia coli, raising the pos-

sibility of infection or immune rejection due to cross-species 

contamination. By contrast, using chemical compounds 

offers several advantages, compared with the recombinant 

proteins: 1) the small molecules are chemicals, which are 

consistent between different lot numbers and manufacturers; 

2) the cross-species contaminations and cross-reactions are 

easily avoided; and 3) the cost is relatively low, making this 

method applicable. In a serum-free and feeder-free floating 

aggregate culture, Osakada et al58 found that ESCs and iPSCs 

could be efficiently differentiated into RPE cells by supple-

menting CKI-7 (a Wnt antagonist) and SB-431542 (a nodal 

antagonist). These cells displayed the characteristic morphol-

ogy of mature RPE cells, protein markers, and phagocytic 

capacity. This method provides a solution to cross-species 

antigenic contamination in transplantation, and is also use-

ful for in vitro modeling of development, disease, and drug 

screening. However, whether these effects are reversible 

and transient is largely unknown. More research is needed 

to evaluate the long-term biological effects.

iPSC-derived RPe cells
In recent years, the most breaking advance in cell biology is 

probably iPSCs, which was first reported by Takahashi and 

Yamanaka59 and Yu et al.60 These cells reprogrammed by using 

Thomson factors or Yamanaka factors showed morphological 

characteristics and differentiation abilities (including iPSCs to 

RPE) similar to those of the ESCs. Studies by several groups 

have already demonstrated that human RPE cells could be 
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generated from iPSCs by spontaneous differentiation15,16 or 

directed differentiation.20–22,61 The iPSC-derived RPE cells 

were morphologically similar to, and expressed numerous 

markers of, developing and mature RPE cells. Phagocytosis 

of isolated POS and secretion of soluble factors (PEDF and 

VEGF) were also mentioned by several groups.15,16,20–22 Inter-

estingly, Westenskow et al62 developed a flow cytometry-based 

assay to compare the phagocytic function between ARPE-19, 

human fetal RPE, and two types of iPSCs-RPE. They found 

that highly differentiated iPSCs-RPE phagocytosed POS 

more efficiently than did native RPE. In vivo studies also 

suggested that transplantation of these cells could facilitate 

the maintenance of photoreceptors through phagocytosis of 

the POS in the model of RPE degeneration.15,63

Additionally, iPSCs could be generated by using less 

transcription factors, which would reduce the incidence of 

tumorigenesis. Krohne et al63 found that 1-factor-iPSC-RPE 

significantly resembled native RPE cells not only on pro-

teomics and untargeted metabolomic analyses but also on 

in vivo functional evaluations. They showed that 1-factor-

iPSC-RPE mediates anatomical and functional rescue of 

photoreceptors after transplantation in an animal model of 

RPE degeneration. Moreover, iPSCs could also be derived 

from other somatic cells than fibroblasts, including RPE cells. 

Hu et al64 reprogrammed primary RPE cells by using OCT4, 

SOX2, LIN28, and Nanog. The RPE-derived iPSCs exhibited 

morphologies, gene expressions, and teratoma formation 

similar to hESCs and other iPS cell lines. After spontaneous 

differentiation by the removal of fibroblast growth factor 2,  

the resultant RPE cells showed a marked preference for redif-

ferentiation into RPE. They suggested that target cells retain 

a memory of their previous state of differentiation.

Despite the fact that most protocols for ESC differen-

tiation are suitable for iPSCs, differentiation efficiencies 

between iPS cell lines vary. Hirami et al61 suggested that 

under identical conditions (SFEB/DL), 201B7 and 253G1 

cell lines could differentiate into RPE cells, whereas 201B6 

cell lines could not. From the perspective of protein expres-

sion, 6 days after differentiation toward RPE cells, Rx+/Pax+ 

cells emerged in an mESC-derived pool of cells, whereas this 

emergence requires 15 days with cells derived from certain 

iPS cell lines.

iPSC-derived RPEs have several advantages. First, 

absence of ethical concerns is the biggest benefit for research. 

Second, patient-specific iPSCs might have minimal immu-

nogenicity than ESCs or other originated RPE cells. Third, 

iPSC-derived RPEs could be considered as a well-established 

model for disease mimicking and drug screening.

However, shortcomings of using iPSC-derived RPEs 

for transplantation cannot be ignored: 1) cells derived from 

iPSCs have the potential ability of tumorigenesis, which 

would restrict their clinical applications; 2) generation of 

patient-specific iPSCs would be a costly and time-consuming 

course; and 3) patient-specific iPSCs might have genetic 

defects that contribute to the disease. Combining iPSC tech-

nology with gene therapy is a promising solution.65

MSC-derived RPe cells
Although RPE cells are derived from the ectoderm, MSCs 

have the ability of cross-mesodermal differentiation. Huang 

et al17 found that RPE-like cells could be obtained from MSCs 

by RPE conditional medium supplemented with POS. These 

cells have morphological features and phagocytic capabilities 

similar to those of the native RPE cells.

Moreover, studies have also indicated that retinal cells 

could be differentiated from MSCs and replace the dam-

aged retinal cells under certain conditions.66,67 Gong et al66 

reported that MSC-originated RPE cells could be found in 

the sodium iodide-damaged retina after subretinal injection 

of MSCs for 5 days.

Retinal stem cell-derived RPe cells
The retinal stem cells (RSCs) are situated in the ciliary 

marginal zone (CMZ) in fish and amphibians. The CMZ 

can continuously generate new neurons after retinal injury. 

Despite the fact that the mature retina in mammalians lacks 

regenerative ability, Tropepe et al68 noticed that CMZ cells 

are capable of proliferating and differentiating into retinal 

cells (rods, bipolar cells, and glial cells) in mature mice. 

By isolating RSCs and supplementing with linoleic acid, 

selenite, insulin, transferrin, thyroxin, and other factors into 

the medium, Aruta et al69 successfully differentiated RSCs 

into polarized and phagocytotic RPE-like cells. Similar to 

the MSC-derived RPE cells described by Huang et al17 no 

studies were conducted to evaluate the function and safety 

of induced RPE cells in vivo.

However, the existence of mammalian RSCs is still under 

debate. Cicero et al70 speculated that the so-called RSCs are 

ciliary epithelial cells. Their study showed that no signifi-

cant differences in molecular, cellular, and morphological 

characteristics were observed between RSCs and ciliary 

epithelial cells. They suggested that ciliary epithelial cells 

can form colony spheres, undergo self-renewal, and express 

precursor markers.

In addition, Müller cells were once considered as retinal 

stem cells. Bernardos et al71 reported that Müller cells could 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Interventions in Aging 2015:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

260

Dang et al

express Pax6 and Crx at a low level in zebra fish. Song et al72  

found that Atoh7 could promote the transformation of Müller 

cells into retinal ganglion cells. However, Müller cells origi-

nate from neural retinal precursors and mature at the last stages 

of retinogenesis, and RPE precursors, and neural retinal pre-

cursors divided during early embryonic development (neural 

retinal cells develop in the following order: retinal ganglion 

cells, cone cells, amacrine cells, horizontal cells, rod cells, 

bipolar cells, and Müller cells). Therefore, direct transforma-

tion of Müller cells into RPE will be extremely difficult.

Reprogrammed RPE cells (somatic 
cell-derived RPE cells)
With the development of cell biology, direct cell reprogram-

ming shows a promising prospect in the generation of target 

cells from other types of somatic cells. The most important and 

interesting advantage of this technique is that direct lineage 

conversion could bypass the pluripotent state, and therefore 

might reduce the risk of tumor formation. In addition, the 

process of direct lineage conversion requires less time than 

does the conventional differentiation by iPSCs or ESCs.

Currently, using defined transcription factors, direct 

lineage conversion has been applied to generate various cell 

types, including neurons,73–75 kidney cells,76 endocrine beta 

cells,77 hepatocytes,78 oligodendroglial cells,79 as well as 

RPE cells.23 Zhang et al23 reported that defined transcription 

factors (cMyc, Mitf, Otx2, Rax, and Crx) could reprogram 

human fibroblasts into RPE cells by supplementation with 

retinoic acid and sonic hedgehog in a matrigel-based cul-

ture condition. These cells exhibit specific morphological 

and molecular features of RPE lineage and are capable of 

pigmentation. The most significant weakness in this study 

was that the suspected cells were not further evaluated by 

a functional test. However, this study still provided a novel 

direction to learn the nature of cellular identity and plasticity 

of RPE lineage, and also conducted a new approach to obtain 

functional RPE cells for regenerative medicine.

MSC-based microenvironmental 
regulation
Oxidative stress, overexpression of inflammatory cytokines, 

and retinal nutritional deficiency are some common mecha-

nisms of AMD.5 MSCs have various biological effects,28 

including secreting neurotrophins, promoting angiogenesis, 

regulating immune responses, inhibiting apoptosis, promoting 

extracellular matrix remodeling, and activating adjacent host 

stem cells. Furthermore, due to the low immunogenicity, MSCs 

are also ideal vehicles for introducing exogenous neurotrophic 

genes which could be expressed in the host retina. Therefore, 

MSCs are excellent candidates for dry AMD treatment.

On the basis of different origins, MSCs can be classified 

into bone marrow-derived MSCs (BM-MSCs), umbilical 

cord blood MSCs, placenta-derived MSCs, adipose-derived 

MSCs, and so on. BM-MSCs are the most well-studied 

groups of MSCs. This section will focus on the recent appli-

cations of BM-MSCs in AMD therapy.

Roles of BM-MSCs on retinal 
microenvironmental regulation
BM-MSCs can secrete neurotrophins
Inoue et al80 reported that conditioned medium of BM-MSCs 

could inhibit photoreceptor apoptosis in vitro. After intravit-

real injection of BM-MSCs, photoreceptor apoptosis was also 

delayed, and retinal function was slightly restored in RCS 

rats. These results indicated that soluble factors secreted by 

BM-MSCs may inhibit photoreceptor apoptosis. In another 

study, Zhang and Wang81 found that intravitreally injected 

BM-MSCs could express brain-derived neurotrophic factor 

(BDNF) and protect the outer nuclear layer in light-damaged 

retina. Xu et al29,30 also reported that MSCs could secret basic 

fibroblast growth factor and exhibit neuroprotective effects 

in light-damaged retina. Importantly, not only intravitreal 

injection but also intravenous injection of MSC could achieve 

retinal protective effects. Wang et al82 reported that intra-

venous injection of 1×106 MSCs increased the survival of 

photoreceptors and restored the visual functions in RCS rats. 

Reverse transcriptase polymerase chain reaction and immu-

nohistochemistry suggested that the protective effects were 

attributed to the retinal neurotrophins secreted by MSCs.

BM-MSCs can alleviate retinal 
inflammation
Xu et al29,30 found that intravitreal injection of BM-MSCs 

could suppress microglia activation, thereby reducing the 

retinal injury.

BM-MSCs can inhibit neuronal apoptosis
Otani et al83 showed that retinal antiapoptotic genes were 

significantly upregulated after intravitreal injection of BM-

MSCs. These genes included low-molecular-weight heat 

shock proteins and transcription factors.

BM-MSCs integrate into the host retina
Arnhold et al84 found that intravitreal injection of BM-MSCs 

could significantly protect photoreceptors in rhodopsin 
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knockout retinitis pigmentosa mice. They also showed that 

the transplanted BM-MSCs were well integrated into the RPE 

layer and the neurosensory layer of the host retina.

Notably, 1) the survival or integration of MSCs originated 

from different tissues might be very diverse. Intravitreally 

injected UCB-MSCs rarely migrated to the retina and only 

survived for 3 weeks,85 whereas BM-MSCs survived for up 

to 20 weeks and had a good integration ability.86 2) The neu-

roprotective effects of MSCs might be different between spe-

cies. A study conducted by Levkovitch-Verbin et al87 revealed 

that protection of retinal ganglion cells was merely noticed in 

human BM-MSCs, but not in rat BM-MSCs. 3) Methods for 

transplantation always relate to the experimental outcomes. 

Tzameret et al86 compared the effects of intravitreal injection 

and subretinal injection in RCS rats. They found that the 

therapeutic effects lasted 12 and 20 weeks, respectively. The 

b-wave amplitudes in the electroretinogram were 56.4 μV  

in the intravitreal injection group and 66.2 μV in the sub-

retinal injection group. 4) Retinal microenvironments in the 

host eyes also affect the functions of MSCs.

On the basis of the successful works in vivo, several 

Phase I/II clinical trials of MSCs were prudently conducted 

by some leading ophthalmologists. In 2005, Kumar et al88 

reported the outcomes of intravitreal injections of autologous 

BM-MSCs in 25 patients with dry AMD and retinitis pig-

mentosa. The mild improvement in BCVA was noticed after 

1 or 3 months of injection. In 2010, Jonas et al89 (registration 

number NCT01068561) reported the primary outcomes of 

three cases that received BM-MSC intravitreal injection 

(including one case of dry AMD). The initial BCVA of 

patients was poor in terms of light perception (poor light 

positioning). Twelve months after BM-MSC injection, no 

significant improvement in visual acuity and no serious 

complications were observed. The only effect was fluctua-

tions of intraocular pressure (15–30 mmHg) at 4 weeks after 

treatment. Siqueira et al90 intravitreally injected 1×107 BM-

MSCs per eye in three retinitis pigmentosa patients and two 

cone–rod dystrophy patients. The results indicated that the 

visual acuities improved more than one row in four patients 

after 1 week and that these improvements were maintained at 

the end of the follow-up. Electrophysiological recordings of 

two patients were mildly improved. However, no significant 

changes in angiography, optical coherence tomography, 

and visual field were observed. Although the current clini-

cal trials have not shown promising results, we must bear 

in mind the following: 1) Patients enrolled were relatively 

old, and their BM-MSCs have limited proliferative capacity 

and viability and 2) the patients were in advanced stages 

of disease. Therefore, vision recovery in these patients is 

sometimes difficult.

Effects of gene-modified MSCs
As an alternative to a viral vector, the application of stem 

cells to transfer specific genes is under investigation in 

various organs, including the eye.31 Guan et al32 found that 

after transplanting gene-modified MSCs into the subreti-

nal spaces of sodium iodate-damaged eyes, a significant 

increase in erythropoietin was noticed and gene-modified 

MSCs showed stronger protective effects on retinal neurons 

than did conventional MSCs. Machalinska et al33 also found 

that gene-modified MSCs stably expressing the NT-4 gene 

could migrate to the retinal damage area and protect the 

damaged cells. More importantly, gene-modified MSCs 

could upregulate the signals and transcription factors 

related to cell survival, such as crystallin β–γ superfamily 

members. In addition, gene-modified MSCs also increased 

the expression of proteins related to visual perception, 

visual signal reception, and eye development. In another 

study, Park et al34 evaluated the integration ability of 

gene-modified BM-MSCs and their BDNF secretion in 

vivo. They found that approximately 15.7% of the MSCs 

integrated into the retina after 4 weeks. The protein and 

mRNA levels of BDNF were greatly increased in the host 

retina. The function of gene-modified MSCs is largely 

dependent on the genes they deliver. Choosing suitable 

genes and delivery protocols will enable us to establish a 

new direction for ADM treatment.

Prospects
In-depth studies on the biological characteristics of stem cell-

derived RPEs, differentiation protocols, and transplantation 

methods are gradually changing the current stem cell-based 

therapy from a dream to reality. However, there are still sev-

eral obstacles before their clinical application. Transplanted 

RPE cells showed limited adhesion and survival in human 

eyes, and aged Bruch’s membrane did not likely support 

adhesion, survival, differentiation, and function of grafted 

RPE cells.91–94 Therefore, the use of genetic engineering 

to overexpress integrins or integrin activators in the RPE 

cells95–97 or the use of RPE cells growing on scaffolds might 

show promising prospects. Second, although subretinal space 

was once considered to have immune privilege, studies also 

have indicated that the long-term survival of the transplanted 

cells in the host eyes still required immune suppression.25–27 

Thus, the course of immunosuppression and the drugs used 

for immunosuppression have to be further discussed.
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