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Abstract: Phosphodiesterases (PDEs) are important enzymes that hydrolyze the cyclic 

nucleotides adenosine 3′5′-cyclic monophosphate (cAMP) and guanosine 3′5′-cyclic mono-

phosphate (cGMP) to their inactive 5′ monophosphates. They are highly conserved across 

species and as well as their role in signal termination, they also have a vital role in intra-cellular 

localization of cyclic nucleotide signaling and integration of the cyclic nucleotide pathways with 

other signaling pathways. Because of their pivotal role in intracellular signaling, they are now 

of considerable interest as therapeutic targets in a wide variety diseases, including COPD where 

PDE inhibitors may have bronchodilator, anti-infl ammatory and pulmonary vasodilator actions.

This review examines the diversity and cellular localization of the isoforms of PDE, the known 

and speculative relevance of this to the treatment of COPD, and the range of PDE inhibitors in 

development together with a discussion of their possible role in treating COPD.

Keywords: COPD, phosphodiesterase, bronchodilator, anti-inflammatory, pulmonary 

vasodilator

Cyclic nucleotide signaling
cAMP was the fi rst “second messenger” to be identifi ed (Sutherland 1970; Beavo 

and Brunton 2002). It is now known that it transduces the intracellular effects of 

many hormones and neurotransmitters (Habener 2001) and some of the effects of 

T-cell receptor activation (Ledbetter et al 1986). The level of intracellular cAMP is 

regulated by the balance of activity between adenyl cyclase (AC), which is responsible 

for its formation and cyclic nucleotide phosphodiesterase which is responsible for its 

inactivation. cAMP exerts its effects through activation of protein kinase A (PKA), 

the GTP-exchange protein EPAC and via cAMP gated ion channels in the cell mem-

brane. Changes in cAMP levels can be extremely short lived, as in the rapid and brief 

rise in cAMP levels seen over milliseconds in olfactory neurons (Breer, 1993) or more 

sustained, for example the changes over hours seen in the effects of LHRH on anterior 

pituitary cells (Borgeat et al 1972).

Cyclic nucleotides, particularly cyclic AMP, have important regulatory roles 

in virtually all cell types involved in the pathophysiology of COPD. Elevation of 

intracellular cAMP levels suppresses the activity of immune and infl ammatory cells 

(Bourne et al 1974; Kammer 1988; Moore and Willoughby 1995) and elevation 

of both cAMP and cGMP leads to smooth muscle relaxation. cAMP may have an 

additional role in modulating airway smooth muscle hypertrophy and hyperplasia as 

it has cytostatic effects in many cell types (Pastan et al 1975; Friedman et al 1976), 

and exerts an inhibitory effect infl uence on airway smooth muscle proliferation (Lew 

et al 1992; Tomlinson et al 1995).

In most cells and tissues, the capacity for hydrolysis of cyclic nucleotides by PDEs 

is an order of magnitude greater than the maximum rate of synthesis of cAMP and 

cGMP and thus small reductions in the activity of PDEs can produce large increases in 
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the level of cyclic nucleotides and signifi cant changes in the 

activity of cAMP-dependent protein kinase. There is growing 

evidence for sub-cellular compartmentalization of cAMP 

levels, allowing control of cAMP dependent signal transduc-

tion both spatially and temporally and PDE plays a crucial 

role in this sub-cellular localization by creating boundaries 

for cAMP diffusion (Mongillo et al 2004) and its role is more 

than simply a mechanism of terminating the signal.

This sub-cellular compartmentalization has been shown 

to be important in cardiac myocytes but its role in infl amma-

tory cells and airway smooth muscle is still unclear.

PDE isoforms
Shortly after the identifi cation of PDE it was realized that 

there was more than one isoform. PDEs with different 

chromatographic and kinetic properties, different substrate 

specifi city and pharmacological properties were identifi ed 

in extracts from brain and other tissues (Thompson and 

Appleman 1971). It is now realized that PDE forms a super 

family of enzymes containing at least eleven families. Three 

catalytic domains can hydrolyze the 3′ phosphate bond of 

cyclic nucleotides: the class I domain is shared by protozoa 

and metazoa, the class II domain is found in fungi, slime 

mould and amoebae and the class III domain has only been 

identifi ed in the slime mould Dictostelium discoideum.

The catalytic domain in metazoa is highly conserved 

and is characterized by the metal binding domain 

H(X)
3
H(X)

25–35
(D/E), where H is histidine, D is aspartic 

acid, E is glutamic acid and X can be any amino acid. This 

domain is shared by a large superfamily of metal-dependent 

phosphohydrolases known as the HD-family and indicates 

that divalent cations are involved in cyclic nucleotide hydro-

lysis. Although PDEs are related to this superfamily they are 

distinct and have other conserved regions which they share 

with each other (Aravind and Koonin 1998).

Analysis of the human genome has identifi ed 21 genes 

for cyclic nucleotide PDEs and the physiochemical and 

regulatory properties of the proteins they code for have 

been characterized (Conti and Jin 1999; Soderling and 

Beavo 2000; Francis et al 2001). Based on their molecular 

sequence, kinetics, regulation and pharmacological charac-

teristics mammalian PDEs can be classifi ed into 11 families, 

denoted by an Arabic numeral 1–11. Some of these families 

have more than one member each of which is encoded by 

different genes and these are denoted by a capital letter after 

the numeral, eg, PDE4A, PDE4B, PDE4C, and PDE4D. To 

complicate matters further, most of the genes encoding PDEs 

have multiple promoters and the transcripts are subject to 

alternate splicing, resulting in nearly one hundred different 

PDE open reading frames (Conti and Beavo 2007). The 

splicing variant is denoted by a fi nal Arabic numeral after 

the letter, eg, PDE4D3.

All PDEs contain three functional domains: a conserved 

catalytic core, a regulatory N-terminus and the C-terminus 

(Thompson 1991; Bolger 1994; Conti and Beavo 2007). The 

carboxyl terminus is similar in all the PDE families except 

PDE6, with 18%–46% sequence identity overall. Although 

there is some evidence that the C-terminal region of PDE4 

may be involved in dimerization (Kovala et al 1997) and may 

also be a target for regulatory phosphorylation (Lenhard et al 

1996) its physiological function remains unclear.

The N-terminal domain shows great diversity between 

PDE families (Figure 1) and understanding the functional 

relevance of the differences in the N-terminal domains is 

crucial to understanding the regulation and sub-cellular 

localization of different PDEs and to the development of 

drugs that modulate PDE activity.

There are domains that are essential for ligand binding, 

PDE oligomerization domains and kinase recognition and 

phosphorylation domains which regulate PDE function. The 

regulatory domains include the calmodulin binding domain 

found in PDE1, the cGMP binding (GAF) domains found 

in PDE2, 5, 6, 10, and 11, and the so called upstream con-

served regions 1 and 2 (UCR1 and UCR2) found in PDE4. 

The N-terminal domains also contain regions that determine 

intracellular localization.

The catalytic domain which contains about 270 amino 

acids shows a high degree (25%–49%) of amino acid conser-

vation between the 11 PDE families; however, the families 

themselves and the isoforms within the respective family 

have varying substrate preferences for cAMP and cGMP. In 

mammals PDE4, PDE7 and PDE8 hydrolyze cAMP selec-

tively, PDE5, PDE6, and PDE9 hydrolyse cGMP selectively 

and the remaining fi ve PDEs (PDE1, 2, 3, 10, and 11) hydro-

lyze both cAMP and cGMP. Current evidence suggests that 

substrate specifi city is conferred by the orientation of a single 

glutamine residue within the catalytic site which can either 

form hydrogen bonds with cAMP, cGMP or both depending 

on its fi xed orientation or ability to rotate (Zhang et al 2004). 

The catalytic region comprises 17 α-helices divided into 

three subdomains (Xu et al 2000; Jeon et al 2005). There 

is an N-terminal cyclin-fold region, a linker region and a 

C-terminal helical bundle. The three sub-domains form a 

deep hydrophobic pocket and this contains four subsites: 

a metal-binding site (M site), a core pocket (Q pocket), 

a hydrophobic pocket (H pocket) and a lid region (L region) 
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(Sung et al 2003; Jeon et al 2005). As discussed above, it 

appears that at least one of the metals binding at the M site 

which lies at bottom of the pocket is zinc and the other is 

likely to be magnesium.

It appears likely that PDEs function as dimers or oligomers 

in most cells and dimerization is an essential structural 

element that determines the regulatory properties and inhibitor 

sensitivities of PDE4 as discussed below (Richter and Conti 

2004). The spatial location of PDEs within cells is now also 

known to be important in determining their intracellular 

effects and this appears to be determined to some extent by 

the presence of different targeting domains in the N-terminal 

domain. One explanation for the multiple isoforms is targeting 

in different sub-cellular locations (Figure 2).

Scaffolding molecules such as A-kinase anchoring 

proteins (AKAP) dynamically assemble cAMP effector 

molecules, such as PKA, and PDEs into signaling complexes 

which regulate the temporal and spatial effects of cAMP 

(McConnachie et al 2006). In particular PDE4D3 and PKA 

have been shown to be associated with muscle mAKAP and 

phosphorylation of PDE4D3 by PKA in these complexes 

enhances its PDE activity thus forming a negative feedback 

control system to limit the activation of PKA and regulate 

local cAMP concentrations (Dodge et al 2001). Under 

resting conditions PDE4D3 maintains local cAMP concen-

trations below the threshold required for PKA activation 

and when cAMP levels rise following receptor stimulation, 

phosphorylation of PDE4D3 by activated PKA increases its 

activity returning cAMP levels to baseline (Dodge-Kafka 

et al 2005).

In some situations PDEs themselves may function as 

scaffolding for the assembly of macromolecular complexes 

which compartmentalize the effects of cAMP. PDE4D3 

interacts with EPAC (a guanine nucleotide exchange fac-

tor for the Ras-like small GTPases Rap1 and Rap2 (Bos 

2003)) and ERK5 (extracellular signal regulated kinase 
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Figure 1 Schematic diagram of the domain structure of the eleven PDE families. Copyright © 2007. Adapted from with permission Conti M, Beavo J. 2007. Biochemistry and 
physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem, 76:481–511. 
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Figure 2 Schematic representation of the some of the complexes in which phosphodiesterases (PDEs) are involved in a hypothetical cell. Reprinted from with permission 
Conti M, Beavo J. 2007. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem, 76:481–511. 
Copyright © 2007.  Annual Reviews www.annualreviews.org.
Abbreviations: AC, adenylyl cyclase; AKAP, A kinase – anchoring proteins; βAR, arrestins; βAR2, adrenergic receptor 2; CFTR, cystic fi brosis transmembrane conductance 
regulator; CNGC, cyclic nucleotide gated channels; mit, mitochondria; PKA, protein kinase A; RyR, ryanodine receptors.
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(Zhou et al 1995)). These intermolecular interactions 

facilitate the dissemination of distinct cAMP signals 

through each effector protein. ERK phosphorylation of 

PDE4D3 decreases the phosphodiesterase activity, thereby 

favoring local accumulation of cAMP and subsequent 

EPAC activation (Dodge-Kafka et al 2005).

PDE4 also forms another macromolecular signaling com-

plex with β-arrestin to regulate cAMPs diffusion from activated 

receptors. Arrestins bind specifi cally to active ( phosphorylated) 

G-protein coupled receptors (GPCRs), and arrest or reduce sig-

naling by these receptors. β-arrestin binds to the β-adrenergic 

receptor G-protein and recruits PDE4. This both regulates 

local levels of cAMP and also controls phosphorylation of the 

β-receptor switching its predominant coupling from stimulatory 

guanine nucleotide regulatory protein (Gs) to inhibitory guanine 

nucleotide regulatory protein (Gi) thus controlling PKA activity 

at the membrane (Baillie et al 2003).

PDE isoforms and COPD
Most interest in PDE isoforms from the perspective of COPD 

has centered on the PDE4 family, but PDE1, PDE3, PDE5, 

and PDE7 may also be of interest as therapeutic targets in 

COPD. This refl ects the fact that COPD is now recognized 

as an infl ammatory disease with pulmonary and systemic 

components (National Institute for Clinical Excellence 

[NICE] 2004; Global Initiative for Chronic Obstructive 

Pulmonary Disease).

Tobacco smoke induces an infl ammatory response in the 

lungs that leads to the development of airfl ow obstruction, 

mucus hypersecretion, parenchymal destruction and systemic 

effects. There is infl ammation in the conducting airways, the 

parenchyma and in the pulmonary vasculature, and increased 

levels of infl ammatory mediators in peripheral blood. As 

the disease progresses small airways become occluded by 

infl ammatory exudates containing mucus (Hogg et al 2004) 

and lung parenchymal tissue is destroyed. The systemic 

effects include skeletal muscle dysfunction, nutritional abnor-

malities and weight loss, cardiovascular, CNS and skeletal 

effects (Agusti et al 2003; Wouters 2002; Halpin, 2007).

The infl ammation in COPD involves cytotoxic (CD8+) 

T cells, macrophages and neutrophils, and infl ammatory 

mediators, including cytokines, chemokines, proteinases 

and oxidants. CD8+ T cells and macrophages infi ltrate 

airway tissues while neutrophils are the predominant cells 

recovered from the airway lumen (O’Shaughnessy et al 

1997; Saetta et al 1999). The inflammatory mediators 

and proteolytic enzymes released from these cells lead 

to mucus-hypersecretion in large airways, progressive 

obstructive changes in the small airways and destruction 

of lung parenchyma (Jeffery 2001a, b; Agostini et al 2003). 

Eosinophils may also play a role during exacerbations 

(Saetta et al 1994) and mast cells may also be important as 

they have been found in increased numbers in the airway 

of smokers with bronchitis and airfl ow limitation (Grashoff 

et al 1997). Recently, dendritic cells have also been shown 

to be important in the infl ammatory process in COPD 

(Tsoumakidou et al 2008). Structural cells, such as epithelial 

cells, fi broblasts and airway smooth muscle cells are also 

thought to be important and have been shown to release 

infl ammatory mediators, such as interleukin (IL)-8, tumor 

necrosis factor (TNF)-α, IL-10 and transforming growth 

factor (TGF)-β (Saetta et al 2001; Jeffery 2001b) which can 

lead to subepithelial and peribronchiolar fi brosis (Lee et al 

2001). These cells also express adhesion molecules which 

modulate interactions with lymphocytes and recruitment of 

neutrophils into the airway lumen.

PDE4 is the major regulator of cAMP levels in leukocytes 

and other infl ammatory cells (Barnette 1999). Inhibition of 

PDE4 increases intracellular cAMP concentrations which 

ultimately results in reduction of cellular infl ammatory 

activity. Targeted inhibition of PDE4 has been considered 

as a way of reducing infl ammation in patients with asthma 

or COPD (Barnette 1999; Compton et al 2001).

PDE3 is present in T lymphocytes, macrophages, mono-

cytes as well as in airway smooth muscle and endothelial 

cells (Schudt et al 1995; Torphy 1998). Thus, in theory, 

inhibitors of PDE3 could act both as bronchodilators and 

anti-infl ammatory drugs and may have synergistic effects 

with PDE4 inhibitors.

PDE1 accounts for more than 35% of the cyclic nucleo-

tide hydrolytic activity in human airway smooth muscle 

(Torphy et al 1993) and it has been implicated in human 

vascular smooth muscle proliferation (Rybalkin et al 1997; 

Rybalkin et al 2002a). It is not known whether or not it is 

also involved in airway smooth muscle proliferation but if 

it is, inhibitors of PDE1 could be of considerable benefi t in 

treating airway remodeling in COPD.

PDE5 is also expressed in pulmonary vascular smooth 

muscle and airway smooth muscle (Yanaka et al 1998; Sebkhi 

et al 2003) and has a pivotal role in controlling regulation of 

smooth muscle tone by nitric oxide (NO), atrial natriuretic 

peptide (ANP), and other endogenous vasodilators. Inhibition 

of PDE5 in patients with COPD has the potential to reduce 

pulmonary vascular resistance and prevent vascular remod-

eling, as well as causing bronchodilatation and it may also 

have anti-infl ammatory actions.
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Finally, an isoform of PDE7 is also abundantly expressed 

in the airway smooth muscle, and in many pro-infl ammatory 

and immune cells, including neutrophils recovered from 

induced sputum in patients with COPD. Theoretically inhibi-

tion of PDE7 may have an anti-infl ammatory effect but so 

far this has not been demonstrated, although inhibition of 

PDE7 may augment the anti-infl ammatory effects of PDE4 

inhibition (Smith et al 2004)

The structural and functional characteristics of these 

phosphodiesterase, as well as drugs which affect their activity 

will now be considered from the perspective of understanding 

their role and potential as therapeutic targets in COPD.

PDE4 isoforms
More than 20 isoforms of PDE4 are known at present. They 

are found in many cell types in the lung including airway 

epithelial cells (Dent et al 1998), airway and pulmonary 

vascular smooth muscle (de Boer et al 1992; Pauvert et al 

2002; Rabe et al 1993), and pulmonary vascular endo-

thelium (Thompson et al 2002). They are also present 

in T lymphocytes (Tenor et al 1995; Giembycz et al 1996), 

neutrophils (Nielson et al 1990), monocytes (Seldon et al 

1995), eosinophils (Dent et al 1994), and basophils (Peachell 

et al 1992). Their function has been explored by the use of 

selective inhibitors and genetic manipulations including 

targeted gene knockout. The PDE4 isoforms have closely 

related kinetic properties and are all inhibited by rolipram.

Four human PDE4 subtypes (A, B, C, and D) have 

identifi ed. The genes for these enzymes have been cloned 

and expressed. PDE4A and PDE4C are located on human 

chromosome 19 at 19p13.2 and 19p13.11, PDE4B is on 

chromosome 1p31 and PDE4D is on chromosome 5q12 

(Bolger et al 1993; McLaughlin et al 1993; Milatovich et al 

1994; Engels et al 1995; Horton et al 1995; Szpirer et al 

1995; Nemoz et al 1996). The N-terminal domain of most 

members of the PDE4 family contains the two upstream 

conserved regions UCR1 and UCR2 mentioned above; 

however several truncated variants of PDE4B and PDE4D 

are formed via alternate splicing resulting in deletions of part 

or all of UCR1 (Figure 3). The PDE4 isoforms can thus be 

divided into three groups on the basis of the structure of the 

N-terminal domain. Long isoforms contain both UCR1 and 

Figure 3 Schematic representation of human PDE4 subtypes and products of mRNA splice variants The number of amino acid (AA) residues in each protein appears to the 
right of the schematic diagram. Adapted and updated with permission from Torphy TJ. 1998. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am J 
Respir Crit Care Med, 157:351–70. Copyright © 2008 American Thoracic Society.
Abbreviation: UCR, upstream conserved region.
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UCR2, short isoforms lack UCR1, and supershort isoforms 

lack UCR1 and have a truncated UCR2. UCR1 contains a 

PKA phosphorylation site which allows long forms to be 

activated by this enzyme (Sette and Conti 1996; MacKenzie 

et al 2002), leading to local regulation of cAMP levels. All 

isoforms of PDE4 can be phosphorylated by ERK, but the 

effects of this on PDE4 activity depend on the presence of 

UCR1. Long isoforms are inhibited by ERK phosphorylation 

whereas short isoforms are activated and no effect on activity 

is seen in super short isoforms (MacKenzie et al 2000). 

There are signifi cant differences in the tissue distribution of 

the mRNA for the PDE4 isoforms (Table 1). PDE4A message 

is widely distributed in many tissues including pulmonary 

and infl ammatory cells (Engels et al 1994). PDE4C is absent 

from circulating infl ammatory cells and there are confl ict-

ing reports about the distribution of PDE4B in some tissues 

(eg, liver, kidney or pancreas) (McLaughlin et al 1993, 

Engels et al 1994) but general agreement that it is present in 

lung and infl ammatory cells. PDE4D is present in some but 

not all infl ammatory cells.

There is also evidence that the isoforms of PDE4 change 

as cells differentiate, suggesting that they are not simply 

redundant but have different intracellular roles. For example, 

differentiation of monocytes to macrophages is associated 

with a marked downregulation of PDE4D3 and PDE4D5, 

upregulation of PDE4B2 and induction of the PDE4A10 

long isoform (Shepherd et al 2004). Changes in isoforms 

may occur in disease and it has been reported that PDE4A4B 

is upregulated in macrophages from smokers with COPD 

(Barber et al 2004). In addition to their effect on enzyme 

activity the UCR domains are involved in interactions 

between PDE4 and scaffolding molecules such as myo-

megalin which localize components of the cAMP-dependent 

pathway to the Golgi/centrosomal region of the cell (Verde 

et al 2001). Deletions in the N-terminal domain affect subcel-

lular localization (Beard et al 2002). For example, PDE4A1 is 

exclusively membrane-associated and is normally localized 

to the Golgi (Shakur et al 1995; Pooley et al 1997), but dele-

tion of its unique N-terminal region of made it fully soluble 

and changed its location to the cytosol (Shakur et al 1993). 

The N-terminal domains of PDE4 isoforms also determine 

the ability of the enzyme to interact with other regulatory 

molecules such as the immunophilin XAP2 (Bolger et al 

2003) and to recruit other proteins to form signaling cascades. 

For example, PED4A5 can bind to the SH3 domains which 

are found in a variety of cytoplasmic tyrosyl protein kinases 

as well as in cytoskeletal and adaptor proteins (O’Connell 

et al 1996). The physiological signifi cance of these interac-

tions remains uncertain but they clearly demonstrate the 

complexity of intracellular signaling with cross-talk between 

different signaling cascades. An example of the importance 

of subcellular localization of PDE4 isoforms is their loca-

tion in airway epithelial cells where it has been shown that 

they confi ne cAMP generated by apical adenosine A2B 

receptors to a microdomain that includes the target CFTR 

channels and prevents a rise in total cellular cAMP levels 

(Barnes et al 2005). Furthermore, there is now evidence that 

although PDE4D is crucial in controlling the intracellular 

cAMP gradients and microdomains generated by stimula-

tion of both the β
1
 and β

2
 adrenergic receptors, the PDE4D5 

isoform is involved with β
2
 adrenergic receptor signaling and 

the PDE4D8 and PDE4D9 isoforms are associated with β
1
 

adrenergic receptor signaling (Richter et al 2008).

Binding of inhibitors to PDE4 is also infl uenced by the 

N-terminal domain structure. The binding kinetics of rolipram 

suggest that there two binding sites: a high affi nity site 

(HPDE4) with a Ki approximately 50–1000 times greater than 

binding to the low affi nity site (LPDE4). Deletion of the termi-

nal 332 amino acids prevents high affi nity binding of rolipram 

but has minimal effect on PDE4 catalytic activity. High affi nity 

binding predominates in the CNS, while low affi nity binding 

predominates in infl ammatory cells leading to important clini-

cal differences in the pharmacological properties of inhibitors. 

It was thought that high affi nity binding was associated with 

unwanted CNS and gastric side effects of inhibitors and that 

Table 1 Summary of the RT-PCR results with different human 
tissues and defi ned cell populations (After Engels et al 1994)

hPDE4A hPDE4B hPDE4C hPDE4D

Brain ++ ++ ++ ++

Liver ++ ++ (−)a ++ ++

Lung ++ ++ ++ ++

Trachea ++ ++ ++ ++

Kidney ++ ++ (−)a ++ ++

Placenta ++ ++ (−)a ++ ++

Heart ++ ++ ++ ++

Blood ++ ++ − ++

Promonocyte like1 ++ ++ − ++

T like cells2 ++ − − −

B like cells3 ++ ++ − −

Promyelocytic cells4 ++ ++ −

Neutrophils ± ++ − ±

Eosinophils ++ ++ − ++

++, expression; +, very weak expression;-, no expression; 1U937 cells; 2Jurkat cells; 
3Namalwa cells; 4peripheral blood promyelocytic HL-60 cells. adata from McLaughlin 
et al (1993).
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low affi nity binding was associated with the therapeutic effects 

of inhibitors (Torphy 1998; Jeon et al 2005); however, this has 

subsequently proved to be too simplistic (Houslay et al 2005) 

and cilomilast, which is a second generation inhibitor which 

targets low affi nity binding, still produces adverse effects 

including emesis (Torphy et al 1999).

Cilomilast and rofl umilast are the most well character-

ized second generation PDE4 inhibitors but their clinical 

utility is still infl uenced by the fact that administration at 

therapeutically effective doses is limited by adverse effects. 

Studies in knockout mice have suggested that PDE4D is the 

main isoform associated with emesis (Robichaud et al 2002), 

while PDE4B appears to be the main isoform responsible 

for mediating TNFα release (Jin and Conti 2002). This has 

led to the suggestion that PDE4B inhibitors may have anti-

infl ammatory properties in COPD which will not be limited 

by adverse effects. Alternative strategies to improve the 

therapeutic ratio of PDE4 inhibitors are to target isoforms 

that appear to be only expressed as part of the infl ammatory 

process in COPD, such as PDE4A4, or to develop dual 

specifi city inhibitors which inhibit PDE4 and either PDE1, 

PDE3, or PDE7 (Giembycz 2005).

A number of molecules are currently under investigation 

as clinically useful PDE4 inhibitors (Table 1) and some of 

these also have specifi city for other PDE isozymes. The 

clinical development of many compounds has been discon-

tinued because of lack of effi cacy or because of unacceptable 

side effects. Most have been assessed as oral therapy but 

Arofylline (LAS-31025) was trialled as an inhaled therapy 

(Newman et al 1997) although its development was halted 

in Phase III because of undesirable side effects. Some com-

pounds, such as L-826,141 from Merck, have shown that 

it may be possible to differentially inhibit PDE4 subtypes 

(IC50 = 0.26 to 2.4 nM for catalytic domain activity of 

PDE4A, PDEB, PDEC, and PDED (Claveau et al 2004) 

and such properties offer exciting opportunities to refi ne the 

effectiveness and clinical utility of PDE4 inhibitors.

PDE1 isoforms
PDE1 was fi rst identifi ed in rat brain tissue in 1970 (Kakiuchi 

and Yamazaki 1970). It is almost exclusively activated 

by changes in intracellular Ca2+ concentrations and it was 

shown that the Ca2+ sensitivity of the enzyme was enhanced 

by a protein factor subsequently called calmodulin (CaM) 

(Teo and Wang 1973). An increase in intracellular calcium 

concentrations often leads to a fall in cAMP levels. In some 

cells this is mediated by Ca2+-inhibitable adenylyl cyclases 

(AC5 and AC6), while in others it is due to PDE1.

The PDE1 subfamily is as diverse as the PDE4 subfamily 

and is encoded by three genes giving the isoforms PDE1A, 

PDE1B, and PDE1C. These differ in their substrate 

specifi city, regulatory properties and tissue distribution. 

PDE1A and PDE1B preferentially hydrolyze cGMP, 

whereas PDE1C degrades both cAMP and cGMP with high 

affi nity.

The PDE1A gene has been located on chromosome 

2q32 and currently nine splice variants have been described 

(Michibata et al 2001). These include 3 splice variants at 

the N-terminal end and 3 at the C-terminal end. Different 

N-terminal domains are associated with different tissue 

distributions. PDE1A1, PDE1A4, and PDE1A8 have the N2 

terminal sequence and are widely expressed in lung and other 

tissues, whilst PDE1A5, PDE1A6, and PDE1A9 have the N1 

sequence and are expressed in brain tissue and PDE1A10 and 

PDE1A11 which have the N3 sequence are expressed in testis 

(Michibata et al 2001). Differences in the C-terminal domain 

may affect the level of expression within tissues.

The PDE1B gene is located on chromosome 12q13. 

Two splice variants, PDE1B1 and PDE1B2, have been 

described (Fidock et al 2002). PDE1B expression is lower 

than other members of the PDE1 family. Neither form is 

found in lung tissue. Selective upregulation of PDE1B2 has 

been described on monocyte to macrophage differentiation 

(Bender et al 2005) and appears to have a role in determin-

ing the phenotype of the macrophage (Bender and Beavo 

2006). PDE1B also appears to play an important role in 

T-cell activation and survival (Jiang et al 1996; Kanda and 

Watanabe 2001).

The PDE1C gene is located on chromosome 7p14.3. 

Five splice variants with differing tissue distributions have 

been described in mice (Yan et al 1996) and it appears that 

there may be at least as many human variants (Bingham 

et al 2006). PDE1C is the main cAMP hydrolytic activity in 

proliferating smooth muscle cells in the presence of Ca2+. It is 

localized to the nucleus and appears to be involved in regu-

lating smooth muscle proliferation (Rybalkin et al 2002a; 

Dolci et al 2006). As well as regulating smooth muscle 

tone, cyclic nucleotides inhibit smooth muscle proliferation 

(Koyama et al 2001)

PDE1 exists as a dimmer. In bovine brain, PDE1B1 

and PDE1A2 homodimers have been purifi ed but there is 

also evidence for the presence of a heterodimer containing 

PDE1B1 and PDE1A2. The relationship between struc-

ture and function of the PDE1 isoforms is complex. Some 

isoforms exhibit almost identical kinetic properties but are 

differentially regulated by CaM and Ca2+, whilst others show 
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different kinetic properties (Sharma et al 2006). Despite the 

diversity of the isoforms, the overall structure of all PDE1s is 

similar. They all contain the common PDE catalytic domain 

and in addition they all have two CaM binding sites and a 

conserved inhibitory domain which holds the enzyme in a 

less active state in the absence of Ca2+ and CaM. For at least 

some of the isoforms it appears that CaM binding to just one 

of the CaM binding sites is suffi cient to activate the enzyme 

(Sonnenburg et al 1995). It has been suggested that the 

presence of the second CaM binding sites may be important 

for intracellular targeting. As well as the CaM binding sites 

shared with other PDE1 isoforms, a PDE1 isoform purifi ed 

from rabbit and bovine lung tissue also contains calmodu-

lin as an integral subunit. Differences in the N-terminal 

domain can have profound infl uences on the regulation of 

the enzyme. PDE1A1 and PDE1A2 differ in only a single 

segment of 34 residues (Novack et al 1991), yet CaM is a 

10-fold more potent activator of PDE1A1 than PDE1A2 

(Sonnenburg et al 1995). PDE1 isoforms are also regulated 

by phosphorylation. There are complex interactions between 

phosphorylation and the effects of CaM. For example, Ca2+/

CaM can block phosphorylation of PDE1A2 and PDE1A1, 

whilst Ca2+/CaM stimulate phosphorylation of PDE1B1. 

Furthermore Ca2+/CaM can reverse phosphorylation of PDE1 

isozymes through activation of CaM-dependent protein 

phosphatase (calcineurin) (Sharma et al 2006). A number 

of different phosphorylases are involved in the regulation of 

PDE1. PDE1A1 and PDE1A2 are phosphorylated by cAMP-

dependent protein kinase (Sharma 1991; Sharma and Wang, 

1985, Sharma et al 2002), while PDE1B1 is a substrate of 

CaM-dependent protein kinase II (Sharma and Wang 1986). 

Phosphorylation of PDE1 also changes the affi nity of the 

isozymes for CaM. Thus, overall, the effect of CaM on 

PDE1 is complex since CaM activation is partly reversed by 

CaM-dependent phosphorylation, which, in turn, is opposed 

by the action of CaM-dependent phosphatase. In vivo these 

events may be temporally separated (Kakkar et al 1999).

Several drugs inhibit PDE1 including ginsenoides and 

selegeline (Sharma and Kalra 1993; Kakkar et al 1996). 

Amantadine selectively inhibits some but not all isoforms. 

It inhibits PDE1A1 but not PDE1A2 or PDE1B1 (Kakkar 

et al 1997) and it is thought that dihydropyridine calcium 

antagonists such as felodipine and nicardipine may also 

inhibit PDE1 isozymes (Sharma et al 1997). From a pulmo-

nary perspective it has been shown that inhibition of PDE1 by 

vinpocetine augmented the pulmonary vasodilator response 

to nitric oxide in lambs (Evgenov et al 2006) suggesting that 

PDE1 inhibition may have a role in treatment of pulmonary 

hypertension and given the role of PDE1 in smooth muscle 

proliferation it may have disease modifying potential.

PDE3 isoforms
Members of the PDE3 family are characterized by hydrophobic 

N-terminal membrane association domains. They exhibit high 

affi nity for both cAMP and cGMP but the V
max

 for cGMP 

hydrolysis is 4–10 times higher (Degerman et al 1997). PDE3 

differs from PDE4 in that it has high affi nity for both cAMP 

and cGMP so that these substrates are mutually competitive 

and thus PDE3 hydrolysis of cAMP can be inhibited by cGMP. 

PDE4 is not inhibited by cGMP and thus originally PDE3 

was called cGMP-inhibited PDE to distinguish it from PDE4. 

cGMP inhibition of PDE3 may be physiologically relevant to 

the elevation of cAMP levels in a variety of cells including 

human myocytes, where nitric oxide induced relaxation may 

be mediated by activation of guanylyl cyclase, elevation of 

intracellular cGMP levels and inhibition of PDE3 leading to 

elevated cAMP levels (Kirstein et al 1995). PDE3 is clini-

cally signifi cant because of its role in regulating vascular and 

cardiac smooth muscle as well as platelet aggregation.

Two genes encoding PDE3 have been isolated (Beavo 

et al 1994). PDE3A is located on chromosome 12p12 and 

PDE3B is located on chromosome 11p15.1 (Miki et al 1996; 

Kasuya et al 2000). PDE3A is found in myocardium, arterial, 

venous, bronchial, and gastrointestinal smooth muscle, 

while PDE3B is found in adipose tissue (Reinhardt et al 

1995). In the lung, PDE3 activity is prominent in alveolar 

macrophages, endothelial cells, platelets, and airway smooth 

muscle cells. Three isoforms of PD3A have been identifi ed in 

human myocardium. They are designated PDE3A-136, -118 

and -94 because of the differing lengths of their N-terminal 

domains and appear to be generated by a combination of alter-

native transcriptional and post-transcriptional processing. 

PDE3a-136 appears to be located exclusively in microsomal 

fractions whilst the other two isoforms are present in both 

cytosolic and microsomal fractions (Smith et al 1993). The 

isoforms have different regulatory properties, as result 

of loss of regulatory sites, and thus their different subcellular 

locations enables differential spatial regulation of cAMP 

levels (Hambleton et al 2005).

The structural organization of PDE3A and PDE3B 

proteins is similar. The catalytic domain of PDE3 contains 

a 44 amino acid insert not found in other PDEs and which 

differs between the isoforms. This insert interrupts the fi rst 

of the Zn2+ binding domains present in the catalytic domains 

but whether it is involved in its interaction with substrates or 

inhibitors remains unclear. There are signifi cant differences 

Powered by TCPDF (www.tcpdf.org)



International Journal of COPD 2008:3(4)552

Halpin

in the amino acid sequence of the N-terminal regions of 

PDE3A and PDE3B, but they both contain two hydrophobic 

regions involved in intracellular targeting termed N-terminal 

hydrophobic regions (“NHRs”) and sites for phosphoryla-

tion and activation by PK-B (Degerman et al 1997). NHR1 

contains transmembrane helices, whereas NHR2 appears to 

be involved in the binding of PDE3 to other currently uniden-

tifi ed proteins. The three regulatory phosphorylation sites 

which are phosphorylated by PK-B and PK-A lie between 

NHR1 and NHR2 (Rascon et al 1994; Kitamura et al 1999; 

Rondinone et al 2000). Phosphorylation of PDE3 is important 

in activating PDE3 in response to a variety of extracellular 

signals in cardiac, vascular and airway smooth muscle, as 

well as a number of other cells, including adipocytes and 

platelets (Degerman et al 1997). It has recently been shown 

that phosphorylation allows the binding of 14-3-3 proteins to 

PDE3 (Figure 2) (Pozuelo Rubio et al 2005). These proteins 

bind to specifi c phosphorylated sites on diverse target pro-

teins, and appear to either force conformational changes that 

cannot be induced by phosphorylation alone or act as double 

ended “adapters” induce interactions between their targets 

and other molecules. Their importance as integrators of the 

specifi city and strength of signaling is just being recognized 

(Mackintosh 2004; Pozuelo Rubio et al 2004).

PDE3 can be inhibited by a number of drugs, including 

cilostamide, enoximone, and lixazinone. PDE3 inhibitors 

enhance myocardial contractility and induce vascular and 

airway smooth muscle relaxation (Leeman et al 1987; 

Myou et al 1999; Fujimura et al 1995). Siguazodan, a 

PDE3 inhibitor, potentiated relaxation induced by rolipram 

suggesting an interaction between PDE3 inhibition and PDE4 

inhibition (Torphy et al 1993). Similarly, although PDE3 

Table 2 PDE4 inhibitors in current and discontinued clinical development

PDE4 inhibitor Company Status Reference

Cilomilast GlaxoSmithKline Phase III (Christensen et al 1998)

Rofl umilast Altana Phase III (Hatzelmann and Schudt 2001)

BAY 19–8004 Bayer plc Phase II (Grootendorst et al 2003)

AWD 12–281 Elbion AG/GlaxoSmithKline Phase II (Gutke et al 2005)

Cipamfylline, BRL-61063 Leo Pharmaceuticals Phase II (Kucharekova et al 2003)

Mesopram, SH-636 Schering AG Phase II (Loher et al 2003)

CC-10004 Celgene Phase II (Baumer et al 2007)

Oglemilast, GRC-3886 Glenmark Phase II (Enefer 2005)

Tetomilast, OPC-6535 Otsuka Phase II (Chihiro et al 1995)

Tofi milast, CP-325366 Pfi zer Phase II (Duplantier et al 2007)

ONO-6126 Ono Pharmaceuticals Phase I (Furuie et al 2003)

CI-1044 Pfi zer Phase I (Ouagued et al 2005)

HT-0712 Infl azyme/Helicon Phase I (MacDonald et al 2007)

Ibudilast Merck-Frosst Phase I (Huang et al 2006)

MK-0873 Merck Phase I (Boot et al 2008)

Arofylline, LAS-31025 Almirall Discont (Beleta et al 1996)

CI-1018 Pfi zer Discont (Burnouf et al 2000)

T-2585 Tanabe (Ukita et al 1999)

YM-976 Yamanouchi Discont (Aoki et al 2000)

V-11294A Napp Discont (Gale et al 2002)

Piclamilast, RP-73401 Rhone-Poulenc-Rorer Discont (Chen et al 2004)

Atizoram, CP-80633 Pfi zer Discont (Wright et al 1997)

Filaminast, WAY-PDA-641 Wyeth-Ayerst Discont (Heaslip et al 1994)

SCH 351591 Schering-Plough Discont (Billah et al 2002)

IC-485 ICOS Corporation Discont

Lirimilast, BAY-19-8004 Bayer Discont (Sturton and Fitzgerald 2002)

D-4418 Celltech/Schering-Plough Discont (Buckley et al 2000)

CDP-840 Celltech/Merck-Frosst Discont (Alexander et al 2002)

L-826,141 Celltech/Merck-Frosst Discont (Claveau et al 2004)

Discont, – Development discontinued.
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inhibitors do not appear to have direct anti-infl ammatory 

actions, they appear to augment the anti-infl ammatory actions 

of PDE4 inhibitors (Robicsek et al 1991; Schudt et al 1995; 

Giembycz et al 1996).

PDE5 isoforms
PDE5 has become of considerable clinical interest as it is 

the target of sildenafi l, the treatment for erectile dysfunction. 

PDE5 was fi rst identifi ed in rat lung tissue (Lincoln et al 

1976) and its enzyme activity has subsequently been identi-

fi ed in many other tissues. The enzyme has been purifi ed and 

cloned (Francis et al 1980; Thomas et al 1990a; McAllister-

Lucas et al 1993) and the human gene identifi ed on chromo-

some 4q26 (Loughney et al 1998; Yanaka et al 1998). It has 

subsequently been shown that there are three splice variants 

designated PDE5A1, PDE5A2, and PDE5A3 (Kotera et al 

1998; Loughney et al 1998; Lin et al 2000). PDE5A1 and A2 

isoforms are expressed in a wide variety of tissues, includ-

ing lung, heart, skeletal muscle, brain, kidney, and liver, but 

the A3 isoform is confi ned to tissues with a smooth muscle 

or cardiac muscle component (Lin et al 2000). Whether 

the splice variants affect sub-cellular localization of PDE5 

activity is not yet known, but there are preliminary reports 

that PDE5 activity is associated with cytoplasmic vesicles 

and in the centrosomal area of human myometrial cells 

(Dolci et al 2006).

PDE5 exists as a homodimer, and as well as the conserved 

catalytic site, it contains highly cGMP-specifi c allosteric 

(non-catalytic) cGMP-binding sites and a phosphorylation 

site in the N-terminal domain (Corbin and Francis 1999). The 

protein sequence of the allosteric binding sites is conserved 

across PDE2, PDE5, PDE6, and PDE10 and these tandem 

homologous repeats of 110 amino acids each in the regulatory 

domain are termed GAF domains (a and b) because of their 

presence in cGMP-binding cyclic nucleotide PDEs, Ana-

baena adenylyl cyclase, and the bacterial transcription factor 

FhlA (Thomas et al 1990a; McAllister-Lucas et al 1995; 

Aravind and Ponting 1997). Allosteric binding of cGMP to 

PDE5 regulatory domain increases affi nity of the catalytic 

site for cGMP, thereby stimulating the rate of cGMP hydro-

lysis (Thomas et al 1990b; Mullershausen et al 2001; Okada 

and Asakawa 2002; Corbin et al 2003; Rybalkin et al 2003). 

cGMP binding to the regulatory domain also stimulates 

phosphorylation of PDE5 by cGMP-dependent protein kinase 

(Thomas et al 1990b; Wyatt et al 1998; Mullershausen et al 

2001; Murthy 2001; Rybalkin et al 2002b). cGMP binding 

to these sites must be preceded by occupation of the catalytic 

site by cGMP (Francis et al 1980; Thomas et al 1990b) and it 

appears that cGMP binding to the regulatory domain produces 

a conformational change in PDE5 that exposes Ser-92 allow-

ing phosphorylation which increases affi nity of the regulatory 

domain for cGMP and increases catalytic activity as well 

(Corbin et al 2000). Thus, when intracellular cGMP levels 

rise, cGMP breakdown is enhanced both by increased activity 

at the catalytic site, followed by enhanced cGMP binding at 

the allosteric sites, leading to increased enzymatic activity 

as a result of phosphorylation. Classical PDE5 inhibitors and 

selected cyclic nucleotide analogs compete with cGMP at 

the catalytic site but do not interact with the cGMP-binding 

allosteric sites (Blount et al 2004).

As a major regulator of cGMP in smooth muscle cells, 

PDE5 controls the cGMP-dependent protein kinase (PKG) 

regulation of smooth muscle tone by nitric oxide (NO), 

atrial natriuretic peptide (ANP), and other endogenous 

vasodilators, especially under conditions of low calcium. 

PKG phosphorylates the regulatory myosin-binding subunit 

of myosin phosphatase (Surks et al 1999), calcium-activated 

maxi K+ (BKCa) channels (Fukao et al 1999), and IRAG (IP3 

receptor associated cGMP kinase substrate)(Schlossmann 

et al 2000), leading to a reduction of intracellular Ca2+ 

concentration or reduction in sensitivity to Ca2+ and thereby 

decreased smooth muscle tone (Schlossmann et al 2003).

PDE7 isoforms
PDE7 was fi rst identifi ed as part of a human DNA screening 

programme (Michaeli et al 1993). It is a high affi nity cAMP-

specifi c PDE and it is insensitive to potent selective inhibitors 

of other PDE families such as rolipram and milrinone. Two 

genes encoding PDE7 have been identifi ed in humans (Gardner 

et al 2000 Hetman et al 2000; Sasaki et al 2000). PDE7A is on 

chromosome 8q13 (Han et al 1998) and PDE7B is on chromo-

some 6q23–q24. Three splice variants of PDE7A have been 

described (PDE7A1, PDE7A2, and PDE7A3) but in humans, 

unlike mice, only one form of PDE7B has been described. 

Compared with PDE7A1, PDE7A2 has an additional 20 amino 

acid hydrophobic region in the N-terminal domain which is 

thought to be responsible for membrane tethering.

mRNA for PDE7A1 and PDE7A2 can be detected in 

airway and vascular smooth muscle cells, airway epithelial 

cells, CD4 and CD8 T-cells, neutrophils, macrophages and 

monocytes, while PDE7A3 is expressed in T-cells (Bloom 

and Beavo 1996; Han et al 1997; Glavas et al 2001; Smith 

et al 2003). It appears that PDE7A1 expression is low in 

naïve T cells but increases on activation by CD3 X CD28 

costimulation (Li et al 1999). PDE7B is expressed predomi-

nantly in the brain but is also found in a number of other 
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tissues including liver, heart, thyroid and skeletal muscle 

but not leukocytes (Gardner et al 2000; Hetman et al 2000; 

Sasaki et al 2000). Despite the expression of PDE7A2 

mRNA in smooth muscle and leukocytes no protein could 

be detected in these cells, suggesting that if expressed at all, 

the amount of PDE7A2 present is very low and the amount 

of PDE7A1 protein is greater in T-cells than in airway and 

vascular smooth muscle cells (Smith et al 2003). Alternative 

splicing of PDE7A determines the subcellular localization of 

its protein products without affecting their kinetic properties. 

The hydrophobic N-terminus of PDE7A2 leads to membrane 

association (Han et al 1997), while PDE7A1 appears to be 

associated with the Golgi in T cells through associations 

with the AKAP scaffolding protein myeloid translocation 

gene (MTG) (Figure 2) (Asirvatham et al 2004), which also 

targets PKA to the Golgi in T cells (Schillace et al 2002). 

The N-terminal domain of PDE7A1 also contains two copies 

of a PKA pseudosubstrate site which bind to and inhibit the 

activity of the catalytic subunit of PKA (Han et al 2006). 

Thus, in addition to cAMP hydrolysis, PDE7A1 can termi-

nate cAMP signaling by direct interaction with the catalytic 

subunit of PKA.

Given the distribution of PDE7A1 in pro-infl ammatory and 

airway cells there has been considerable interest in whether 

inhibition of PDE7A may be anti-infl ammatory and of thera-

peutic benefi t in COPD. However, there is confl icting evidence 

in mice about the effects of inhibiting PDE7A on T cell prolif-

eration and IL-2 production (Li et al 1999; Yang et al 2003). 

This may refl ect the methods used to inhibit PDE7A activity 

which used different molecular genetic techniques to block 

PDE7A activity. A few selective inhibitors of PDE7 have now 

been identifi ed (Giembycz 2005) and using these it is becoming 

clear that inhibition of PDE7A can regulate proinfl ammatory 

and immune cell function when used in associated with PDE4 

inhibitors. For example, although inhibition of PDE7A with 

BRL 50481 does not itself affect T cell proliferation or TNF-α 

production by macrophages, it does augment the effects of 

rolipram on these cells (Smith et al 2004).

Clinical effects of PDE inhibitors 
in COPD
As a result of greater knowledge about isoforms of 

PDE and their role in regulating infl ammatory cells and 

airway and vascular smooth muscle there has been consider-

able interest in the clinical effects of PDE inhibitors in patients 

with COPD. Most interest has centered on inhibition of PDE4 

and three drugs have reached phase III clinical trials in patients 

with COPD: rolipram, cilomilast, and rofl umilast.

Unfortunately the use of rolipram was limited by 

signifi cant side effects: particularly nausea, vomiting and 

gastric acid secretion (Horowski and Sastre-Y-Hernandez 

1985) due to inhibition of PDE4 in the CNS and gastric 

parietal glands. These fi ndings led to the development of the 

second generation PDE4 inhibitors rofl umilast and cilomilast 

which have better therapeutic ratios (Torphy et al 1999).

Rofl umilast has proven anti-infl ammatory properties 

in vitro and in animal models (Bundschuh et al 2001; 

Hatzelmann and Schudt 2001). Preliminary clinical data 

suggested that rofl umilast could improve lung function while 

being well tolerated in patients with COPD when given orally 

once daily (Lipworth 2005) and a 24-week clinical trial 

showed that it improved lung function and reduced exacerba-

tions compared with placebo (Rabe et al 2005). A subsequent, 

year-long trial has again shown that it improved lung func-

tion, but in this study there was no effect on health status or 

exacerbation rates (Calverley et al 2007).

Cilomilast is another second generation PDE4 inhibitor 

which shows anti-infl ammatory effects in both pre-clinical and 

clinical studies (Barnette et al 1998; Griswold et al 1998; Torphy 

et al 1999; Gamble et al 2003; Profi ta et al 2003). Bronchial 

biopsies, taken from COPD patients, randomized to receive 

either cilomilast orally or placebo for 12 weeks showed that 

cilomilast signifi cantly reduced the number of infi ltrating tissue 

CD8+ T cells and CD68+ macrophages by 48% ( p � 0.01) 

and 47% ( p � 0.001), respectively (Gamble et al 2003) and a 

clinical trial in patients with COPD showed that it improved lung 

function and health status compared with placebo and reduced 

exacerbations over 24 weeks (Rennard et al 2006)

Both cilomilast and rofl umilast cause nausea, diarrhea, 

headache, abdominal pain and dizziness. GI side effects 

appear more common in patients taking cilomilast than 

rofl umilast (Rennard et al 2006; Rabe et al 2005; Calverley 

et al 2007). In preclinical trials in rats and dogs PDE4 

inhibitors have been associated with the development of 

arteritis/periarteritis (Giembycz 2005). These species appear 

particularly susceptible to this toxic effect but some PDE4 

inhibitors may also cause this effect in primates: arteritis 

has been reported to have been produced in cynomolgus 

monkeys (Losco et al 2004) and Merck discontinued the 

development of a PDE4 inhibitor because of the occurrence 

of colitis (Giembycz 2005). To date, no PDE4 inhibitor has 

received a license from the FDA or EMEA.

Future directions
The side effects of PDE4 inhibitors refl ect the ubiquitous 

distribution of PDE4 isozymes and their importance in a 
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wide variety of cellular processes. The therapeutic ratio of 

PDE4 inhibitors may be improved by using specifi c inhibitors 

targeting those isozymes in airway smooth muscle or infl am-

matory cells or which are relatively inactive against PDE4C, 

the isoform that predominates in the CNS. Developing 

such inhibitors presents a considerable challenge given the 

conserved nature of the catalytic site and the similarity of 

the overall sequence of the four subtypes. Nevertheless, 

dual PDE4A/D and specifi c PDE4D inhibitors have been 

developed and tested in in vitro models (Muller et al 1996; 

Manning et al 1999; Giovannoni et al 2007) but they have 

not yet been assessed in clinical trials.

An alternative strategy to improve the tolerability of 

PDE4 inhibitors is to develop dual specifi city inhibitors 

that inhibit both PDE4 and either PDE1, PDE3 or PDE7. 

In this way the anti-infl ammatory properties may be aug-

mented whilst reducing PDE4 related side-effects in other 

organs. Although inhibitors of PDE3 have little intrinsic 

anti-infl ammatory action they do appear to augment the 

anti-infl ammatory properties of PDE4 inhibitors (Robicsek 

et al 1991; Giembycz et al 1996; Schudt et al 1995). Simi-

larly, there is some in vitro evidence that inhibition of PDE7 

may augment the effects of PDE4 inhibition (Smith et al 

2004), although PDE7A inhibitors have little or no anti-

infl ammatory properties themselves (Giembycz 2005). Dual 

specifi city PDE inhibitors have been developed, but none 

of have reached phase III trials and there are still concerns 

about the toxic effects of inhibiting members of other PDE 

families (Giembycz 2005).

Although there are no selective PDE1 inhibitors 

available for clinical use at present, PDE1 inhibition offers 

theoretical anti-infl ammatory benefi ts in COPD through 

inhibition of T-cell activation and inducing apoptosis, and 

prevention of the development of pulmonary hypertension 

as a result of augmenting pulmonary vasodilatation and 

inhibiting vascular smooth muscle proliferation. Thus, dual 

specifi city PDE inhibitors that inhibit PDE1 may offer greater 

anti-infl ammatory potential if combined with anti-PDE4 

activity, or enhanced and sustained effects on pulmonary 

hypertension if combined with anti-PDE5 activity.

Given their tissue distribution, in particular their 

presence in pulmonary and vascular smooth muscle, it is 

possible that inhibition of PDE3 and PDE5 could be of 

benefi t in patients with COPD. Selective PDE3 inhibitors 

promote bronchodilatation in humans (Leeman et al 1987; 

Fujimura et al 1995; Myou et al 1999) and inhibition of 

PDE5 with sildenafi l reduces pulmonary vascular resistance 

in subjects with hypoxic-induced pulmonary hypertension 

and in patients with severe pulmonary hypertension (Zhao 

et al 2001; Ghofrani et al 2004; Sastry et al 2004). There is 

also some preliminary evidence that PDE5 inhibitors may 

also have anti-infl ammatory properties similar to the PDE4 

inhibitors. Sildenafi l pre-treatment inhibited LPS-induced 

airway hyperreactivity, leukocyte infl ux, and NO genera-

tion in a guinea pig model of airways disease as a result of 

inhibition of PDE5 rather than via effects on NO synthase 

(Toward et al 2004) and a single case report of 2 patients with 

COPD taking sildenafi l for erectile dysfunction, described 

improvements in FEV
1
 (Charan 2001). Further randomized 

studies are required to investigate this effect further.

Conclusion
There are currently nearly 100 members of the PDE super-

family divided into 11 families, with multiple isoforms in 

most families based on different genes and alternate splicing 

of gene products. PDEs control the duration and localization 

of intracellular cyclic nucleotide signaling and mediate inter-

actions with other signaling cascades including the MAP 

kinase and Ca2+ pathways. The activity of PDEs is regulated 

by phosphorylation and interaction with other signaling mol-

ecules, some of which are assembled into macromolecular 

complexes with PDE by scaffolding proteins. Inhibition of 

cyclic nucleotide hydrolysis leads to elevation of their levels 

with consequent effects on cellular proliferation, smooth 

muscle relaxation and inhibition of infl ammatory cells. 

Inhibition of PDE4 is currently the most tested strategy for 

patients with COPD but in clinical practice the benefi ts have 

been modest and its use has been limited by adverse effects. 

As understanding of the roles of PDE4 isoforms and other 

members of the PDE superfamily grows, these problems may 

be overcome by using isoform specifi c inhibitors as well as 

dual specifi city inhibitors.
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Abbreviations
AC, adenyl cyclase; AC5, Ca2+-inhibitable adenylyl cyclase 

5; AC6, Ca2+-inhibitable adenylyl cyclase 6; AKAP, 

A-kinase anchoring proteins; ANP, atrial natriuretic 

peptide; BKCa, calcium-activated maxi K+ channels; CaM, 

calmodulin; cAMP, adenosine 3′5′-cyclic monophosphate; 

cGMP, guanosine 3′5′-cyclic monophosphate; EPAC, GTP-

exchange protein; ERK5, extracellular signal regulated 

kinase; GAF, cGMP binding domains; GPCRs, G-protein 

coupled receptors; H pocket, catalytic region hydrophobic 
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pocket; HPDE4, PDE4 high affi nity rolipram binding site; 

IL-2, interleukin 2; IL-8, interleukin 8; IL-10, interleukin 

10; IRAG, IP3 receptor associated cGMP kinase substrate; 

L region, catalytic region lid region; LHRH, luteinizing 

hormone releasing hormone; LPDE4, PDE4 low affi nity 

rolipram binding site; M site, catalytic region metal-binding 

site; MTG, AKAP scaffolding protein myeloid translocation 

gene; NHRs, N-terminal hydrophobic regions; NO, nitric 

oxide; PDEs, phospodiesterases; PKA, protein kinase A; 

Q pocket, catalytic region core pocket; TGF-β, transforming 

growth factor β; TNF-α, tumour necrosis factor α; UCR1, 

upstream conserved region 1; UCR2, upstream conserved 

region 2; XAP2, hepatitis B virus X-associated protein 2.
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