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Abstract: The human gut is colonized by different types of microorganisms, which are known 

to play important roles in the human host by maintaining physiological homeostasis. The human 

host provides a nutrient-rich environment, and the microbiota provides some necessary functions 

that humans cannot perform. A comprehensive analysis of the human gut microbiome is thus 

important for revealing the mechanisms of these host–microbe interactions. The development 

of high-throughput sequencing technology and related computational frameworks enables 

exploration of the metabolic interactions and their roles in human health and diseases. Herein, 

we describe the metagenomic methods used in human gut microbiome studies and review the 

roles of gut microbiota as well as the integrative analyses of metagenomic data with other omics 

data. Finally, we discuss the application of constraint-based modeling to elucidate the microbe–

microbe interaction and host–microbe interaction in the human gut microbiota.
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Introduction
Trillions of microorganisms have been colonized in the human gastrointestinal tract.1 

Anaerobic bacteria dominate the gut microbial community, but it also includes aerobic 

or facultative anaerobic bacteria, archaea, viruses, and eukaryotes. These microbial 

communities outnumber the total number of human cells by a factor of 10 and contain 

150 times as many genes as those encoded by the human genome.2 The human gut 

microbiota can therefore be considered as an organ or super-organism that coevolved 

with the human host to achieve a beneficial symbiotic relationship.3,4 The human host 

provides a nutrient-rich environment, and the microbiota contributes to broad ranges of 

biochemical and metabolic capacities that the human body does not possess, such as the 

digestion of resistant starch or polysaccharides, production of some vitamins, and bile 

acid biotransformation. Unlike the human genome, the gut microbiome is dynamic and 

can be altered by environmental factors (diet,4–6 drugs,4,7,8 probiotics,4,9 etc).

Development of cultivation-independent approaches based on the 16S ribosomal 

RNA (rRNA) sequences expands our understanding of the composition and diversity of 

the gut microbiota. Bacteria from the Bacteroidetes and Firmicutes phyla dominate the 

gut microbiome, with members from Proteobacteria, Actinobacteria, and  Fusobacteria 

also being abundant.2 With the emergence of next-generation sequencing (NGS) 

technology, the role of the gut microbiome in human health and diseases is becoming 

clearer, and the dysbiosis of gut microbiota can be associated with numerous diseases 

(type 2 diabetes [T2D], inflammatory bowel disease [IBD], nonalcoholic fatty liver 

disease [NAFLD], etc).4,10,11 Herein, we aim to summarize the metagenomic methods 
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used in the human gut microbiome studies, review the role of 

the human gut microbiota, and describe integrative analyses 

of metagenomic data and other omics data. Finally, we will 

discuss the application of genome-scale metabolic models in 

the metabolic interactions of microbial communities.

Metagenomics: toward a better 
understanding of the gut 
microbiome
Traditional microbiology was dependent on growing pure 

cultures of species in specific media. However, numer-

ous uncultivated microbial species have been identified in 

diverse environments and their cultures are still limited.12 

Metagenomics initially started with the cloning of DNA 

fragments from environmental samples, followed by 

 functional genomic screening,13 and were quickly extended 

by the application of whole-genome shotgun sequencing in 

microbial populations.14 In these initial projects, large DNA 

insert metagenomic libraries were constructed and sequenced, 

hence giving insights into the functional, structural, and 

phylogenetic composition of microbial communities in 

environmental samples in a culture-independent way. The 

revolution of NGS technologies,15,16 such as 454 pyrosequenc-

ing,16,17 SOLiD™ (sequencing by ligation),16 and Illumina 

(sequencing by synthesis),16 have vividly accelerated the 

development of sequencing-based metagenomic projects. The 

rapid and substantial reduced cost of NGS technologies make 

it  possible to sequence numerous environmental samples 

in parallel and in a cost-effective manner, and the develop-

ment of analytical tools for NGS also enables researchers 

to understand the microbial communities of interest from a 

phylogenetic and functional perspective.

The human gut microbiome is vast, and consists of about 

1014 bacterial cells, which is ten times the number of cells 

in the human body. A detailed inventory of this microbial 

“factory” is nearly unreachable by conventional microbial 

techniques.18,19 Culture-based studies have characterized 

hundreds of microbial species in the gut microbiota, includ-

ing archaea (eg, Methanobrevibacter genus),20 Gram-positive 

bacteria (eg, Bifidobacterium, Clostridium, Eubacterium, 

Lactobacillus, and Ruminococcus genera),21–23 and Gram-

negative bacteria (eg, Bacteroides and Fusobacteria gen-

era).21,22 However, these approaches generally work on the 

“fast-growth” or “easy-to-grow” species, which are just 

10% to 50% of the gut bacteria.24 With the application of 

culture-independent metagenomics approaches to study 

the human gut microbiota, more than 1,000 species-level 

microbial phylotypes have been identified, most of which 

belong to just a few phyla (Bacteroidetes and Firmicutes).2,19,25 

In addition to the taxonomic diversity of the microbiota, 

metagenomic analysis also provides a more comprehensive 

view of functional association related to the human body by 

identifying microbial genes involved in specific metabolic 

pathways or functions. Such functional profiles of the gut 

microbiome have been subjected to intensive study in recent 

years, driven by large-scale sequencing projects such as the 

Human Microbiome Project26 and the Metagenomics of the 

Human Intestinal Tract (MetaHIT) project.2 The Human 

Microbiome Project characterized the diversity of human-

associated microbial communities at different body sites, 

including the gastrointestinal tract, in the healthy human 

population,26 whereas MetaHIT focused on the correlation 

between the gut microbiome and intestinal diseases, such 

as obesity and IBD.2 These studies have demonstrated the 

interpersonal microbiome composition variability and shared 

core functionalities,2,27 which provide a useful knowledge 

base for understanding gut microbiome functions in human 

health. For example, the shotgun metagenome analysis of two 

healthy adults revealed a significant metabolic enrichment 

of glycans, amino acids, and xenobiotics; methanogenesis; 

and 2-methyl-D-erythritol 4-phosphate pathway-mediated 

biosynthesis of vitamins and isoprenoids in the human gut 

microbiome.28  Moreover, the gut microbiota is not constant, 

and can be altered by diet,5,6,29 antibiotic usage,7,8 aging,30,31 

and many other  factors. As well as aiding investigation of 

the relationship between gut microbiota and human health, 

metagenomic studies have also necessitated a better under-

standing of the dynamics of gut microbiome. For instance, 

Davenport et al29 found that seasonal differences in diet shape 

the gut microbiome compositions of Hutterite individuals 

differently between the winter and summer. Rampelli et al30 

observed an age-related reduction of the abundance of genes 

involved in short-chain fatty acid (SCFA) production, and 

identified 116 microbial genes that significantly correlated 

with aging. Altogether, a  metagenomic-based approach is 

not only a powerful tool for exploring the microbiome com-

munity dynamics, but also for characterizing the functional 

profiling of communities.

Bioinformatics challenges:  
the current state of gut 
metagenomic data analysis
Although DNA sequencing has been used since the 1970s,32 

it was formerly too expensive and time-consuming for 

application in high-throughput studies. With the develop-

ment of NGS technologies in 2004,16 massively parallel 
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DNA sequencing became economically affordable for most 

 scientists and enabled sequencing of environmental DNA 

samples, and metagenomic studies have since then become 

gradually more common.33,34 As shown in Figure 1, two dif-

ferent types of NGS-based approaches have been used for 

human gut microbiome studies: 1) amplicon/target sequenc-

ing using specific primers (ie, primers for 16S rRNA genes or 

other marker genes), and 2) whole-genome shotgun sequenc-

ing with genome amplification using random primers.

In typical 16S rRNA marker gene-based metagenomic 

studies, DNA is extracted from samples without the need to 

culture microbes in the laboratory. The amplification of 16S 

rRNA genes is performed with specific primers, and is fol-

lowed by parallel sequencing with a selected NGS platform 

(Figure 1). A bioinformatics challenge that arises immediately 

from 16S rRNA sequencing analysis is the precise definition 

of a “unique” sequence.33 Considering that errors can be 

induced during polymerase chain reaction amplification 

and sequencing processes, the utilization of 100% identity 

would be unrealistic, and treat the same clonal genomes as 

different organisms. Thus, a user-defined similarity cutoff of 

95%, 97%, or 99% is usually used in binning 16S rRNA gene 

sequences into operational taxonomic units (OTUs) or some-

times phylotypes in practice.33 In general, there are two main 

approaches for OTU clustering. The most commonly used is 

de novo OTU clustering, which compares all the sequences 

to each other for clustering into OTUs without any external 

references. Tools such as CD-HIT35 or UCLUST,36 which 

execute the alignment-free clustering method, are broadly 

used to cluster OTUs independently of taxonomy, as it has 

been suggested that alignment quality has a significant impact 

on OTU clustering.37 In contrast, the taxonomy-dependent 

16S rRNA amplicon

Whole-genome shotgun

Reference databases

Reference catalogs

Taxonomic binning

OTU-θθ1

RDP

SILVA

Greengenes

Taxonomic abundance Species interaction

Functional composition
protein–protein interaction

metabolic network

Protein families
functional annotation

Gene predictionContigs

Binning NCBI nr
KEGG
eggNOG
IGC
MEDUSA gene catalog

Assembly

OTU-θθ2

OTU-θθ3

Figure 1 Overview of bioinformatics methods for gut microbiota metagenomic analysis.
Notes: First, total DNA is extracted from samples. The 16S rRNA-based amplicon approach is performed by amplification of the 16S rRNA gene with specific primers. 
The whole-genome shotgun approach can be performed by generating the DNA library for all the microbial genes using random primers. The taxonomic assignment can 
be inferred by similarity-based or composition-based methods. with the taxonomic assignment of sequences, the species abundance can be characterized, and the co-
occurrence network can be used to infer species interactions. As an alternative, the whole-genome shotgun reads can be subjected to assembly, followed by gene prediction 
and functional annotation. The functional capacity of the gut microbiome can be characterized according to gene annotation. in the 16S rRNA-based approach, the function 
of the community can also be predicted using reference genome databases.
Abbreviations: iGC, integrated gene catalog; OTU, operational taxonomic unit; RDP, Ribosomal Database Project; rRNA, ribosomal RNA. 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances in Genomics and Genetics 2015:5submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

80

Ji and Nielsen

approach searches sequences against a 16S rRNA reference 

database (usually Greengenes,38 the Ribosomal Database 

Project [RDP],39 or SILVA40), and sequences failing to match 

the reference database are discarded. This generates better 

results and includes less erroneous sequences in the OTU, 

because all OTUs have been predefined and well checked in 

the reference databases. However, it also discards numerous 

sequences due to the failure to match to reference databases. 

Alternatively, the third approach is a two-step process con-

sisting of reference-based OTU clustering followed by de 

novo clustering of sequences that fail to match the refer-

ence database. Once OTUs are determined, representative 

sequences from each OTU can be chosen and used to assign 

taxonomy to the OTUs. As described previously, SINA,41 

RDP Classifier,42 and the NAST algorithm43 can be used to 

assign taxonomic affiliations to sequences using correspond-

ing 16S rRNA databases. Following taxonomic binning, 

further bioinformatics analysis of taxonomic abundance and 

microbiome diversity can be performed. Diversity within a 

sample is usually described as alpha-diversity, which captures 

both the organismal richness of a sample and the evenness 

of the organism’s abundance,33 whereas the beta-diversity is 

often referred to as the diversity between multiple microbial 

samples.33 Moreover, multivariate analysis methods, such 

as principal coordinates analysis44 or principal component 

analysis,44 are frequently used in human gut microbiome 

studies to test multivariate hypotheses concerning the effects 

of metadata (eg, diet, age, genotype, and diseases) to the 

microbial diversity. With the taxonomic composition and 

abundance data in different samples, it is possible to predict 

the ecological interaction among those gut microbes by 

inferring co-occurrence or correlation network.45 In conclu-

sion, 16S rRNA-based metagenomic sequencing provides 

insights into the population characteristics of the human 

gut microbiota. However, 16S rRNA genes do not provide 

direct evidence of the community’s functional  capabilities. 

Recently, computational approaches (ie, PICRUSt46 and 

Genometraits47) were successfully employed to predict the 

functional composition of metagenomes using marker genes 

and a reference genome database. Therefore, combination of 

16S rRNA metagenomics and single species genomics could 

be an efficient way to provide insight into both organismal 

and functional diversity in the gut microbiome.

As an alternative to 16S rRNA sequencing, the total 

DNA is extracted and amplified using random primers and 

then sequenced by shotgun metagenomic analysis. Shotgun 

metagenomic analysis provides the opportunity to simultane-

ously explore the taxonomic composition and bimolecular 

functions in microbial communities at the gene level. Usually, 

there are two general strategies for whole-genome shotgun 

metagenomic data analysis. The simplest method is assembly-

free, while, with the other, the reads are subjected to assembly. 

If assembly is not performed, the produced reads are treated 

as 16S rRNAs or gene fragments and are analyzed directly. 

After preprocessing to reduce sequencing errors, taxonomic 

binning is performed to determine the taxonomic affilia-

tion for each read (Figure 1). Similarity-based taxonomic 

assignment utilizes the similarity between query sequences 

and sequences from reference databases (ie, NCBI RefSeq,48 

KEGG,49 and eggNOG50). Recently, several catalogs of refer-

ence genes were constructed, such as the human gut microbial 

gene catalog from MetaHIT,2 the global human microbial 

gene catalog from MEDUSA,51 and the integrated gene cata-

log (IGC).52 These gene catalogs facilitate the quantitative 

characterization of human gut microbiome data to under-

stand the community composition and functional variations. 

Sequence composition-based approaches are also widely 

used for taxonomic binning, which utilizes the genome-

wide taxonomic signals contained in the fragment-wide GC 

content, codon usage, or the frequency of short oligomers 

(K-mers).53 As compositional signature is a global character 

of sequence, sufficient numbers of sequences instead of the 

whole genome are required for interference of the composi-

tion. Consequently, these compositional binning methods 

generally do not need the alignments of reads to the reference 

sequences and are able to process large datasets relatively 

rapidly. With these two approaches, several computational 

frameworks (ie, MEGAN,54 PhymmBL,55 MetaPhlAn,56 and 

mOTU57) were developed to assign the microbial taxonomy 

efficiently. As described previously, further bioinformatics 

analysis of taxonomic abundance and microbiome diversity 

can be performed following taxonomic binning. With an 

assembly-based analytical strategy, the collinear metag-

enomic reads from the same genome are merged into contigs 

and generate much longer sequences,34 which can simplify 

bioinformatics analysis relative to short reads. After assem-

bly, the functional diversity of the microbial communities 

can be quantified by inferring the functional annotations of 

these metagenomic sequences. Generally, two steps make 

up the annotation process: gene prediction and functional 

annotation. The first step identifies encoding genes in the 

sequence fragments. This step can be performed in differ-

ent ways. For example, some tools (ie, MetaGeneMark,58  

Glimmer-MG59) identify genes de novo. While another 

approach involves translating each sequence into all six 

possible encoding frames and searching the resulting  
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protein sequences against the  annotated reference protein 

database to identify genes that encode proteins similar to 

the reference proteins. Once the encoding sequences are 

predicted, they can be subjected to functional annotation. 

Numerous databases and online tools, such as KEGG,49  

the Clusters Of Orthologous Groups database (COG),60 

Pfam,61 SEED,62 eggNOG,50 MG-RAST,63 CAMERA,64 and 

IMG/M,65 can be used to infer the functional annotation and 

classification. With functional classifications and abundance 

data, the functional enrichment of pathways in a sample or 

between multiple samples can be inferred by a statistical 

test (ie, Fisher’s exact test, gene set enrichment analysis). An 

increasing number of strategies and toolboxes (ie, Shotgun-

FunctionalizeR,66 STAMP,67 MetaPath,68  metagenomeSeq69) 

have been developed for identification of the substantial func-

tional differences between microbial samples at the function 

level and association of the abundance differences with the 

corresponding metadata. By comparing the metabolic gene 

abundance in different samples, one can determine the dif-

ferences in the metabolic capacity of microbial community 

and identify possible interactions between environment and 

microbiome. In addition to inferring the differential abun-

dance in metabolic pathways, Abubucker et al70 recently 

described a promising methodology, named HUMAnN, for 

reconstructing the functional potential of human-associated 

microbial communities from shotgun data. Such metabolic 

reconstruction methods for the whole microbial community 

provide a way to characterize the metabolic pathways in the 

community level, and enable the comparison of community 

roles in different communities.

From the perspective of both taxonomic and functional 

composition from metagenomes, the gut microbiota might 

be linked to and contribute to many complex diseases in 

humans. For example, a number of studies have revealed 

that obesity is associated with an increase in Firmicutes and 

a relatively lower abundance of Bacteroidetes.27,71 A T2D 

study also showed that the proportion of Firmicutes and 

Clostridia was significantly reduced in patients compared 

with the normal group.72 However, more detailed informa-

tion is required to associate the gut microbial compositional 

alternations with its impact on human health and diseases. 

Integrating metagenomic abundance data with a systems-

level metabolic network analysis73 shows that both gene-level 

and network-level topological differences are associated 

with obesity and IBD. The enzymes enriched in obese or 

IBD microbiomes exhibit unique topological features, which 

suggest that diseases may be associated with high-order 

modes of deviation in the microbiome.73 Metagenome-wide 

association study based on shotgun metagenomic  sequencing 

of the stool samples from T2D patients and nondiabetic 

controls identified nearly 60,000 T2D-associated markers 

potentially useful for classifying T2D.74 Recently, another 

association study identified 26 metagenomic gene clusters 

to be differentially abundant between a T2D group and the 

normal glucose tolerance group.11 A mathematical model 

was developed based on the species and metagenomic 

gene cluster profiles, and application of this model showed 

better prediction in classification of T2D individuals than 

traditional markers, such as body mass index and waist–hip 

ratio.11 Moreover, comparative analysis of gut microbiome 

from 98 patients with liver cirrhosis and 85 healthy controls 

found that 38 and 28 metagenomic species are enriched in 

healthy individuals and patients, respectively. With 15 gene 

markers, a support vector machine classifier was constructed 

and confirmed that these gene markers can be used for iden-

tifying patients with liver cirrhosis.75

Functional metagenomics  
of gut microbiome
Although metagenomic studies have provided deep under-

standing about the relationships between gut microbiome 

and human health, it is still worth noting that other omics 

approaches with functional metagenomics can be used as 

complementary ways to achieve comprehensive insights into 

the host–microbiome interaction. Functional metagenomic 

screens, originally proposed as one method by which to 

characterize the uncultured microbes, have been adapted to 

characterize the functions of human microbial communities, 

representing an interesting interdisciplinarity between eco-

logical microbiology and biomedicine.76 As previously noted, 

the gut microbiota is involved in the host metabolism regula-

tion.77 Functional metagenomic screening is thus a powerful 

tool for detecting the capacities of microbial metabolism. 

One example of such application is the discovery of new 

carbohydrate active enzyme (CAZyme) genes in the human 

gastrointestinal microbiota. The gut bacteria produce a vast 

amount of CAZymes in order to digest dietary fibers into 

metabolizable monosaccharides and disaccharides;78,79 15,882 

different CAZymes have been detected in a mini-microbiome 

composed of 177 sequenced members of the human gut 

microbiota, representing its major phylogenetic lineages.78 

Tasse et al79 applied high-throughput functional screens and 

identified 310 clones showing beta-glucanase, hemicellulase, 

galactanase, amylase, or pectinase  activities. In addition, 

the functional genomic screens have also been employed 

to identify potential enzymes from the gut  microbiome for 
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biotechnological applications, such as biofuel production.80 

For example, new xylanases81 and butyryl-CoA:acetate CoA-

transferase82 have been obtained by screening the human 

gut microbial communities. Another area of application for 

functional metagenomic screens is in the discovery of anti-

biotic resistance genes. Antibiotic resistance, which reduces 

the clinical ability to fight infectious diseases and increases 

treatment costs, is a worldwide public health threat. Recent 

metagenomic resistome sequencing analysis detected resis-

tance genes for 50 of the 68 known antibiotic classes and sub-

classes from 252 fecal samples of 207 individuals from three 

countries.83 However, the sequencing-based method is limited 

to resistance genes that are already known, as sequences with 

low similarity to known reference antibiotic sequences can-

not be identified. Thus, functional genomic screens, which 

are involved in cloning and expression of gene fragments in 

heterologous hosts (such as E. coli), and screens for resistance 

genes by growing transformants on antibiotic containing 

media at concentrations that the original host is susceptible, 

will provide the chance to discover new resistance genes. 

Sommer et al84,85 characterized 95 unique functional antibiotic 

resistance genes in saliva and fecal samples from two unre-

lated healthy humans and 115 unique antibiotic genes from 

cultured aerobic gut microbiome  isolates. Although most of 

these resistance genes were highly related to known resistance 

genes in pathogenic bacteria, ten previously unknown beta-

lactamase genes were identified, which showed from 35% to 

61% identity to proteins from GenBank. Moreover, another 

functional metagenomic screen for human microbiome 

also identified eight new antibiotic resistance genes against 

amoxicillin, D-cycloserine, and kanamycin.86

The role of the human  
gut microbiome
At the functional level, numerous gut metagenomic studies 

have shown that the gut microbiota has coevolved with the 

human host to perform important biochemical functions 

that impact human metabolism.87–89 The gut microbiota has 

been suggested as an auxiliary metabolic organ due to the 

microbes’ metabolic capacity.88,90 The metabolic functions 

of the gut microbiota include energy harvest and utilization, 

macromolecule production (eg, SCFA, amino acids), vitamin 

biosynthesis, bile acid deconjugation and dehydroxylation, 

and xenobiotic metabolism, among others (Table 1). The 

human host is able to adsorb monosaccharides such as 

glucose and galactose in the small intestine, and it can also 

hydrolyze certain disaccharides such as sucrose and lactose 

to their constituent monosaccharides.91 However, the human 

host has limited enzymatic ability to degrade complex 

 polysaccharides from the diet such as resistant starch, non-

starch  polysaccharides, and plant fibers. Therefore, simple 

sugars (eg, glucose, galactose) are absorbed in the proximal 

small intestine by active transport, and undigested dietary 

polysaccharides enter into the distal small intestine and 

colon, where they are degraded by microbes. The anaerobic 

degradation of these undigested dietary polysaccharides is 

a fermentation process involving numerous gut microbes, 

including Bacteroides, Bifidobacterium, Ruminococcus, and 

Roseburia spp., as well as some microbes from Clostridium, 

Eubacterium, and Enterococcus genera92 (Table 1). The major 

end products of polysaccharide fermentation are SCFA ace-

tate, propionate, and butyrate, which provide energy for the 

host and are involved in a number of physiological functions 

(Figure 2). These SCFAs can be used as the energy source of 

epithelial cells or peripheral tissues.4 Previous study have also 

suggested that SCFAs stimulate the colonic sodium and fluid 

absorption, modify the microbial composition, and regulate 

the glucose and energy homeostasis.93 Acetate and propionate 

can be taken up by the liver and be used as substrates for 

liver cholesterol and fatty acid biosynthesis; propionate can 

also act as a substrate for gluconeogenesis.94 Butyrate has 

been shown to improve insulin sensitivity, increase energy 

expenditure, and modulate immune responses by mac-

rophages.95,96 After carbohydrate fermentation in proximal 

colon, the carbohydrate availability decreases, and protein 

becomes the main energy source for the gut microbiota in the 

distal colon.97,98 The predominant proteolytic species include 

strains from Bacteroides, Propionibacterium, Streptococcus, 

Clostridium, Bacillus, and Staphylococcus.97 In addition to 

SCFA,  hydrogen, CO
2
, ammonia, and branched chain volatile 

Table 1 Beneficial metabolic contributions of intestinal microbes 
to human health

Role Related bacteria References

energy harvesting  
by complex fibers  
breakdown

Bacteroidetes, Prevotella,  
Ruminococcus, Clostridium,  
Roseburia

4,78,98

Short-chain fatty  
acid production

Clostridium cluster IV,  
Firmicutes (Ruminococcus,  
Eubacterium, Faecalibacterium,  
and others)

4,163,164

vitamin biosynthesis Bifidobacteria, Lactobacillus 87,165,166
Modulation of host  
lipid metabolism and  
glucose homeostasis

Faecalibacterium,  
Bifidobacterium 

4,104,105

Metabolism of  
xenobiotics and  
procarcinogens

Clostridium, Faecalibacterium  
prausnitzii, Bifidobacterium,  
Subdoligranulum

115,167,168
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fatty acids are produced during protein degradation.97,98 The 

intestinal gut microbiota can also act as an important supplier 

of vitamin K as well as water-soluble vitamin B (ie, biotin, 

cobalamin, riboflavin, thiamine, and folate) (Figure 2).87 

With numerous gut microbioal genomic data, the vatamin 

biosynthesis capacities are extensively explored. For example, 

the Bifidobacterium and Lactobacillus spp. have been veri-

fied to have folate biosynthetic properties;99,100  Lactobacillus 

reuteri also has the ability to produce cobalamin (vitamin 

B12).101 Besides production of SCFA and vitamins, the gut 

microbiome is also involved in bile acid metabolism and 

the metabolism of choline. Bile acids, which are important 

for the metabolism of dietary fat and the absorption of 

cholesterol and fat-soluble vitamins, are steroid acids that 

are synthesized from cholesterol by the liver and secreted 

in the bile. During the enterohepatic circulation between 

the gut and liver, 90%–95% of bile acids are reabsorbed by 

the intestine and returned to the liver. Bile acid metabolism 

performed by the gut microbiome consists of conjugation 

and hydroxyl group oxidation, which transform the primary 

bile acids into secondary bile acids (Figure 2).102 Choline 

is one of the essential dietary nutrients that is metabolized 

in the liver, and is important for lipid metabolism and the 

synthesis of very-low-density lipoprotein.4,77 Gut microbial 

enzymes (eg, glycyl radical enzymes in Desulfovibrio)103 

catalyze the conversion of choline to trimethylamine, which 

can be transferred into trimethylamine N-oxide in the liver 

(Figure 2). The microbial conversion of choline to trimeth-

ylamine is a metabolic hallmark associated with NAFLD104 

and cardiovascular disease.105

As described above, the gut microbiota establish a 

mutualistic relationship with the human host and provide 

beneficial metabolic functions. There is increasing evidence 

to link the gut microbiome with human disease. IBD is a 

group of inflammation disorders of the small intestine and 

colon, which can be classified into two forms: Crohn’s disease 

(CD) and ulcerative colitis (UC). Evidence has suggested 

that IBD is a complex disease arising from the interaction 

of genetic and environmental factors.106 From a genetics 

perspective, genome-wide association studies and subsequent 

meta-analyses have identified a total of 163 IBD loci.10 From 

the metagenomic perspective, it has been shown that IBD 

patients have an altered gut microbiome composition with 

decreased diversity, in particular, reduced diversity in the 

Firmicutes phylum (eg, Clostridium leptum).106,107 Along 

with reduced Clostridium spp, a decrease in  Bifidobacterium 

spp. was also observed in fecal samples from CD patients.108 

As previously described, Clostridium and Bifidobacterium 

Fermentation Deconjugation

Dietary fibers

Sugars

Pyruvate

Acetate 

Amino
acids

Vitamins

Choline
Primary bile acids

Secondary bile acids

Bile acids
Choline

Adipose tissueMuscle Liver

TMAPropionateButyrate 

Figure 2 Metabolic interaction between gut microbiota and host.
Notes: The gut microbiota is comprehensively involved in host metabolism processes such as anaerobic fermentation, vitamin biosynthesis, and bile acid metabolism and 
plays important roles in metabolic diseases such as obesity and type 2 diabetes. The polysaccharides from the diet can be degraded by the gut microbiota via anaerobic 
fermentation. The main products are short-chain fatty acids: acetate, propionate, and butyrate. These metabolites can be absorbed by the gut epithelial cells and then be 
transferred to other tissue cells, including adipocytes and hepatocytes. The microbial cells can also synthesize amino acids and vitamins (mainly B and K). The conjugated bile 
acids are synthesized in the liver and secreted into the intestinal tract through the duodenum. Most of these primary bile acids can be deconjugated by the gut microbiota 
in the intestine and be reabsorbed by the liver. Choline is an important component of the cell membrane and is mostly obtained from foods, but may also be synthesized by 
the host. Gut microbes are involved in the transformation of choline to trimethylamine (TMA), which is then metabolized to trimethylamine N-oxide in the liver. Moreover, 
there is crosstalk between adipocytes and myocytes during free fatty acid transport.
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spp are  important producers of butyrate. In agreement with 

the decrease of Clostridium and Bifidobacterium, metabolo-

mic analysis of fecal  samples from patients with CD and UC 

showed decreased levels of butyrate and acetate compared 

with the control group.106,109 Moreover, the increased abun-

dances of bacteria, including  Enterobacteriaceae, Pasteurel-

laceae, Veillonellaceae, and Fusobacteriaceae, and decreased 

abundances of  Erysipelotrichales, Bacteroidales, and 

Clostridiales, correlate strongly with IBD status.  Microbiome 

comparison between CD patients with and without antibi-

otic exposure also indicates that antibiotic use amplifies the 

microbial dysbiosis associated with CD.110 Comparing the 

microbial signatures between the ileum, the rectum, and fecal 

samples indicates that, at the early stage of disease, assessing 

the rectal mucosal-associated microbiome offers potential for 

convenient and early diagnosis of CD,110 The alternation in 

the gut microbial composition as well as the reduced bacte-

rial diversity have been associated with obesity. Significant 

enrichment of Firmicutes and decrease of Bacteroidetes 

has been observed in obese individuals compared with lean 

indiviuals.71,111,112 Metagenomic analyses demonstrated that 

these changes affect the metabolic potential of the gut micro-

biota, and the obese microbiome has an increased capacity 

for energy harvest.27,71 The transplantation of lean and obese 

fecal microbiota into germ-free mice confirmed that the 

trait of obesity is transmissible through fecal transplants 

from obese mice.71,113 T2D is one type of metabolic disorder 

whose primary cause is obesity-linked insulin resistance. 

Recent studies showed that the proportions of Firmicutes 

and Clostridia were significantly reduced in the T2D group 

compared to the control group, and the ratio of Bacteroidetes 

to Firmicutes as well as the ratio of Bacteroides-Prevotella 

group to Clostridium coccoides-Eubacterium rectale group 

correlated positively and significantly with plasma glucose 

concentration but not with body mass index.72 With the 

application of metagenome-wide association studies in gut 

microbiome samples from T2D patients, a moderate degree of 

gut microbial dysbiosis was observed in the T2D patients,11,71 

and potential gut microbial markers useful for T2D classifica-

tion and early diagnosis were thereby identified.

Integrative analysis: beyond 
metagenomics
Metagenomics is a useful tool for describing the genetic 

potential and compositional changes of the gut microbiota, 

but it cannot provide any information about the gene expres-

sion in the microbial community. One way to overcome this 

limitation is environmental meta-transcriptomics to assess 

which genes are expressed in the gut habitat. Gosalbes et al114 

applied meta-transcriptomics and 16S rRNA gene sequenc-

ing to analyze the human gastrointestinal tract microbiota in 

ten healthy individuals. Carbohydrate metabolism, energy 

production, and cellular components synthesis were the 

main functions of the expressed genes. In contrast, house-

keeping activities such as amino acid and lipid metabolism 

were expressed at a lower level in the meta-transcriptome. 

 Moreover, a study combining flow cytometry, 16S rRNA gene 

sequencing, and meta-transcriptomics demonstrated that the 

gut contains a distinctive set of active microorganisms, pri-

marily Firmicutes.115 Short-term exposure to a panel of xeno-

biotics significantly alters the gene expression of this active 

gut microbiome, and the changes are involved in antibiotic 

resistance, drug metabolism, and stress response  pathways.115 

Another approach to evaluating functions of the gut micro-

biome is to perform human gut microbial  metaproteomics. 

The first human fecal microbiota metaproteomic analysis 

from two infants obtained proteins by two-dimensional gel 

electrophoresis, followed by excision and de novo sequenc-

ing of targeted spots on the gel.116 High-throughput, non-

targeted mass spectrometry approaches, which can determine 

the identity of thousands of microbial proteins, have also 

been successfully applied to human fecal samples from two 

Swedish inviduals.117 The resulting metaproteomes had more 

proteins for translation, energy production, and carbohydrate 

metabolism when compared to what was earlier predicted 

from metagenomics. In a recent study, the composition and 

temporal stability of the intestinal metaproteome was deter-

mined by using fecal samples from three healthy subjects over 

a period of 6 to 12 months.118 Combined with metagenome 

and single bacterial genome sequence data, it showed that 

the fecal metaproteome is subject-specific and stable during 

a 1-year period. Meta-metabolomics is another widely used 

omics approach to studying the human gut microbiome, and 

has been applied to fecal water extracts, plasma, and urine to 

study numerous disorders (eg, colorectal cancer, obesity, and 

IBD).119,120 Dumas et al104 tested the effects of dietary change 

from a 5% low-fat diet to a 40% high-fat diet on the plasma 

and urine metabolic profiles in a mouse strain susceptible 

to NAFLD. The results showed that NAFLD is associated 

with dysbiosis in choline metabolism, and the conversion of 

choline into methylamines by the microbiota on a high-fat 

diet decreases the bioavailability of choline and mimics the 

effect of choline-deficient diets, causing NAFLD. Moreover, 

metabolic profiles from germ-free and conventional mice 

show that the gut microbiome strongly impacts bile acid 

metabolism.121 Furthermore, Wikoff et al122 directly measured 
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the metabolomic profiles of plasma extracts from germ-free 

and conventional mice. More than 10% of all detectable 

serum metabolites showed at least 50% variation in con-

centration between the mice with and without gut microbes. 

Metabolomic approaches combined with metagenomic 

analysis have also proved useful for assessing the metabolic 

changes associated with disease. For example, Sellitto et al123 

characterized the differences between the developing micro-

biota of infants with genetic predisposition for celiac disease 

and with a nonselected genetic background and found a lack 

of Bacteroidetes in the gut microbiota of infants genetically 

susceptible to celiac disease. Simultaneous metabolomic 

analysis also revealed several metabolites (eg, amino acids, 

SCFA, sugars) that can be used as potential biomarkers for 

the prediction of celiac disease.123,124

Predictive gut microbial 
metagenomics: from genomes  
to models
As discussed above, metagenomic data can help us under-

stand how the gut microbiota and its corresponding meta-

bolic capacity affect human health. The biological functions 

of gut microbiome can be inferred by using metagenomics 

annotation information. From shotgun metagenomic data, 

a network-based method, called PRMT, was employed to 

explore the metabolic capacities of microbial communi-

ties.125 This approach first generates an environmental 

metabolome matrix (EMM) containing metabolites and reac-

tion information according to the enzyme reactions in the 

metagenomic sample. Next, the normalized sequence abun-

dances associated with metabolic reactions are compared 

across multiple metagenomes to identify the relative change 

in the metabolites to be produced or consumed. Therefore, 

PRMT predicts the potential for relative changes in the 

production or consumption of the metabolites inferred to be 

present in the environment. For more detailed predictions 

of metabolic phenotypes for microbial communities, two 

metabolic modeling frameworks,  topology-based network 

models and constraints-based models, can be applied.126 

In the topology-based network approach, the metabolic 

network is usually constructed according to the automatic 

homology-based enzyme destination using databases such 

as KEGG and following enzyme-reaction destination.49 

Thus, the network can be represented as a simple directed 

graph, wherein nodes denote metabolites and edges represent 

enzymes that convert substrates and products in the different 

reactions, and the corresponding network properties can be 

inferred using different tools.127,128 Borenstein et al129 define 

the concept of a metabolic network’s “seed set” according 

to the network topology. The seed set is a set of metabolites 

that are exogenously acquired and which provide a compu-

tational framework to infer the environmental interface of a 

given metabolic network.129 With the seed sets, the metabolic 

competition index and the metabolic complementary index 

are defined to describe the metabolic interaction between two 

pairwise species. Applying this computational approach to 

the human gut microbiome showed that co-occurring spe-

cies usually strongly compete, suggesting that microbiome 

assembly is dominated by habitat filtering.130 This approach 

has been applied to metabolic exchanges between two coresi-

dent intracellular symbionts, Baumannia cicadellinicola and 

Sulcia muelleri, and their insect host, Homalodisca coagu-

lata, and indicated that the seeds that appear to be obliga-

tory for metabolite synthesis are involved in the symbiotic 

function.131 Constraint-based modeling is another way of 

mathematically representing metabolic networks known as 

the stoichiometric matrix, and aims to define the set of meta-

bolic flux constraints in the given species (Figure 3).132 The 

reconstruction of genome-scale metabolic models includes 

four main phases: 1)  generating the draft model based on 

the genome annotation; 2) manual curations according to the 

literature; 3) functional validation with experimental data; 

and 4) simulation and analysis.133 The manual reconstruction 

of genome-scale metabolic models is complex and time- 

consuming, but numerous tools (eg, Model SEED,134 Pathway 

Tools,135 RAVEN136) that utilize the biological knowledge 

from different databases (such as KEGG,49 Reactome,137 

BioCyc,138 BRENDA,139 and PubMed140) have been devel-

oped to perform automatic or semiautomatic reconstruc-

tion. The RAVEN toolbox136 was developed recently and 

has been used to reconstruct metabolic models for Pichia 

stipitis,141 Pichia pastoris,141  Saccharomyces cerevisiae,142 

and  Penicillium chrysogenum.136 This toolbox reconstructs 

draft models based on the homology to the reference organ-

ism and performs automatic gap-filling to ensure that the 

the different parts of metabolic network are connected. 

With these available tools, genome-scale metabolic models 

have been assembled for a growing number of microbes, 

including numerous gut microbes, such as  Bifidobacterium 

adolescentis143 and Faecalibacterium  prausnitzii.143 The 

availability of multiple microbial metabolic models 

provides the chance to model the microbial communi-

ties to elucidate interactions between different species 

(Figure 3). Stolyar et al144 constructed a two-species model 

to predict the syntrophic growth of Desulfovibrio  vulgaris 

and  Methanococcus  maripaludis, while Zhuang et al145 
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 predicted relative proportions of Geobacter sulfurreducens 

and Rhodoferax ferrireducens in geochemically distinct 

zones via a dynamic multispecies metabolic modeling 

framework. Moreover, using 118 bacterial metabolic models, 

Freilich et al146 predicted possible cooperation, competition, 

or neutral interactions in pairs of species and identified a high 

level of competition between species with mutually exclusive 

distribution patterns.  However, constraint-based modeling of 

the microbial community mainly focuses on simple systems, 

ie, one or two species. Recently, the genome-scale meta-

bolic models for three gut microbial species  (Bacteroides 

thetaiotaomicron, E. rectale, and Methanobrevibacter 

smithii) as representatives of three important phyla in the 

human gut ( Bacteroidetes, Firmicutes, and Euryarchaeota) 

were reconstructed.147 The integration of these three models 

with transcriptomics data demonstrated that the models can 

be used as a scaffold for understanding bacterial interactions 

in the gut. Moreover, genome-scale, manually curated human 

metabolic reconstructions (EHMN,148 HMR,149 Recon1,150 

Recon2,151 and HMR 2.0152) have also been published. 

The newest version of HMR includes 7,707 reactions and 

5,997  metabolites. With both human and microbial metabolic 

models, the interaction between host and microbe can be 

inferred ( Figure 3).153 For example, Bordbar et al154 built an 

integrated host-pathogen metabolic model to decipher the 

intracellular infection of Mycobacterium tuberculosis in 

human alveolar macrophage phagosomes. Interestingly, the 

host-pathogen model is much more accurate in predicting 

M.  tuberculosis gene essentiality than the single pathogen 

model, and integration of the host-pathogen model with tran-

scriptional data shows wide heterogeneity of macrophages 

in three different infection stages. An integrated metabolic 

model of B. thetaiotaomicron (a prominent representative 

of human gut microbiota) and mouse with a joint compart-

ment allowing metabolite exchanges was reconstructed.155 

This integrated model  successfully identified metabolite 
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Figure 3 Reconstruction of microbe–microbe and host–microbe metabolic models.
Notes: Constraint-based modeling can be used to infer the microbe–microbe interaction and the host–microbe interaction. The genome-scale metabolic network can be 
inferred by integrating the genome annotation and information from literatures and public biochemical databases. Tools such as Pathway Tools and Model SeeD can be used for 
automatic reconstruction of draft models. The metabolic network can be represented as the stoichiometric matrix (S), where the rows in S represent the metabolites of the 
reactions while the columns correspond to the reactions. The elements in each column are the stoichiometric coefficients of the metabolites participating in the reaction. The flux 
through all reactions in the metabolic network is represented by the vector v. Under the constraint-based modeling framework, it is assumed that the metabolite concentrations 
are unchanged (S × v =0). with genome-scale metabolic models, the microbe–microbe interaction can be inferred by assembling the metabolic models of two species. The 
host–microbe model is also a conjugation of individual metabolic models. For the extracellular interaction, the host–microbe model can be created by combining two models via 
adding an additional compartment for the metabolites’ uptake, while, for the intracellular interactions, the microbe can be treated as a compartment inside the host cell.
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exchanges and stimulated the interaction (cross-feeding and 

competition) between these two organisms.

Conclusion and perspective
Metagenomics is useful for human gut microbiome studies, 

and standardized experimental procedures and bioinformatics 

analysis tools have been developed. The application of asso-

ciation studies or other machine-learning methods to metag-

enomics data also provides the potential for development of 

new microbial markers for early disease diagnostics. How-

ever, how the functions and mechanisms of the gut microbiota 

contribute to human health is still not clear, and our under-

standing of the gut microbiome will require more detailed 

functional analysis of the gut microbiota. Thus, integrative 

analysis of multiple datasets from metagenomics, meta-

transcriptomics, metaproteomics, and meta-metabolomics 

will facilitate the discovery of impaired metabolic pathways 

linked to disease status. Such integrative analyses will also 

be important for investigation of transcriptional regulation, 

signal transduction, or dynamic response of the gut microbial 

community. In addition, an interesting next step will be the 

opportunity to investigate the dynamic behavior of the gut 

microbiome. Numerous studies, which have included tempo-

ral variability in healthy adults,156 temporal response to anti-

biotic perturbations,157 and dietary changes,6 have  provided 

insights into the dynamic changes of microbiome, but most of 

these studies only utilized the composition data of microbial 

species and lacked simple analytical tools to infer the time 

series of microbiome data.  Consequently, the develop ment 

of new computational frameworks for integrative dynamic 

analysis of different microbiome data (transcripto mics, 

proteomics, metabolomics) will be necessary to explore the 

microbial behaviors in the gut ecosystem.

Genome-scale metabolic models have been successfully 

used for predicting the metabolic capacity of single organ-

isms in metabolic engineering. Recently, constraint-based 

modeling has also been applied to the human gut microbiome, 

providing a systematic view of metabolic interaction between 

host and microbes.158 Although the gut microbiome has 

been simulated by two-species models143,155 or three-species 

models.147 Considering the numerous species within the 

gut microbiome, integration of multiple single species and 

reconstruction of the gut microbial community model remain 

too complex and need to be scaled up. Although some mod-

eling frameworks (ie, DMMM,145 OptCom,159 d-OptCom,160 

cFBA,161 COMETS,162) for community metabolic modeling 

have been developed, several conceptual challenges still need 

to be addressed.126 For example, the  composition of the gut 

microbial community is highly  flexible and  environmentally 

dependent, and traditional objective functions (eg,  maximizing 

biomass) are not appropriate and need to be replaced by puta-

tive energy, biosynthesis principles, or the tradeoff between 

different species. In addition, integrating metabolic models 

with composition data from metagenomic sequencing will 

also be valuable for evaluating the functional role of single 

species in the gut microbial community.
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