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Abstract: Graphene and its related counterparts are considered the future of advanced 

nanomaterials owing to their exemplary properties. However, information about their toxicity and 

biocompatibility is limited. The objective of this study is to evaluate the toxicity of 

graphene oxide (GO) and reduced graphene oxide (rGO) platelets, using U87 and U118 glioma 

cell lines for an in vitro model and U87 tumors cultured on chicken embryo chorioallantoic 

membrane for an in vivo model. The in vitro investigation consisted of structural analysis of 

GO and rGO platelets using transmission elec tron microscopy, evaluation of cell morphology 

and ultrastructure, assessment of cell viability by XTT assay, and investigation of cell prolif-

eration by BrdU assay. Toxicity in U87 glioma tumors was evaluated by calculation of weight 

and volume of tumors and analyses of ultrastructure, histology, and protein expression. The  

in vitro results indicate that GO and rGO enter glioma cells and have different cytotoxicity. 

Both types of platelets reduced cell viability and proliferation with increasing doses, but rGO 

was more toxic than GO. The mass and volume of tumors were reduced in vivo after injection 

of GO and rGO. Moreover, the level of apoptotic markers increased in rGO-treated tumors. We 

show that rGO induces cell death mostly through apoptosis, indicating the potential applicability 

of graphene in cancer therapy.
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Introduction
Glioblastoma multiforme (GBM) is a common, highly aggressive, interparenchymal 

primary brain tumor, classified as a World Health Organization grade IV astrocytoma.1 

It originates from glial cells and is characterized by intensive migration and infiltrative 

growth. Even after surgical resection and intensive radiotherapy and chemotherapy, 

the median survival following diagnosis of GBM is only 14.6 months.2 However, there 

are new experimental strategies for the treatment of glioma, including mechanisms 

associated with programmed cell death, raising hopes for effective cancer treatments.3 

Our recent studies have shown that carbon nanomaterials may have potential applica-

tions in cancer therapy.4,5 One of the carbon allotropes that can potentially be used in 

cancer treatment is graphene. Graphene is a two-dimensional allotrope of carbon. In 

this material, carbon atoms are densely packed in a regular sp2-bonded atomic-scale 

hexagonal pattern.6 A unique property of a graphene sheet is the ratio of its thickness 

to its surface area, which distinguishes this material from all other nanomaterials. 

Carbon atoms at the edge of graphene platelets have special chemical reactivity, and 

graphene has a very high ratio of peripheral to central carbon atoms compared with 

similar materials such as carbon nanotubes.7 An active surface and edges means that 

graphene can adhere to cell membranes. This connection may block the supply of 

nutrients, induce stress, and activate apoptotic mechanisms in cancer cells. Graphene 

and its oxidized forms have drawn intense attention in recent years for biological and 
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medical applications. Both in vitro and in vivo evaluations 

of the toxicity of graphene oxide (GO) and reduced graphene 

oxide (rGO) have recently been investigated.7,8 It is now gen-

erally accepted that the in vitro cellular toxicity of graphene is 

closely related to its surface functionalization. Moreover, the 

reactive groups on graphene surface may facilitate conjuga-

tion with various systems, such as polymers,9 biomolecules,10 

DNA,11 protein,12 quantum dots,13 and others, imparting GO 

with multifunctionalities for diverse biological and medical 

applications.

We achieved promising results in our previous studies 

with glioma cell lines treated with graphene hydrophobic 

platelets.14,15 Graphene caused damage to the plasma mem-

brane (lactate dehydrogenase leakage), increased cytotox-

icity (trypan blue exclusion, XTT), and induced apoptosis 

(Annexin V/propidium iodide [PI] staining), thus indicating 

potential efficacy in brain tumor therapy. In this study, we 

hypothesized that GO and rGO platelets also have a toxic 

influence on glioma cells. Two different human cell lines 

were used, ie, U87 and U118. These lines are characterized 

by different phenotypes and the activity of genes involved in 

regulation of the cell cycle.16 The objectives of this study are 

to measure the toxicity of GO and rGO, and the proapoptotic 

and necrotic activities of graphene in glioma cells and tumors 

cultured on chorioallantoic membrane.

Materials and methods
Preparation and characterization of GO 
and rgO
Graphene powders, GO and rGO, were purchased from the 

Institute of Electronic Materials Technology (Warsaw, Poland). 

GO was prepared by a modified Hummers method from acid-

washed graphite platelets: 5 g of graphite was added to 125 mL  

of sulfuric acid and 3.25 g of potassium nitrate was added 

before the start of the reaction. The mixture was stirred with a 

mechanical stirrer. Subsequently, the beaker with reagents was 

kept below 5°C in a water/ice bath while 15 g of potassium 

permanganate was gradually added. The beaker was taken out 

of the bath and kept at 30°C–35°C with continuous stirring, 

then left at room temperature. In the next step, deionized water 

was added to the stirred mixture so that the temperature did 

not exceed 35°C. The beaker was put into a water bath at a 

temperature of 35°C and stirred for another 1 hour. The con-

stantly stirred mixture was then heated to 95°C for 15 minutes. 

To stop the reaction, 280 mL of deionized water and 5 mL of 

hydrogen peroxide were added. The mixture was rinsed with 

hydrogen chloride solution to remove sulfate ions, and then 

rinsed with deionized water to remove chloride ions.

To prepare the rGO, a water suspension of 50 mg of 

GO was acidified to pH 1 and heated to 90°C. Next, 12 mL 

of reducing mixture (0.01 g of ammonium iodide, 9 g of 

hydrated sodium hypophosphite, and 1.21 g of sodium sulfite 

dissolved in 100 mL of deionized water) was added. A black 

material (rGO) immediately precipitated. The product was 

filtered, washed with deionized water, and dried.

The rGO powder was dispersed in ultrapure water to 

prepare a 1.0 mg/mL solution. After 45 minutes of sonifi-

cation, the solution was diluted to different concentrations 

with 1× Dulbecco’s Modified Eagle’s culture Medium 

(Sigma-Aldrich, St Louis, MO, USA) immediately prior to 

exposure to the cells.

The size and shape of the graphene platelets were 

inspected using a JEM-1220 (JEOL, Tokyo, Japan) transmis-

sion electron microscope (TEM) at 80 keV, with a Morada 

11 megapixel camera (Olympus Soft Imaging Solutions, 

Münster, Germany) and a Quantana 200 scanning electron 

microscope (FEI, Hillsboro, OR, USA).

Samples for the TEM were prepared by placing droplets 

of hydrocolloids onto formvar-coated copper grids (Agar 

Scientific, Stansted, UK). Immediately after air-drying the 

droplets, the grids were inserted into the TEM. The test was 

performed in triplicate.

cell cultures and treatments
Human glioblastoma cell lines U87 and U118 were obtained 

from the American Type Culture Collection (Manassas, VA, 

USA) and maintained in Dulbecco’s Modified Eagle’s culture 

Medium containing 10% fetal bovine serum (Life Technolo-

gies, Houston, TX, USA) and 1% penicillin and streptomycin 

(Life Technologies) at 37°C with a humidified atmosphere 

of 5% CO
2
/95% air in a DH AutoFlow CO

2
 air-jacketed 

incubator (NuAire, Plymouth, MN, USA).

Cell ultrastructure and morphology
U87 and U118 glioma cells were seeded in six-well plates 

(1×105 cells per well) and incubated for 24 hours. Cells cul-

tured in medium without the addition of GO and rGO were 

used as the control. Graphene was introduced to the cells at 

increasing concentrations (5, 10, 20, 50, and 100 μg/mL). 

Cell morphology was recorded using an optical microscope 

24 hours after exposure.

To investigate the cellular ultrastructure, the glioma cells 

were washed three times with ice-cold phosphate-buffered 

saline (Sigma-Aldrich). The cells were collected after cen-

trifugation (1,200 rpm for 10 minutes) and prefixed with 2.5% 

glutaraldehyde, then post-fixed in 1% osmium tetroxide, 
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dehydrated in ethanol gradients, impregnated with epoxy 

embedding resin (Fluka Epoxy embedding medium kit; 

Sigma-Aldrich), and cut with an ultramicrotome (EM UC6, 

Leica Microsystems GmbH, Wetzlar, Germany). Thin sec-

tions were post-stained with uranyl acetate and lead citrate 

and evaluated by TEM.

Cell viability
Cell viability was evaluated using a 2.3-Bis-(2-methoxy-4-

nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide salt 

(XTT)-based cell proliferation assay kit (Life Technologies, 

Taastrup, Denmark). U87 and U118 were plated in 96-well 

plates (5×103 cells per well) and incubated for 24 hours. 

The medium was then removed, and GO and rGO samples 

were introduced to the cells. In the next step, 50 μL of XTT 

solution was added to each well and incubated for an addi-

tional 3 hours at 37°C. The optical density of each well was 

recorded at 450 nm on an enzyme-linked immunosorbent 

assay reader (Infinite M200, Tecan, Durham, NC, USA). Cell 

viability was expressed as the percentage (OD
test

 - OD
blank

)/

(OD
control

 - OD
blank

), where OD
test

 is the optical density of 

cells exposed to GO and rGO, OD
control

 is the optical density 

of the control sample, and OD
blank 

is the optical density of 

wells without glioma cells.

cell proliferation
Cell proliferation was evaluated using a Cell Proliferation 

ELISA BrdU kit (Roche Diagnostics GmbH, Mannheim, 

Germany). U87 and U118 glioma cells were plated in 

96-well plates (5×103 cells per well) and incubated for  

24 hours. The medium was then removed, and GO and rGO 

samples were introduced to the cells. BrdU reagent was 

added to each well and incubated for 4 hours. At the end 

of this period, the next stages were performed according to 

the company’s protocol. The absorbance was measured at 

450 nm using enzyme-linked immunosorbent assay reader 

(Infinite M200, Tecan).

Apoptosis/necrosis assay
An Annexin V/PI assay (Alexa Fluor® 488 Annexin V/Dead 

Cell Apoptosis Kit with Alexa Fluor 488 Annexin V and 

PI for flow cytometry, Life Technologies) was performed 

to examine whether the cell death occurred by apoptotic or 

necrotic pathways. After 24 hours of incubation of U87 and 

U118 glioma cells in 75 mL flasks (1×106 cells per flask), 

the medium was removed, and GO and rGO samples were 

added at 100 μg/mL. After further 24 hours of incubation, the 

medium was removed and the cells were washed in ice-cold 

phosphate-buffered saline. Harvested cells were suspended 

in 100 μL of Annexin binding buffer (Invitrogen, Carlsbad, 

CA, USA), and subsequently 5 μL of Annexin V linked with 

Alexa Fluor 488 and 1 μL of PI were added (Invitrogen, 

Carlsbad, CA, USA). Cells were analyzed using FACStrak 

(Becton Dickinson, Heidelberg, Germany; SimulSet soft-

ware), measuring the fluorescence emission at 530 nm and 

575 nm (or equivalent) using excitation at 488 nm.

culture of gMB on a chorioallantoic 
membrane
The fertilized eggs (Gallus gallus; n=60) were supplied by a 

commercial hatchery (Debowka, Poland). After 6 days of egg 

incubation, a silicone ring containing 3–4×106 U87 glioma 

cells suspended in 30 μL of culture medium was placed on 

the chorioallantoic membrane. The eggs were incubated for 

the following 7 days, and then divided into three groups 

(n=20 each): GO and rGO groups injected with 200 μL of  

500 μg/mL solutions, and the control group (not injected). 

The solutions were injected directly into the tumor tissue. 

After 3 days, the tumors were resected for further analysis.

Measurement of tumor volume
A stereomicroscope (SZX10, CellD software version 3.1; 

Olympus Corporation, Japan) was used to take digital 

photographs of the tumors. The measurements were taken 

with cellSens Dimension Desktop version 1.3 (Olympus). 

The tumor volumes were calculated using the following 

equation:

V r r diameter diameter= = × =4

3

1

2
1 2 3 14153π πwhere , .

histological and immunohistochemical 
analysis
After resection, tumors were fixed in 4% buffered formalin 

(Sigma-Aldrich). Samples were dehydrated and embedded 

in paraffin (Sigma-Aldrich). Sections 5 μm in thickness were 

placed on poly-L-lysine-coated slides (Equimed, Krakow, 

Poland) and stained with hematoxylin and eosin. Cells and 

tissues were measured using an optical microscope (DM750; 

Leica Microsystems) and LAS EZ version 2.0 software. 

Morphometric estimation and image analysis were done 

using 20 measurements of each sample at 400× magnifi-

cation. The mitotic index was evaluated as the number of 

mitotic figures in ten visual fields. For immunohistochemi-

cal analysis, frozen (-80°C) tumors were cut on a cryostat 
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(CM1900; Leica Microsystems) into 5 μm thick sections 

and put on microscopic slides covered with poly-L-lysine 

(Equimed). The slides were fixed in 4% paraformaldehyde 

for 30 minutes and then in 0.5% Tween® 20 (Bio-Rad Labo-

ratories, Hercules, CA, USA) for 5 minutes. Fixed slides 

were kept at -20°C until further processing. Specimens were 

hydrated with 10 minutes of incubation in phosphate-buffered 

saline at room temperature. The slides were stained in the 

dark, using a solution containing 1 μg/mL 4,6-diamidino-2-

phenylindole (DAPI; Sigma-Aldrich) in phosphate-buffered 

saline. The incubation lasted for 20 minutes and was followed 

by a triple rinse of the slides with phosphate-buffered saline. 

The specimens were then coverslipped using ProLong® Gold 

Antifade Reagent (Life Technologies). Fixed preparations 

were hydrated for 10 minutes in phosphate-buffered saline 

at room temperature. Specimens were incubated in a solu-

tion containing 2% goat serum (Sigma-Aldrich) and 1% 

bovine serum albumin (Sigma-Aldrich) for 20 minutes at 

room temperature to block nonspecific binding, then with 

the primary antibody (catalog number NB100-56708, Novus 

Biologicals, Aachen, Germany) diluted 1:500 for 24 hours 

at 4°C. Excess antibodies were washed off with three rinses 

of phosphate-buffered saline, and the secondary antibody 

(anti-rabbit immunoglobulin Alexa488-conjugated produced 

in goat; catalog number 4412, Cell Signaling Technology 

Inc, Danvers, MA, USA), diluted 1:1,000, was applied. After 

a triple rinse of the slides in phosphate-buffered saline, the 

slides were stained with DAPI.

TEM analysis of tumors
Tumor tissues were cut immediately after dissection into 

pieces of approximately 1 mm3 and fixed using a 2.5% glu-

taraldehyde solution (Sigma-Aldrich) in 0.1 M phosphate-

buffered saline (pH 6.9). The samples were washed in the 

same buffer and transferred to a 1% osmium tetroxide solution 

(Sigma-Aldrich) in 0.1 M phosphate-buffered saline (pH 6.9) 

for 1 hour, then washed in distilled water, dehydrated in 

ethanol gradients, and impregnated with epoxy embedding 

resin (Fluka Epoxy embedding medium kit; Sigma-Aldrich). 

The next day, the samples were embedded in the same resin 

and baked for 24 hours at 36°C, then transferred to a 60°C 

incubator and baked for a further 24 hours. The blocks were 

cut into ultrathin sections (50–80 nm) using an ultramicro-

tome (Ultratome III; LKB Products, Uppsala, Sweden) and 

transferred onto 200-mesh copper grids (Agar Scientific Ltd, 

Stansted, UK). Sections were contrasted using uranyl acetate 

dihydrate (Sigma-Aldrich) and lead citrate [lead (II) citrate 

tribasic trihydrate; Sigma-Aldrich], and examined by TEM.

Western blot analysis
Tumor protein levels (caspase-3, Bcl-2, Beclin 1, and nuclear 

factor kappa B) were examined by Western blot analysis. 

Protein extracts were prepared with TissueLyser LT (Qiagen, 

Hilden, Germany) using ice-cold RIPA buffer (150 mM 

sodium chloride, 0.5% sodium deoxycholate, 1% NP-40, 

0.1% sodium dodecyl sulfate, 50 mM Tris, pH 7.4) with 

protease and phosphatase inhibitors (Sigma-Aldrich). The 

protein concentration was determined by the Total Protein 

Kit, Micro Lowry, Peterson’s Modification (Sigma-Aldrich). 

An equal volume (50 mg) of samples was denatured by 

addition of sample buffer (Bio-Rad Laboratories, Munich, 

Germany) and boiled for 4 minutes. Proteins were resolved 

under reductive conditions with sodium dodecyl sulfate 

polyacrylamide gel electrophoresis and transferred onto a 

polyvinylidene difluoride membrane (Life Technologies, 

Gaithersburg, MD, USA). Protein bands were visualized 

with the GelDoc scanner (Bio-Rad Laboratories, Munich, 

Germany), using the fluorescent method of the Western-

Dot Kit (Life Technologies) and the primary antibodies 

nuclear factor kappa B (catalog number NBP1-77395, 

Novus Biologicals, Cambridge, UK), Bcl-2 (catalog num-

ber NB100-92142, Novus Biologicals), caspase-3 (catalog 

number NB100-56708, Novus Biologicals), and Beclin 1 

(catalog number 3495, Cell Signaling Technology Inc) with 

glyceraldehyde-3-phosphate dehydrogenase (catalog number 

NB300-327, Novus Biologicals) as the loading control (dilu-

tions recommended by the producers). Protein bands were 

characterized using Quantity One 1-D analysis software 

(Bio-Rad Laboratories, Germany).

Statistical analysis
The data were analyzed using monofactorial and multi-

factorial analysis of variance with Statgraphics® Plus 4.1 

(StatPoint Technologies, Warrenton, VA, USA). The dif-

ferences between groups were tested using Tukey’s multiple 

range tests. All mean values are presented with the standard 

deviation or standard error. Differences with P0.05 were 

considered significant.

Results
characterization of gO and rgO
Figure 1 shows representative TEM and scanning electron 

microscopic images of GO and rGO platelets. Most of the 

graphene platelets were visible as a single layer or a few 

layers. The shape of rGO and GO platelets was irregular, and 

their edges were jagged. Hydrophilic GO platelets formed 

a single layer and hydrophobic rGO platelets often created 
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agglomerates. The thickness of platelets was at a nanoscale, but 

the surface was not. The surface diameter of the GO platelets 

ranged from 100 nm to 10 μm after sonification. The rGO 

platelets were smaller, ranging from 100 nm to 1.5 μm in diam-

eter, but agglomerates were more than 5 μm in diameter.

Cell morphology
In both glioma cell lines, it was noticeable that GO and rGO 

agglomerates attached to the cell body but not to protrusions. 

The GO-treated cells looked similar to the control group. 

There was a clear difference between the rGO-treated cells 

and the control cells. The rGO-treated cells were more oval, 

denser, and their protrusions were shorter in comparison with 

the control cells (Figure 2).

Cell viability
Increased concentrations of GO and rGO resulted in 

decreased vitality in both glioma cell types. In GO-treated 

samples, the lowest vitality was observed at a concentration 

of 100 μg/mL, ie, 72%±4.6% in U87 cells and 78%±9.1% in 

U118 cells (Figure 3A and B). In samples treated with rGO, 

the lowest vitality was also observed at a concentration of 

100 μg/mL, ie, 36%±6.3% and 49%±7.9% in U87 and U118 

cells, respectively.

cell proliferation
Increased concentrations of GO and rGO resulted in 

decreased cell proliferation in both glioma cell types. In 

GO-treated U87 cells, the lowest proliferation of 80%±10.2% 

Figure 1 characterization of graphene oxide (A, C) and reduced graphene oxide (B, D), transmission electron microscopy (A, B) and scanning electron microscopy (C, D).

Figure 2 U87 glioma cells: untreated control (A), treated with graphene oxide (B), and treated with reduced graphene oxide (C). 
Note: arrows point to rgO agglomerates.
Abbreviation: rGO, reduced graphene oxide.
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was observed at a concentration of 50 μg/mL; in U118 

cells, the lowest proliferation of 71%±7.8% was observed 

at a concentration of 100 μg/mL. In rGO-treated samples, 

the lowest proliferation was observed at a concentration of  

100 μg/mL, ie, 52%±7.6% and 45%±10.2% in U87 and U118 

cells, respectively (Figure 3C and D).

Apoptosis assay
GO induced apoptosis to a small degree in U87 and U118 

glioma cells (12%±2.1% in U87 cells and 10.5%±1.9% in 

U118 cells). rGO induced apoptosis to a higher degree. The 

degree of apoptosis was similar in U87 and U118 glioma cells 

(58%±2.8% in U87 and 51%±2.5% in U118). The degree of 

necrosis was 1.8%±0.4% in U87 and 1.7%±0.6% in U118 

cells (Figure 4).

TEM analysis of cells
The electron microscopic images of all groups (control, GO, 

rGO) showed a typical ultrastructure of glioma cells. They 

had oval bodies, a rough endoplasmic reticulum, vacuoles, 

and groups of endocytotic vesicles (Figure 5). The nuclei 

were elongated and had an irregular shape and unevenly 

distributed chromatin. Parts of the nuclei contained 

spheroid bodies composed of granular material. Each cell 

line had mitochondria that varied in size and shape, but 

most were usually oval or elongated. We observed that 

GO and rGO caused changes in the cell ultrastructure.  

A fraction of glioma cells was deformed. Inside the cell, 

cell structures also had different morphology compared 

with the control group. Endoplasmic reticulum was less 

visible in both treated groups. GO-treated cells had a greater 

number of vacuoles than those in the control group. We 

also found GO and rGO platelets inside the cells; GO in 

both vacuoles and cytoplasm, rGO only in cytoplasm. In 

rGO-treated cells, we saw degradation of the mitochondria, 

rounded nuclei with dispersed chromatin, and vacuoles in 

the cytoplasm.

Analysis of tumor
The glioblastoma invaded chorioallantoic membrane along 

its vessels. In many cases, tumors were observed outside the 

silicone ring. U87 tumors had an oval shape and visible blood 

vessels on the surface (Figure 6A–C). A decrease in tumor 

weight and volume was observed in both treated groups 

(Table 1). In the GO group, the weight decreased by 41% 

and the volume by 43% compared with the control group; in 

Figure 3 Effect of GO and rGO on the viability (A, B) and proliferation (C, D) of U87 (A, C) and U118 (B, D) glioma cells. 
Notes: (A) There were significant differences (P=0.018) between the GO-treated and rGO-treated cells. The columns with different letters (a–d) indicate significant 
differences between the concentrations. (B) There were significant differences (P=0.024) between the gO-treated and rgO-treated cells. The columns with different letters 
(a–c) indicate significant differences between the concentrations. (C) There were significant differences (P=0.018) between the gO-treated and rgO-treated cells. The 
columns with different letters (a–d) indicate significant differences between the concentrations. (D) There were significant differences (P=0.036) between the gO-treated 
and rGO-treated cells. The columns with different letters (a–c) indicate significant differences between the concentrations. 
Abbreviations: C, control group (untreated cells); GO, graphene oxide; rGO, reduced graphene oxide.
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the rGO group, the weight decreased by 35% and the volume 

reduced the weight by 42% (P0.05 for all comparisons).

histological and immunohistological 
analysis
Microstructure in all groups was similar. The size and shape 

of U87 cells were highly polymorphic (Figure 6D–L). All 

pictures of glioma histology were characterized by the pres-

ence of different cells with small and larger atypical nuclei 

and a high ratio of nucleus to cytoplasm. Histological analysis 

revealed the presence of multinucleated giant cells. In treated 

tumors, graphene platelets were visible between glioma cells. 

There were no differences among groups in the average 

number of glioma cells per 40 μm2. In the control group we 

observed well-developed blood vessels. In the GO-treated 

and rGO-treated groups the vessels were smaller. All tumors 

showed high mitotic activity; the mitotic index varied from 

4.2 in the GO group and 4.6 in the rGO group to 5.1 in the 

control group. Caspase-9 staining showed greater expression 

of this protein in the rGO-treated group than in the control 

group (Figure 7).

TEM analysis of tumors
The electron microscopy images of GBM tumors showed 

a typical ultrastructure of glioma cells, epithelium cells, 

and erythrocytes. Glioma cells had elongated bodies. Cell 

structures (nucleus, mitochondria, vacuoles, Golgi appa-

ratus, rough endoplasmic reticulum) were visible in the 

control group. Well-developed endoplasmic reticulum and 

numerous secretory and endocytotic vesicles demonstrated 

high secretory activity of glioma cells and intensive cel-

lular metabolism. The morphology of the glioma cells in 

GO-treated and rGO-treated groups differed from the control 

group (Figure 5). In treated groups, we found rGO and 

GO platelets inside cells. Large empty spaces were visible 

between glioma cells. Treated cells had irregular shapes, and 

cell structures were morphologically different from those in 

the control group. There were fewer of the organelles needed 

for regular metabolism. In the rGO-treated group, endoplas-

mic reticulum was less visible and mitochondrial crests were 

destroyed. Some cells were almost completely filled with 

graphene, and we could not see most of the cellular structures. 

In the GO-treated group, most cellular structures (nucleus, 

mitochondria, membranes) were destroyed, appearing as if 

cut. The ultrastructural images of these cells showed vesicles 

characteristic of autophagy.

Western blot analysis
There were no differences in the expression of Beclin 1, 

Bcl-2, and nuclear factor kappa B between the control and 

treated groups. However, expression of caspase-3 in the 

rGO-treated increased by 96% compared with the control 

group (Figure 7; Table 2).

Discussion
In this work, we compared the effects of GO and rGO in 

glioma cells. We used well-established in vitro and chicken 

embryo chorioallantoic membrane models.17 It has recently 

been demonstrated that both surface chemistry and size of 

graphene platelets play a key role in the toxicity, distribu-

tion, and excretion of graphene and that, therefore, different 

graphene materials may have different influences on the 

organism.18 GO is well dispersed in water while rGO is hydro-

phobic, often creating agglomerates in water. The formation 
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Figure 4 annexin V-alexa Fluor® 488 and PI assay analysis. Scatter diagrams of cells exposed to 100 μl/ml of gO and rgO. 
Notes: (A) U87 control, (B) rGO-treated U87, (C) GO-treated U87, (D) U118 control, (E) rGO-treated U118, (F) GO-treated U118, and (G) rate of apoptosis in U87 
and in U118 cells treated with 100 μl/ml of graphene oxide (gO) and reduced graphene oxide (rgO). 
Abbreviation: C, control group (untreated cells).

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1592

Jaworski et al

of hydrogen bonds between polar functional groups on the 

GO surface and water molecules creates a stable GO colloid, 

indicating potential advantages of using graphene in bio-

medicine19 comparing with other carbon-based materials.20 

Images of GO and rGO showed that the thickness of platelets 

was characteristic for graphene, but rGO platelets created 

agglomerates. Although the surface diameter of platelets was 

between 100 nm and 1.5 μm for GO and between 100 nm and 

10 μm for rGO, nanoplatelets of GO and rGO smaller than 

200 nm were observed inside the U87 and U118 cells. This 

contrasts with the work of Chang et al21 who did not observe 

entry of GO into A549 cells. We also noted a strong tendency 

for the graphene platelets to cluster close to the body of the 

cells, indicating a strong affinity of both types of graphene 

Figure 5 glioblastoma multiforme cells (A–F) and tumors (G–J) ultrastructure from control group (A, G) after gO treatment (B, C, H) and rgO treatment (D, E, F, I, J). 
Notes: Scale bar: A, E, F, G, and H, 1 μm; B and C, 200 nm; D and I, 500 nm; J, 2 μm. 
Abbreviations: N, nucleus; M, mitochondria; ER, rough endoplasmic reticulum; V, vacuole; AG, Golgi apparatus; GO, graphene oxide; rGO, reduced graphene oxide.
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for the cells, as previously demonstrated by Chwalibog et al,22 

Liao et al23 and Jaworski et al.14 Microscopic visualization of 

interactions between graphene and glioma cells showed that 

both GO and rGO platelets adhered to the cells. Moreover, 

the platelets were usually connected to the cell body, not to 

its protrusions, as in our previous studies.14 The rGO-treated 

cells were more oval and denser, and their protrusions were 

shorter in comparison with the control cells.

Assessment of cell viability showed a toxic influence 

of rGO on glioma cells. Thus, our results indicate that GO 

is highly biocompatible, consistent with other studies.10,25,26 

Our results collectively demonstrate that the surface and 

functionalization of graphene play a key role in the physico-

chemical characteristics and thereby the biocompatibility of 

different graphene materials. In addition to the dependence 

of toxicity on surface functionalization, the size and dose of 

Figure 6 glioblastoma multiforme tumor cultured on chorioallantoic membrane. (A, D, G, J) control group; (B, E, H, K) graphene oxide-treated group; and (C, F, I, L) 
reduced graphene oxide-treated group. 
Notes: Scale bar: A, B, and C, 2,000 μm; D, E, and F, 200 μm; G, H, I, J, K, and L, 100 μm. Black arrows point to blood vessels, red arrows point to graphene agglomerates.

Table 1 characteristics of glioblastoma multiforme U87 tumors

Parameter Group ANOVA

C GO rGO P-value SE-pooled
Volume (mm3) 90.3a 42.3b 43.3b 0.002 10.19
Weight (mg) 981.8a 583.1b 636.6b 0.002 113.70
average of number of glioma cells (per 40 μm2) 210.2a 197.3a 185.1a 0.118 6.85
Mitotic index 5.1 4.2 4.6

Note: a,bValues within rows with different superscripts are significantly different. 
Abbreviations: C, control group; GO, graphene oxide group; rGO, reduced graphene oxide group; ANOVA, analysis of variance; SE, standard error.
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Table 2 Relative percentage of caspase-3, Beclin 1, Bcl-2, and 
NFκB protein levels calculated with glyceraldehyde-3-phosphate 
dehydrogenase as the loading control

Protein Group ANOVA

C rGO GO P-value SE-pooled

caspase-3 100 196.14a 111.82b 0.000 9.750
Beclin 1 100 89.77 86.97 0.057 4.481
Bcl-2 100 97.97 112.12 0.869 8.801
NFκB 100 97.97 93.34 0.781 5.821

Note: a,bValues within rows with different superscripts are significantly different. 
Abbreviations: C, control group; GO, graphene oxide group; rGO, reduced 
graphene oxide group; ANOVA, analysis of variance; SE, standard error; NFκB, 
nuclear factor kappa B.

κ

Figure 7 Protein expression level. 
Notes: (A, B) Visualization of caspase-3 in glioblastoma tumors, shown as an overlaid image of 4′,6-diamidino-2-phenylindole-stained nuclei (blue) and cytoplasm caspase-3 
stained with fluorescent secondary antibody 488 Alexa Fluor® (green), in the cross-section of the tumors, visualized using a confocal microscope. (A) rGO-treated tumors, 
(B) control group, (C) representative immunoblot of caspase-3, Beclin 1, Bcl-2, and nuclear factor kappa B protein expression levels. 
Abbreviations: C, control group; Casp-3, caspase-3; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GO, graphene oxide; rGO, reduced graphene oxide; NFκB, nuclear 
factor kappa B.

graphene also influence cellular toxicity. For example, expo-

sure of A549 cells to GO did not show cell uptake, although 

size-dependent cytotoxicity and dose-dependent oxidative 

stress were observed.21 Furthermore, Akhavan et al27  

in an investigation using human mesenchymal stem cells 

demonstrated that the cytotoxicity and genotoxicity of GO 

platelets depended on the size and dose of GO.

Similar to other results, the concentrations of GO applied 

in this study did not result in significant differences in the 

formation of apoptotic cells. There were no obvious cyto-

toxicity effects or apoptosis activation when GO was admin-

istered at low concentrations to human-derived cell lines, 

A549 and SH-SY5Y.26,28 However, in murine RAW 264.7 

macrophages, GO induced cytotoxicity through depletion of 

the mitochondrial membrane potential, increasing produc-

tion of intracellular reactive oxygen species and triggering 

apoptosis.29 In this study, we observed induction of apoptosis 

but not necrosis in rGO-treated cells. The number of apoptotic 

cells was higher in the U87 cell line than in the U118 cell 

line. Activation of apoptosis processes was also observed 

in rGO-treated U87 tumors, where expression of caspase-3 

was higher by 96%. Apoptosis is a coordinated process that 

can be triggered through two different pathways: the death 

receptor pathway located on the cell membrane and the mito-

chondrial pathway. Theoretically, both of these pathways 

could be triggered because rGO platelets could interact with 

death receptors on the cell membrane, and we also observed 

degradation of mitochondria in rGO-treated cells. rGO may 

also interact with cell membrane surface receptors to block 

the transport of various substances into the cell, inducing 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1595

effects of gO and rgO on glioblastoma

cellular stress and apoptosis. The mechanism of apoptosis is 

still unknown, but it is certain that gene p53 is not involved 

in activation of apoptosis because of mutations of this gene 

in the U118 cell line.30 This suggests that there must be 

another mechanism. Zhu and Weiss,31 in studies with murine 

protein in primary cultured cells, have demonstrated that 

inactivation of Hus1 protein leads to chromosomal instability 

during DNA replication, triggering apoptosis and impairing 

proliferation through p53-independent mechanisms. In our 

case, it is likely that Hus1 protein was blocked, causing 

apoptosis without activation of the p53 gene. Li et al29 sug-

gested that the mitochondrial pathway might be the dominant 

mechanism underlying pristine graphene-induced apoptosis. 

They assumed that pristine graphene altered mitochondrial 

integrity via a mechanism related to the activation of a 

proapoptotic member of the Bcl-2 family (Bim, Bax, Bcl-2) 

and the mitogen-activated protein kinase cascades. Although 

changes in mitochondria (lower number and damage) were 

observed in rGO-treated cells and U87 glioma tumors, we did 

not observe any differences in the expression of Bcl-2 protein 

between control and treated groups, indicating that this gene 

is not involved in activation/repression of apoptosis.

In the present study, GO and rGO solutions were injected 

directly into the tumor tissue in a particular dose. We assumed 

that injection into the tumor would restrict the toxicity of 

graphene only to the target tissue. Nevertheless, the method 

of administration and the chosen dose might only be relevant 

for the present model, and administration and effective doses 

for human treatments must be evaluated in further investiga-

tions. We observed a decrease in tumor growth in weight and 

volume. In GO-treated tumors, weight decreased by 41% 

and volume by 43%, while in rGO-treated tumors, weight 

was reduced by 35% and volume by 42% compared with 

the control group. However, the average number of glioma 

cells per 40 μm2 area did not differ between the control and 

treated groups. Reduction of mass and volume has previously 

been measured in U87 tumors treated with nanodiamond,4 

probably caused by inhibition of angiogenesis.32 However, in 

our study, the reduction in weight and volume is not related 

to angiogenesis but to apoptosis in rGO treatments, and 

to lower proliferation in both GO-treated and rGO-treated 

groups. Furthermore, Wierzbicki et al5 demonstrated that 

graphene had no antiangiogenic properties. We propose 

that reduction of mass and volume in treated tumors is 

associated with lower proliferation, supported by the BrdU 

assay and mitotic index. In GO-treated tumors, we observed 

significant damage to cell organelles, but Western blot and 

immunohistochemistry analyses did not show activation of 

apoptotic and necrotic pathways. The destruction of organ-

elles may be due to the specific physical properties of GO. GO 

is permeable to water33,34 but during specific filtration inside 

the cell, suspended substances on the surface of GO may be 

retained and disturb the metabolism of the cell.

Conclusion
Our in vitro results indicate that GO is less toxic to glioma 

cells than rGO. rGO induced cell death mostly through the 

apoptosis pathway, suggesting the potential applicability 

of graphene in cancer therapy. The contact between rGO 

and glioma cell membranes may be the key cause of rGO 

toxicity. The in vivo results demonstrated that both GO and 

rGO injected into glioblastoma tumors decreased the volume 

and weight of tumors. These findings demonstrate that the 

interaction between graphene platelets and glioma cells in 

tumors that leads to their severe toxicity depends on the form 

of the graphene surface.
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