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Abstract: With respect to the membrane lipid theory as a molecular mechanism for local 

anesthetics, two critical subjects, the negligible effects of charged drugs when applied extra-

cellularly and the stereoselective effects of enantiomers, were verifi ed by paying particular 

attention to membrane components, phospholipids with the anionic property, and cholesterol 

with several chiral carbons. The membrane interactivities of structurally-different anesthet-

ics were determined by their induced fl uidity changes of liposomal membranes. Lidocaine 

(3.0 μmol/mL) fl uidized phosphatidylcholine membranes, but not its quaternary derivative 

QX-314 (3.0 μmol/mL). Similarly to the mother molecule lidocaine, however, QX-314 fl uid-

ized phosphatidylserine-containing nerve cell model membranes and acidic phospholipids-

constituting membranes depending on the acidity of membrane lipids. Positively charged local 

anesthetics are able to act on lipid bilayers by ion-pairing with anionic (acidic) phospholipids. 

Bupivacaine (0.75 mol/mL) and ropivacaine (0.75 and 1.0 μmol/mL) fl uidized nerve cell 

model membranes with the potency being S(−)-enantiomer � racemate � R(+)-enantiomer 

(P � 0.01, vs antipode and racemate) and cardiac cell model membranes with the potency 

being S(−)-ropivacaine � S(−)-bupivacaine � R(+)-bupivacaine (P � 0.01). However, their 

membrane effects were not different when removing cholesterol from the model membranes. 

Stereoselectivity is producible by cholesterol which increases the chirality of lipid bilayers 

and enables to discriminate anesthetic enantiomers. The membrane lipid interaction should be 

reevaluated as the mode of action of local anesthetics.

Keywords: local anesthetics, membrane lipid interaction, quaternary derivative, enantiomers, 

membrane interactivity, stereoselectivity

Introduction
The molecular mechanism underlying the effects of local anesthetics has long been 

a research subject of great interest in experimental and clinical anesthesiology. It is 

generally explained by two theories, the direct binding of drugs to receptors associated 

with ion channels and the perturbation by drugs of the membrane lipids surrounding 

functional proteins like receptors and enzymes. Since the inhibition of pharmacologically-

relevant channels, receptors and enzymes could result from the interactions of local 

anesthetics with membrane proteins or membrane lipids, or both (Ragsdale et al 

1996; Kopeikina et al 1997; Suwalsky et al 2002), the controversy remains regard-

ing the primary acting site of anesthetic molecules. In recent studies, however, the 

membrane protein theory with specifi c binding sites or receptors seems to monopolize 

the mechanistic hypotheses for local anesthetics. This trend is attributed to the negli-

gible effects of charged drugs when applied extracellularly (Štolc et al 1989) and the 

stereoselective effects of stereoisomers (Nau and Strichartz 2002), which have been 

exclusively interpreted by the location of receptor proteins at the cytoplasmic portion 
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of transmembrane channels and by the stereospecifi c affi nity 

of chiral anesthetics to receptor proteins, respectively. In the 

membrane protein theory, local anesthetics are considered 

to block voltage-gated sodium channels and affect other 

channel activities through the binding to receptors, reduc-

ing excitability in neuronal and cardiac tissues or causing 

cardiovascular malfunction (Butterworth and Strichartz 

1990; Nau and Wang 2004). On the other hand, both of these 

pharmacological features are the objection to the membrane 

lipid theory in terms of the interactivity of charged anesthet-

ics with lipid bilayers and the discrimination of membrane 

physicochemical changes by anesthetic stereoisomers.

Despite repulsions against the membrane lipid interac-

tion concept, data have been suggesting the action of local 

anesthetics on lipid bilayers (Yun et al 2002; Högberg 

et al 2007; Lee et al 2008). Although the ionic analogues 

of local anesthetics had been recognized to be devoid of 

the pharmacological activity because of their membrane-

impermeability, the extracellular application of quaternary 

lidocaine derivatives was found to affect action potentials and 

produce anesthesia, challenging the conventional notion that 

charged molecular species are ineffective when administered 

from the external side of cells (Štolc et al 1989; Lim et al 

2007). Another support for the mechanistic interaction of 

anesthetics with membranes is the ability of lipid bilayers to 

mediate the stereoselective effects of geometrical and optical 

isomers (Goldstein 1984; Tsuchiya 2001a). Local anesthet-

ics modify the membrane lipid environments, affecting the 

activities of receptors and ion channels through the confor-

mational changes of such functional proteins embedded in 

biomembranes. Local anesthetics also penetrate into or across 

the lipid bilayers of cell membranes to reach the cytoplasmic 

binding sites on sodium channels. While class I antiarrhyth-

mics and anticonvulsants target on the voltage-gated sodium 

channels similarly to local anesthetics (Ragsdale et al 1996), 

their charged derivatives block cardiac sodium channels 

from the extracellular site (Qu et al 1995). In addition, the 

membrane protein theory does not necessarily explain the 

pharmacodynamic difference between bupivacaine stereo-

isomers (Nau et al 1999).

The aim of this study was therefore to verify the mem-

brane lipid theory as one of pharmacological mechanisms 

for local anesthetics by comparatively determining their 

induced changes in membrane physicochemical property, 

fl uidity. QX-314 is a quaternary derivative of lidocaine 

whose structural difference is only N-ethyl group, which 

renders the molecule permanently positively charged 

(Figure 1). Although bupivacaine has been widely marketed 

Charged quaternary
anesthetic derivative

Anesthetic
stereoisomers

Figure 1 Chemical structures of quaternary derivative and stereoisomers of local anesthetics.

Powered by TCPDF (www.tcpdf.org)



Local and Regional Anesthesia 2008:1 3

Local anesthetic and membrane lipid interaction

as a racemic mixture of S(−)-bupivacaine (levorotatory 

configuration: levobupivacaine) and R(+)-bupivacaine 

(dextrorotatory confi guration: dexbupivacaine), its adverse 

effects led to the development of alternative drugs, pure 

S(−)-enantiomers of ropivacaine and bupivacaine (Figure 1). 

These stereoisomers are discriminable in anesthetic and/or 

cardiotoxic potency (Heavner 2002; Nau and Strichartz 2002). 

The membrane-fl uidizing effects of lidocaine, QX-314, 

S(−)-bupivacaine, racemic bupivacaine, R(+)-bupivacaine, 

S(−)-ropivacaine and R(+)-ropivacaine were compared to 

answer as to whether charged anesthetics interact with lipid 

bilayers and whether anesthetic enantiomers stereoselectively 

interact with membrane lipids.

Materials and methods
Chemicals
Lidocaine hydrochloride and QX-314 (lidocaine N-ethyl 

bromide) were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). Enantiomeric bupivacaine hydrochloride 

and enantiomeric ropivacaine hydrochloride were sup-

plied by Maruishi Pharmaceutical Co. (Osaka, Japan) 

and AstraZeneca (Södertälje, Sweden), respectively. 

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine 

(POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-L-serine] 

(POPS), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate 

(POPA), 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-

rac-(1-glycerol)] (POPG), cardiolipin (CL) and sphingomy-

elin (SM) were obtained from Avanti Polar Lipids (Alabaster, 

AL, USA), cholesterol from Wako Pure Chemicals (Osaka, 

Japan) and 1,6-diphenyl-1,3,5-hexatriene (DPH) from 

Molecular Probes (Eugene, OR, USA). Dimethyl sulfoxide 

of spectroscopic grade (Kishida, Osaka, Japan) and water 

of liquid chromatographic grade (Kishida) were used for 

preparing reagent solutions. All other chemicals were of the 

highest grade available commercially.

Liposome preparation
Liposomes of the lipid bilayer structure were prepared by 

injecting the ethanol solutions (250 μL × 4) of phospholipids 

and cholesterol (total lipids of 10 mM) and DPH (50 μM) 

into 199 mL of 5 mM phosphate buffer (pH 7.4, containing 

50 mM NaCl) under stirring at 50 °C (Tsuchiya et al 2005). 

A fl uorescent probe, DPH, was selectively localized into the 

hydrocarbon cores of lipid bilayers to refl ect the membrane-

acting site of tested drugs. The composition of membrane 

lipids was 100 mol% DPPC, and 60 mol% POPC, POPE, 

POPS, POPA, POPG, or CL with respect to 40 mol% 

cholesterol. According to the composition of major cell mem-

brane lipids in peripheral nerves (Svennerholm et al 1992) and 

hearts (Chi and Gupta 1998), nerve cell model membranes 

and cardiac cell model membranes were prepared with POPC, 

POPE, POPS, SM, and cholesterol (12 : 24 : 12 : 12 : 40, 

mol%) and with POPC, POPE, POPS, SM, CL, and cholesterol 

(32.5 : 19.5 : 3.25 : 3.25 : 6.5 : 35.0, mol%), respectively.

Membrane lipid interaction
Local anesthetics and QX-314 dissolved in dimethyl sulfoxide 

were applied to membrane preparations in order to minimize 

the infl uence of added samples on reaction pH. Their solutions 

were added to liposome suspensions so that the fi nal con-

centration was 3.0 μmol/mL for lidocaine, 3.0 μmol/mL for 

QX-314, 0.75 μmol/mL for S(−)-bupivacaine, 0.75 μmol/mL 

for R(+)-bupivacaine, 0.75 mol/mL for racemic bupivacaine, 

0.75 and 1.0 μmol/mL for S(−)-ropivacaine, and 1.0 μmol/mL 

for R(+)-ropivacaine. The concentration of dimethyl sulfoxide 

was adjusted to be less than 0.5% (v/v) of the total volume 

so as not to infl uence the membrane fl uidity of liposomes. 

The reaction mixtures were incubated for 10 min at 37 °C. 

After then, the membrane-interactive potencies of the tested 

drugs were evaluated on the basis of membrane fl uidity 

changes which were determined by measuring DPH fl uo-

rescence polarization using an RF-540 spectrofl uorometer 

(Shimadzu, Kyoto, Japan) equipped with a polarizer and a 

cuvette thermo-controller as reported previously (Tsuchiya 

2001b). Compared with controls, the decrease of polarization 

values means the increase of membrane fl uidity (membrane 

fl uidization).

Statistical analysis
All results are expressed as mean ± SE (n = 6–8 membrane 

experiments). Data were statistically analyzed by one-way 

ANOVA, followed by post-hoc Fisher’s PLSD test (StatView 

5.0; SAS Institute, Cary, NC, USA). P � 0.05 was considered 

signifi cant.

Results
Membrane interactions of lidocaine
and quaternary derivative
Lidocaine (3.0 μmol/mL) acted on 100 mol% DPPC lipo-

somes to induce membrane fl uidization, but not QX-314 at 

the same concentration (Figure 2). However, not only lido-

caine but also QX-314 fl uidized nerve cell model membranes 

with the relative potency of 1.00 ± 0.04 for lidocaine and 

0.78 ± 0.07 for QX-314 based on polarization decreases.
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Lidocaine (3.0 μmol/mL) was effective in fl uidizing DPPC 

and POPC liposomal membranes, whereas QX-314 was 

ineffective at the same concentration (Figure 3). However, 

QX-314 fl uidized POPS, POPA, POPG and CL liposomal 

membranes in increasing order of intensity as well as nerve 

cell model membranes containing POPS. The potencies of 

QX-314 to interact with these membranes were comparable 

or superior to those of lidocaine.

Analytical precision of membrane lipid 
interaction
Bupivacaine enantiomers (0.75 μmol/mL for each) and 

ropivacaine enantiomers (0.75 or 1.0 μmol/mL for each) 

were reacted with liposomal membranes, and intra-assay 

CVs and inter-assay CVs were determined in the same 

membrane preparation (n = 8) and in different membrane 

preparations (n = 4), respectively. In nerve cell model 

membranes with cholesterol, intra- and inter-assay CVs were 

0.83 and 0.62% for S(–)-bupivacaine, 0.40 and 2.37% for 

racemic bupivacaine, 0.54 and 1.08% for R(+)-bupivacaine, 

0.89 and 1.16% for S(–)-ropivacaine, and 0.34 and 0.50% 

for R(+)-ropivacaine. In nerve cell model membranes 

without cholesterol, intra- and inter-assay CVs were 1.40 

and 2.66% for S(–)-bupivacaine, 1.89 and 4.14% for 

racemic bupivacaine, 1.24 and 1.51% for R(+)-bupivacaine, 

0.89 and 2.31% for S(–)-ropivacaine, and 1.50 and 1.79% 

for R(+)-ropivacaine. Intra-assay CVs showed 0.82% for 

S(–)-ropivacaine, 1.18% for S(–)-bupivacaine and 1.18% 

for R(+)-bupivacaine in cardiac cell model membranes with 

cholesterol, and 3.05% for S(–)-ropivacaine, 2.27% for 

S(–)-bupivacaine and 1.94% for R(+)-bupivacaine in ones 

without cholesterol.

Interactions of enantiomers with nerve 
cell model membranes
Bupivacaine enantiomers (0.75 μmol/mL) and ropivacaine 

enantiomers (1.0 μmol/mL) differentially fl uidized nerve 

cell model membranes at the identical concentrations for 

each individual antipode (Figure 4). Polarization decreases 

showed the relative membrane interactivity being 1.00 ± 0.13 
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Figure 2 Interactions of lidocaine (3.0 μmol/mL) and QX-314 (3.0 μmol/mL) with 100 mol% DPPC liposomal membranes and nerve cell model membranes.
Notes: Data are mean ± SE (n = 6–8). **P � 0.01 vs control.
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for S(–)-bupivacaine, 1.30 ± 0.03 for racemic bupivacaine and 

1.50 ± 0.06 for R(+)-bupivacaine. In comparison of ropivacaine, 

the membrane-interactive potency ratio of S(–)-enantiomer 

to R(+)-enantiomer was 1.00 ± 0.07 : 1.37 ± 0.03. However, 

bupivacaine and ropivacaine showed no difference between 

stereoisomers when nerve cell model membranes were pre-

pared without cholesterol.

Comparison of interactions with cardiac 
cell model membranes
The relative effects on cardiac cell model membranes were 

determined by the decreasing degree of polarization for 

the purpose of comparing bupivacaine and ropivacaine 

at the equimolar concentration (0.75 μmol/mL for each). 

S(–)-Bupivacaine, R(+)-bupivacaine and S(–)-ropivacaine dif-

ferentially fl uidized cardiac cell model membranes depending 

on stereostructures and piperidine N-substituents (Figure 5). 

The membrane interactivity relative to S(–)-bupivacaine 

(1.00 ± 0.10) was 1.46 ± 0.10 for R(+)-bupivacaine and 

0.76 ± 0.07 for S(–)-ropivacaine. However, such difference 

was not found in the model membranes without cholesterol.

Discussion
Firstly, in order to verify the membrane interactivity of 

charged local anesthetics, lidocaine and its quaternary 

derivative QX-314 have been compared on their induced 

physicochemical changes in liposomal membranes consisting 

of different phospholipids. The concentrations of lidocaine 

typically used in the clinical setting are 1–3% (w/v), corre-

sponding to about 40–110 μmol/mL (Jastak et al 1995). At 

0.03–0.08 times these concentrations, lidocaine was effec-

tive in fl uidizing DPPC and POPC liposomal membranes, 

but not QX-314. These results are consistent with previous 

reports that charged local anesthetics were ineffective on cell 

membranes when applied externally (Štolc et al 1989; Bräu 

et al 1995). However, QX-314 fl uidized nerve cell model 
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Figure 3 Interactions of lidocaine (3.0 μmol/mL) and QX-314 (3.0 μmol/mL) with liposomal membranes consisting of different phospholipids and nerve cell model 
membranes.
Notes: Data are mean ± SE (n = 6–8). **P � 0.01 vs control.
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membranes containing POPS and liposomal membranes 

consisting of POPS, POPA, POPG, and CL with almost the 

same potency as that of the mother molecule lidocaine. The 

conventional notion that quaternary anesthetic derivatives 

neither penetrate into lipid bilayers nor act on cell mem-

branes is considered only conditional on the membrane lipid 

composition. The interactivity of QX-314 with membrane 

lipids may be also supported by the fi nding that it showed 

anesthetic and cardiac effects when applied from either side 

of cell membranes (Qu et al 1995; Lim et al 2007).

Amphiphilic compounds like local anesthetics affect 

membrane properties by the hydrophobic interaction with 

the aliphatic acyl chains of phospholipids and by the ionic 

interaction with the charged polar head-groups of phospho-

lipids (Shimooka et al 1992). The membrane interactivities 

of drugs in ionic form greatly depend on membrane lipid 

components and their compositional ratios (Tsuchiya et al 

2007). QX-314 was ineffective on zwitterionic phospholipid 

membranes such as DPPC, POPC, and POPE, whereas it 

effectively fl uidized acidic phospholipid membranes such 

as POPS, POPA, POPG, and CL with the potency relating 

to their acidity. Cationic doxorubicin shows much higher 

affinity for anionic phospholipids than for zwitterionic 

phosphatidylcholine and phosphatidylethanolamine, with 

its positively charged amine group electrostatically bound to 

phospholipid head-groups and with its chromophore moiety 

arranged between phospholipid acyl chains (de Wolf et al 

1991). While lipid bilayers are the barriers against charged or 

highly polar molecules, the membrane penetration of cationic 

peptides is mediated by negatively charged phospholipids 

through the formation of ion pairs (Esbjörner et al 2007). 

Lidocaine interacts with anionic phospholipids-containing 

membranes even under acidic conditions where its charged 

molecules predominate (Tsuchiya et al 2007). The signifi cant 

difference between acidic and zwitterionic phospholipid 

membranes suggests that the ion-pairing is responsible 

for the membrane interaction of charged drug molecules. 

Positively-charged (cationic) local anesthetics are considered 
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Figure 4 Interactions of bupivacaine (0.75 μmol/mL) and ropivacaine (1.0 μmol/mL) with nerve cell model membranes with and without cholesterol.
Notes: Data are mean ± SE (n = 6–8). **P � 0.01 vs each S(–)-enantiomer and ##P � 0.01 vs racemate.
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to interact with cell membranes by ion-pairing with acidic 

(anionic) membrane-constituting lipids like counter-ionic 

phosphatidylserine and cardiolipin.

Secondly, in order to verify the stereoselective membrane 

interaction of local anesthetic stereoisomers, the membrane-

fl uidizing effects of S(–)-bupivacaine and S(–)-ropivacaine 

have been compared between their enantiomers and racemate, 

together with specifying membrane component(s) to 

produce the stereoselectivity in membrane interaction. The 

concentrations of bupivacaine and ropivacaine commonly 

used for anesthesia are 0.125–0.75% (w/v), corresponding to 

about 4–24 μmol/mL for them (Jastak et al 1995; McClellan 

and Faulds 2000). At 0.03–0.25 times these concentrations, 

they fl uidized nerve cell model membranes with the potency 

being S(–)-enantiomer � racemate � R(+)-enantiomer. 

The membrane interaction assay used in this study showed 

so high precision that the different potencies obtained are 

not the experimental artifact derived from polarization 

measurements, conclusively indicating that the membrane 

interaction is discriminable between local anesthetic 

stereoisomers. The comparative interactivities with nerve cell 

model membranes are not in confl ict with the pharmacological 

features that S(–)-enantiomer is less potent in analgesia than 

racemate and R(+)-enantiomer (Dyhre et al 1997; Lyons et al 

1998). Local anesthetics also differentially fl uidized cardiac 

cell model membranes to show the relative potency being 

S(–)-ropivacaine < S(–)-bupivacaine < R(+)-bupivacaine at the 

equimolar concentration, which was somewhat higher than the 

cardiotoxic concentrations of bupivacaine and ropivacaine to 

block cardiac sodium channels and their plasma concentrations 

to produce cardiac collapses (Valenzuela et al 1995; Groban 

et al 2001). Considering analytical precision of the membrane 

interaction, such results mean different membrane effects of 

S(–)-ropivacaine, S(–)-bupivacaine and R(+)-bupivacaine. 

Their comparative interactivities with cardiac cell model 

membranes are consistent with the rank order of cardiotoxicity 

(Morrison et al 2000; Heavner 2002) and cardiac sodium 

channel blockade (Valenzuela et al 1995).
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Since membrane-constituting phospholipids and 

cholesterol contain chiral carbons, they potentially contribute 

to the discrimination between local anesthetic stereoisomers 

(Nau and Strichartz 2002). However, stereoselectivity was 

found when interacting with nerve and cardiac cell model 

membranes in the presence of cholesterol, but not in the 

absence of cholesterol. A chiral carbon in the phospholipid 

glycerol backbone is very likely to show an achiral behavior 

in membrane lipid environments. Compared with phospho-

lipids, cholesterol has more chiral carbons to increase the 

chirality of lipid bilayers. Therefore, cholesterol is respon-

sible for the stereoselective membrane interaction of local 

anesthetics (Goldstein 1984; Tsuchiya 2001a).

It has been accepted that functional proteins are not uni-

formly distributed in biological membranes, but localized to 

the specifi c microdomains termed lipid rafts which are charac-

teristically enriched in cholesterol and provide the platforms 

for channels and receptors (Ge et al 1999; O’Connell et al 

2004). Membrane cholesterol seems to be important not only 

as a raft-constituting component but also as a stereoselectivity 

mediator for local anesthetics. The membrane interactivity 

was signifi cantly increased by ion-pairing with acidic phos-

pholipids. Cardiolipin preferentially contained in cardiac 

cell membranes may determine the cardiotoxic intensity of 

local anesthetics, while cholesterol mediates the cardiotoxic 

stereoselectivity (Önyüksel et al 2007).

While the clinical implication of a membrane interaction 

mechanism may be beyond the scope of this study, the dis-

cussion on ion pair formation and stereopotency difference 

would be of great value for speculating the relative benefi t 

and risk of drugs. Local anesthetics must permeate lipoid 

barriers such as nerve sheaths or perineuria for reaching the 

nerve fi bers. They also must penetrate into or across nerve 

and cardiac cell membranes for binding to the receptors in 

addition to the membrane fl uidization to modify the activities 

of receptors and ion channels. The interactivity with lipid 

bilayers and/or membrane lipids is important in both pharma-

cokinetics and pharmacodynamics of local anesthetics. The 

ability of local anesthetics to form the hydrophobic ion pairs 

with certain anions would facilitate their diffusion into lipoid 

phase and their penetration into axonal and cellular mem-

branes as well as enhance the drug delivery effi ciency (Padula 

et al 2007). The use of appropriate counter ions may increase 

pharmacological effects in addition to the intrinsic activity 

of the formed ion pairs (Garlid and Nakashima 1983; Štolc 

et al 1989). In human studies, racemic bupivacaine is more 

potent in pain relief than S(–)-bupivacaine (Lyons et al 1998; 

Lim et al 2004). However, other comparisons of analgesic 

potency indicate that bupivacaine S(–)-enantiomer is similar 

to racemate and that the in vivo nerve blockade by bupiva-

caine is less stereospecifi c than the in vitro one (Vladimirov 

et al 2000). In contrast, the cardiotoxicity of local anesthet-

ics consistently shows the different stereopotency (Urbanek 

et al 2003). S(–)-Ropivacine and S(–)-bupivacaine are less 

cardiotoxic than recemic bupivacaine (Foster and Markham 

2000; Mather and Chang 2001), and S(–)-ropivacaine has a 

lower toxicity than S(–)-bupivacaine (Stienstra 2003). The 

stereoselectivity in membrane interaction mechanistically 

supports the clinical benefi ts of S(–)-enantiomeric drugs 

(ropivacaine and levobupivacaine) over their antipode and 

racemate, especially on the appearance of adverse cardio-

vascular effects.

In conclusion, the membrane lipid interaction can apply 

to the charged anesthetic molecules and account for the stere-

oselective effects of anesthetic stereoisomers. The membrane 

lipid theory should be reevaluated as one of pharmacological 

mechanisms for local anesthetics.
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