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Abstract: We investigated the effects of rivastigmine (a cholinesterase inhibitor) and selegiline 

((-)deprenyl, an irreversible inhibitor of monoamineoxidase-B), alone and in combination, on 

brain acetylcholinesterase (AChE), (Na+, K+)-, Mg2+-ATPase activities, total antioxidant status 

(TAS), and learning performance, after long-term drug administration in aged male rats. The 

possible relationship between the biochemical and behavioral parameters was evaluated.

Methods: Aged rats were treated (for 36 days) with rivastigmine (0.3 mg/kg rat/day ip), 

selegiline (0.25 mg/kg rat/day im), rivastigmine plus selegiline in the same doses and way of 

administration as separately. Aged and adult control groups received NaCl 0.9% 0.5 ml ip.

Results: TAS was lower in aged than in adult rats, rivastigmine alone does not affect TAS, 

decreases AChE activity, increases (Na+, K+)-ATPase and Mg2+-ATPase activity of aged rat 

brain and improves cognitive performance. Selegiline alone decreases free radical production 

and increases AChE activity and (Na+, K+)-ATPase activity, improving cognitive performance 

as well. In the combination: rivastigmine seems to cancel selegiline action on TAS and AChE 

activity, while it has additive effect on (Na+, K+)-ATPase activity. In the case of Mg2+-ATPase 

selegiline appears to attenuate rivastigmine activity. No statistically signifi cant difference was 

observed in the cognitive performance.

Conclusion: Reduced TAS, AChE activity and learning performance was observed in old 

rats. Both rivastigmine and selesiline alone improved performance, although they infl uenced 

the biochemical parameters in a different way. The combination of the two drugs did not affect 

learning performance.
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Introduction
Brain aging in most cases is characterized by cognitive defi cits and a central cholinergic 

hypofunction (Bartus et al 1982). Alzheimer’s disease (AD), a neurodegenerative 

disorder, is characterized by loss of memory and other cognitive abilities. It is also 

characterized by a prominent loss of cholinergic neurons in the basal forebrain (Davis 

and Maloney 1976), leading to decreased amounts of acetylcholine and decreased 

activities of cholinacetyltransferase (ChAT) and acetylcholinesterase (AChE) in 

almost the entire neocortex (Coyle et al 1983). The observed association between the 

loss of cholinergic neurons, receptors, reduction of cholinergic markers, cognitive and 

executive function impairments in AD was the base for the development of cholinergic 

hypothesis (Bartus 2000) and the introduction of AChE inhibitors as the main 

therapeutic approach for this disease. Rivastigmine is a second-generation carbamate-

based pseudo-irreversible AChE and butyrylcholinesterase (BuChE) inhibitor, 

indicated for treatment of mild to moderate AD (Anand et al 1996; Corey-Bloom et al 
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1998; Eskander et al 2005; Caltagirone et al 2005; Takeda 

et al 2006; Gonzalez-Gutierrez and Gobbart 2007) or for 

patients with rapid disease progression (Farlow et al 2005). 

As the disease and age progress, signifi cant loss of other 

neurons (noradrenergic, dopaminergic) is observed as well 

(Davies and Wolozin 1987; Strong 1998). The pathology of 

the disorder may involve oxidative stress and accumulation 

of free radicals, leading to excessive lipid peroxidation and 

neuronal degeneration in the brain (Smith et al 1991; Strong 

1998; Pratico and Delanty 2000). Selegiline,(-)deprenyl, 

an irreversible monoamineoxidase-B (MAO-B) inhibitor, 

has been used in depression and in Parkinson’s disease in 

combination with L-dopa (Birkmayer et al 1985; Lieberman 

and Fazzini 1991; Knoll 2000; Negrotti et al 2001; Kitani et al 

2002). Selegiline enhances the release of dopamine, blocks 

the reuptake of dopamine and produces an amphetamine-like 

effect (Ebadi et al 2002). Pretreatment with selegiline can 

protect neurons against a variety of neurotoxins as MPTP, 

DSP-4, 5,6-dihydroserotonin and AF64A, which damage 

dopaminergic, adrenergic, serotonergic, and cholinergic 

neurons respectively (Walsh et al 1984; Ricci et al 1992; 

Mayar and Haberle 1999; Matsubara et al 2001). In patients 

with moderate impairment from AD, treatment with 

selegiline slowed the progression of disease (Sano et al 1997; 

Filip and Colibas 1999; Knoll 2003). However, according 

to recent data from a meta-analysis, selegiline signifi cantly 

improved cognition and activities of daily living at an earlier 

time point, but not at a later assessment time (Wilcock et al 

2002; Birks and Flicher 2003). Selegiline prevents the effects 

of oxidative stress in a variety of models both in vitro and in 

vivo (Youdim et al 2001).

The underlying mechanism of the benefi cial effect of 

selegiline on neuronal function is believed to be associated 

with enhanced activity of free radical scavenging enzymes 

(Carrillo et al 1994; Kitani et al 2002; Kiray et al 2006), 

diminished production of hydrogen peroxide through MAO-

B inhibition (Cohen and Spina 1989; Takahata et al 2006), 

some trophic-like effects that increase the survival of degen-

erating motoneurons (Ju et al 1994), restoration of ChaT 

reduced activity (Koutsilieri 2001), the number of neurons 

in the hippocampus (Kiray et al 2006), or enhancement of 

neuroplastic status (Murphy et al 2006). Recently Ono and 

colleagues (2006) also reported an in vitro antiamyloidogenic 

activity of selegiline.

We have previously shown that the administration 

of selegiline in a dose of 0.25 mg kg-1 rat/other day for 

50 days in old rats increased whole brain TAS, stimulated 

(Na+, K+)-ATPase activity and although it increased AChE 

activity, it improved the learning performance of aged rats 

(Carageorgiou et al 2003).

The (Na+, K+)-ATPase, or Na+ pump, is an energy 

transducting ion pump fi rst described by Skou in 1952 

(Skou 1998). In recent years, research on (Na+, K+)-ATPase 

revealed that interactions of (Na+, K+)-ATPase with other 

proteins not only are important for regulation of pumping 

function, but also make it possible for the enzyme to func-

tion as a single transducter (Xie and Cai 2003). Long-term 

pharmacological interruption of cholinergic transmission can 

decrease the postsynaptic membrane potential by altering 

(Na+, K+)-ATPase activity. This can be seen as a decline in 

[3H] ouabaine binding (Henning et al 1994). Age-associated 

impairments in a test of attention and evidence of involvement 

of cholinergic systems was referred by Jones and colleagues 

(1995). It is known that inhibition of (Na+, K+)-ATPase 

induces neurotransmitter release in several experimental 

models (Rodríguez de Lores Arnaiz and Pellegrino de Iraldi 

1991). Furthermore, studies suggest that (Na+, K+)-ATPase 

might play a role on memory formation (dos Reis-Lunardelli 

et al 2007). According to Gorini and colleagues (2002) 

(Na+, K+)-ATPase is a particular age-related enzyme. The 

(Na+, K+)-ATPase activity is lower in all plasma membrane 

subfractions (rat frontal cerebral cortex) at 22 months of 

age, than in 5 months (where reduction is already evident at 

10 months of age). Similar reductions in (Na+, K+)-ATPase 

activity were observed by Kaur and colleagues (1998) in 

different brain regions of 24-month-old rats. However, old 

age and selective loss of cholinergic basal frontal cells did not 

signifi cantly alter the presynaptic second messenger system 

that infl uences (Na+, K+)-ATPase activity. On the other hand 

the lesions had a much greater effect on performance than 

old age alone did (Stoehr et al 1997).

Little is known about the activity of Mg2+-ATPase 

in old age, an enzyme that is of primary importance in 

phosphorylation reactions and the maintenance of high brain 

intracellular Mg2+. Its change can control rates of protein 

synthesis and growth of the cell (Sanui and Rubin 1982). 

Decreased Mg2+-ATPase activity in the frontal cortex of old 

age rats was reported by Gorini and colleagues (2002).

Oxidative stress has been implicated in aging and age-

related neurodegenerative diseases (Atamna and Frey 2007; 

Tahirovic et al 2007; Weinreb et al 2007) and the proposal of 

the “free radical theory of aging” (Harman 1956). Impaired total 

antioxidant capacity in different structures from aged rat brain 

was observed by Siqueira and colleagues (2005). A decrease 

of the total antioxidant status in the brain of old male rats has 

been observed by Carageorgiou and colleagues (2003).
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Based on the aforementioned selegiline study in 

aged rats, the foreseen trend of combining drugs with a 

different mechanism of action in AD therapy (Youdim and 

Weinstock 2002; Ucar et al 2005; Dantoine et al 2006; 

Groner et al 2007; Tahirovic et al 2007) and since multiple 

factors contribute to AD pathology (van Dyck 2004; Liu 

and Ames 2005) we decided to investigate the effect of the 

combination of the two agents, rivastigmine and selegiline, 

on brain TAS, AChE, (Na+, K+)-ATPase, Mg2+-ATPase 

activities and on cognitive capacity of aged rats. We also 

considered evaluating the possibility of correlations between 

biochemical and behavioral data. It should be mentioned 

that there were no previous in vivo data about the effect of 

a) rivastigmine alone on the activities of brain (Na+, K+)-

ATPase, Mg2+-ATPase or TAS. and b) rivastigmine plus 

selegiline combined administration on all the biochemical 

and behavioral parameters studied.

Materials and methods
Animals
Fifty two (52) aged male Wistar rats (24 months old) and 

485 ± 23 g BW were used. A group of 11 adult rats (8 months 

old) and 391 ± 12 g BW was also used as an adult control. 

The rats were housed fi ve or six in a cage at a constant 

room temperature (22 ± 1 °C) under a 12-h light: 12-h dark 

(light 08:00–20:00 h) cycle. Food and water were provided 

ad libitum. Animals were cared for in accordance with the 

principles of the Guide for the Care and Use of Experimental 

Animals (Committee on Care and Use of Laboratory Animals 

1985).

Drugs in vivo administration
Rats were divided into fi ve groups, according to the procedure 

followed in the object recognition test: 1) Group (R) was 

treated with rivastigmine (0.3 mg kg−1 rat day-1 ip) for 

36 consecutive days, 2) Group (S) was treated with selegiline 

(0.25 mg kg−1 rat day−1 im) for the same period, 3) Group 

(R + S) was treated with the combination of the two drugs 

at the doses and way of administration mentioned before for 

each drug separately and for the same period of time, 4) a 

group was treated with equal volumes (0.5 ml) of NaCl 0.9% 

ip (aged control group) and 5) a group was also treated with 

equal volumes (0.5 ml) of NaCl 0.9% ip (adult control group) 

for every of the 36 consecutive days.

Tissue preparation
Animals were sacrifi ced by decapitation (right after the 

last performance test and 90 minutes after the last drug 

administration) and the whole brain was rapidly removed. 

The tissue was homogenized and centrifuged as described 

earlier (Tsakiris et al 2000; Antoniades et al 2002). In the 

resulting supernatant, the protein content was determined 

according to the method of Lowry and colleagues (1951) and 

the enzyme activities and TAS were evaluated.

Determination of enzyme activities
AChE activity was determined according to Ellman and 

colleagues (1961) and (Na+, K+)-ATPase, Mg2+-ATPase 

activities according to Bowler and Tirri (1974). The enzyme 

reaction mixture and assay conditions of these enzyme activi-

ties were previously described in detail (Tsakiris et al 2000; 

Antoniades et al 2002).

Determination of brain total 
antioxidant status
TAS was evaluated in each fresh homogenized rat brain. The 

total antioxidant capacity was measured spectrophotometri-

cally by a commercial kit (Randox Laboratories Ltd., Cat. 

No. NX2332) as previously reported (Tsakiris et al 2000). 

2,2′-Azino-di-[3-ethylbenzthiazoline sulphonate] (ABTS) 

was incubated with a peroxidase (metmyoglobin) and H
2
O

2
 

in order to produce the radical cation ABTS+. The latter had 

a relatively stable blue-green color, which was measured at 

600 nm. Inhibited values of TAS refl ect the increase of brain 

free radical production whereas stimulated TAS values show 

the decrease of free radical production and the protective 

antioxidant effect of the drug in the brain.

Cognitive capacities tests
Cognitive capacities were evaluated using two different 

tasks: object recognition test (ORT) and passive avoidance 

conditioned response (PA). The ORT was carried out accord-

ing to the procedure described by Vannucchi and colleagues 

(Ennaceur and Delacour 1988; Scali et al 1994; Vannucchi 

et al 1997). The apparatus was an open white polyvinyl-

chloride arena (70 × 60 × 30 cm3) illuminated by a 75 W 

lamp suspended 50 cm above the arena. The objects to be 

distinguished were made of polyvinylchloride, grey-colored 

and were in two different shapes: cubes (8 × 8 cm2 side) or 

pyramids (8 cm height). Apparently they had no signifi cance 

for the rats. For the procedure, the rat was submitted to a ses-

sion of two trials, each of which had a 5-min duration. The 

intertribal interval (ITI) was 60 min. In the fi rst trial (T1) two 

identical objects were presented in two opposite corners of 

the box and the amount of time spent by each animal for the 

object exploration was recorded. Exploration was considered 
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to be directing the nose at a distance �2 cm to the object 

and/or touching it with the nose. During the second trial 

(T2), one of the objects presented in T1 was replaced by a 

new (differently-shaped) one. To reduce place preference 

effects, the positions of the two different objects were ran-

domly changed during T2 for each rat. The times spent on 

exploration of the familiar (F) and new (N) object during T2 

were recorded separately and a discrimination index (D) was 

calculated (N - F/N + F). An animal was defi ned as impaired 

if the D was �0.20. This procedure took place twice for each 

animal. The fi rst session was one day before the beginning 

of drugs administration. Among the 52 aged rats studied, 

42 (81%) showed impaired performances with a D �0.10, 

four rats were unimpaired (D �0.50), while six rats were 

discarded because they did not explore. The 42 impaired aged 

rats were subdivided into the four aforementioned groups: 

Aged control group (10 rats), Group (R) (10 rats), Group (S) 

(11 rats), and Group (R + S) (11 rats). Among the 11 adult 

rats studied none was discarded, as all of them suffi ciently 

explored. The second session was on the 34th day of the drugs 

administration, in order to evaluate the cognitive capacity of 

the animals practically at the end of the experiment. The task 

took place one hour after the drugs’ administration.

The passive avoidance training was started 24 h after the 

last object recognition session. It was carried out according 

to the procedure described by Riekkinen and colleagues 

(1997) with some modifi cations (the testing trial took place 

24 h after the training trial and not 72 h after it) and consisted 

of two trials. The passive avoidance box had a light and a 

dark compartment of equal size, which were separated by a 

sliding guillotine door. During the fi rst trial (training trial), 

which took place at the 35th day of drugs administration, the 

rats were placed in the light compartment. Thirty seconds 

later the door was opened. After the rat entered the dark 

compartment, the door was closed and a foot shock of 1.0 mA 

(3 s) was given. The latency to enter the dark compartment 

was measured (360 s maximum latency). During the second 

trial (testing trial), which took place on the 36th day of drugs 

administration (last day of the experiment), the rat was placed 

in the light compartment again and the latency to enter the 

dark compartment was measured. Passive avoidance most 

likely involves both working memory and reference memory 

(Myhrer 2003).

Statistical analysis
The biochemical data were analyzed by a two-tailed Student’s 

t-test. The object recognition data were analyzed by a non-

parametric Mann-Whitney test and the passive avoidance 

data were analyzed by an one-way ANOVA test and a 

post-hoc test (Bonferroni test).

Drugs
Rivastigmine; Novartis Ltd., Basle, Switzerland. Selegiline; 

Sigma-Aldrich. St. Louis, MO, USA.

Results
Total antioxidant status (TAS)
Group (S) (received selegiline) showed a signifi cant increase 

in TAS compared with the control group of aged rats (+30%, 

P � 0.001, t
value

 = 9.66). Groups (R) (received rivastigmine) 

and (R + S) (received rivastigmine + selegiline) did not 

show any difference in comparison to the aged control group 

(t
values

 = 0.48 and 1.13 respectively). TAS was signifi cantly 

decreased in rivastigmine + selegiline-treated rats compared 

with selegiline-treated rats (-21%, P � 0.001, t
value

 = 16.66) 

(Figure 1).

Brain AChE activity
Selegiline-treated rats revealed a signifi cant increase in 

brain AChE activity compared with the aged control rats 

(+25%, P � 0.001, t
value

 = 10.73). Contrary to this, rivastig-

mine alone and rivastigmine+selegiline co-administration 

induced a signifi cant decrease in brain AChE activity in 

comparison to the aged saline-treated rats (−20%, P � 0.001, 

t
value

 = 10.80 and −22%, P � 0.001, t
value

 = 11.08, respectively). 

Brain AChE activity was also signifi cantly decreased in rats 

treated with rivastigmine+selegiline in comparison to the rats 

treated with selegiline alone (-38%, P � 0.001, t
value

 = 36.99) 

(Figure 2).

(Na+, K+)-ATPase activity
(Na+, K+)-ATPase activity was signifi cantly increased in 

rats which received selegiline (+50%, P � 0.001, t
value

 = 

11.08) or rivastigmine (+36%, P � 0.001, t
value

 = 8.48) in 

comparison with aged saline-treated rats. Furthermore, in 

the case of rivastigmine+selegiline co-administration, an 

additive action of the two drugs concerning the increase of 

(Na+, K+)-ATPase activity was revealed in comparison to 

the aged control group (+88%, P � 0.001, t
value

 = 15.62). A 

signifi cant increase of (Na+, K+)-ATPase activity in (R+S) 

group in comparison to the (S) group was also observed 

(+25%, P � 0.001, t
value

 = 14.84) (Figure 3).

Mg2+-ATPase activity
Mg2+-ATPase activity was significantly increased in 

(R) group and (R + S) group in comparison to the aged 
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Figure 1 Effects of rivastigmine, selegiline, and rivastigmine + selegiline on brain antioxidant status (TAS). TAS values were determined in each homogenized rat whole brain. 
Values of the groups of aged control rats and of rivastigmine indicate the mean ± standard error (SE) of ten independent experiments (ten rats). Values of the groups of adult 
control rats, of selegiline, and of rivastigmine + selegiline indicate the mean ± SE. of eleven independent experiments (eleven rats). The average value of each experiment arises 
from three determinations.
Notes: NS, nonstatistical signifi cance; ***P � 0.001 compared with aged control group; ###P � 0.001 compared with selegiline-treated group.

Figure 2 Effects of rivastigmine, selegiline, and rivastigmine + selegiline on brain AChE activity.  AChE activities were determined in each homogenized rat whole brain. Values 
of the groups of aged control rats and of rivastigmine indicate the mean ± standard error (SE) of ten independent experiments (ten rats). Values of the groups of adult control 
rats, of selegiline and of rivastigmine + selegiline indicate the mean ± SE of eleven independent experiments (eleven rats). The average value of each experiment arises from 
three determinations.
Notes: ***P � 0.001 compared with aged control group; ###P � 0.001 compared with selegiline-treated group.
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control group (+40%, P � 0.001, t
value

 = 8.78 and +23%, 

P � 0.001, t
value

 = 8.15, respectively), while no difference 

in Mg2+-ATPase activity was observed in the selegiline-

treated group(t
value

 = 0.55). The rivastigmine+selegiline co-

administration induced a signifi cant increase in Mg2+-ATPase 

activity in comparison to selegiline alone administration 

(+26%, P � 0.001, t
value

 = 13.45) (Figure 4).

Object recognition test
In the object recognition test the discrimination between familiar 

and novel objects was signifi cantly better in selegiline-treated 

(P � 0.001, Mann-Whitney U = 4.50) or rivastigmine-treated 

rats (P � 0.001, Mann-Whitney U = 0.50) than aged saline-

treated rats. There was no statistically signifi cant difference 

in the discrimination index between (R + S) group (Mann-

Whitney U = 12.00) and aged control group (Figure 5).

Passive avoidance procedure
In passive avoidance procedure, during the training trial the 

mean latency (42 s) was not signifi cantly different among 

the groups. During the testing trial, a signifi cantly better 

performance was observed in groups (R)(F = 59.18) and 

(S)(F = 59.18), in comparison with the aged control group. 

The combination of rivastigmine + selegiline did not show 

any statistically signifi cant difference from the aged control 

group (F = 59.18) (Figure 6). These results are similar to 

those of the object recognition test.

Adult versus aged rats
An increase of total antioxidant status (TAS) was observed 

in adult control group compared with the aged control group 

(+20%, P � 0.001, t
value

 = 5.62) (Figure 1). Adult controls 

revealed a significant increase in brain AChE activity 

compared with the aged control rats (+39%, P � 0.001, 

t
value

 = 25.07) (Figure 2). (Na+, K+)-ATPase activity was sig-

nifi cantly decreased in adult controls compared to the aged 

control group (−24%, P � 0.001, t
value

 = 5.17) (Figure 3). 

Mg2+-ATPase activity was signifi cantly increased in adult 

control group in comparison with the aged control group 

(+34%, P � 0.001, t
value

 = 10.69) (Figure 4). In the object 

recognition test the adult control group performed signifi -

cantly better than the aged one (P � 0.05, Mann-Whitney 

U = 9.00) (Figure 5). In passive avoidance procedure, during 

the testing trial, a better performance was observed in adult 

control group in comparison with the aged control group 

(F = 59.18) (Figure 6).

Figure 3 Effects of rivastigmine, selegiline, and (rivastigmine + selegiline) on brain (Na+, K+)-ATPase activity. (Na+, K+)-ATPase activities were determined in each homogenized rat 
whole brain. Values of the groups of aged control rats and of rivastigmine indicate the mean ± standard error (SE) of ten independent experiments (ten rats). Values of the groups 
of adult control rats, of selegiline and of rivastigmine + selegiline indicate the mean ± SE of eleven independent experiments (eleven rats). The average value of each experiment 
arises from three determinations.
Notes: ***P � 0.001 compared with aged control group; ###P � 0.001 compared with selegiline-treated group.

Brain (Na+,K+)-ATPase activity

0

1

2

3

4

5

6

7

8

9
(N

a
+

,K
+

)-
A

T
P

a
s
e

a
c
ti

v
it

y
(μ

m
o

l 
P

i/
h

 x
 m

g

p
ro

te
in

)

aged control
n=10

adult control
n=11

rivastigmine
n=10

selegiline
n=11

rivastigmine
+selegiline
n=11

   ***

   ***

   ***

   ***
   ###

Powered by TCPDF (www.tcpdf.org)



Neuropsychiatric Disease and Treatment 2008:4(4) 693

Rivastigmine plus selegiline on brain enzymes and behavior of aged rats

Discussion
We have examined: (a) the long term effects of rivastigmine 

in combination with selegiline on the activity of AChE, (Na+, 

K+)-ATPase, Mg2+-ATPase and TAS in whole brain homog-

enate of aged male rats, as well as their cognitive capacity; 

and (b) the possible relationship between biochemical and 

behavioral fi ndings.

Rivastigmine decreased AChE activity in the aged rat 

whole brain as expected (Anand et al 1996; Corey-Bloom 

et al 1998), in comparison with the adult and aged control 

group (Figure 2). It is worth noticing that the adult control 

has the highest value of AChE activity. On the contrary, 

selegiline alone signifi cantly increased AChE activity in the 

aged rats. The latter data are in accordance with other stud-

ies (Ricci et al 1992; Lakshmana et al 1998; Zhu et al 2000; 

Carageorgiou et al 2003). In particular Zhu and colleagues 

(2000) found increased AChE activity in the rat brain fol-

lowing 1 week of selegiline administration and Lakshmana 

and colleagues (1998) observed increased AChE activity in 

certain brain areas of adult monkeys following selegiline 

treatment with most pronounced effect in the region of 

hippocampus. Enhanced AChE activity in rat hippocampus 

was also reported by Ricci and colleagues (1992) following 

intracerebroventricular administration of selegiline. In the 

combination of rivastigmine + selegiline, the rivastigmine 

effect appears to prevail leading to a signifi cant decrease in 

brain AChE activity compared with the (S) group and with 

the two control groups (Figure 2).
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Figure 4 Effects of rivastigmine, selegiline, and (rivastigmine + selegiline) on brain Mg++-ATPase activity. Mg++-ATPase activities were determined in each homogenized rat whole 
brain. Values of the groups of aged control rats and of rivastigmine indicate the mean ± standard error (SE) of ten independent experiments (ten rats). Values of the groups of 
adult control rats, of selegiline and of rivastigmine + selegiline indicate the mean ± SE of eleven independent experiments (eleven rats). The average value of each experiment 
arises from three determinations.
Notes: NS, nonstatistical signifi cance; ***P � 0.001 compared with aged control group; ###P � 0.001 compared with selegiline-treated group.
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Figure 5 Effects of rivastigmine, selegiline, and rivastigmine + selegiline on object 
recognition task on day 34 of the administration of the drugs. Values of the groups 
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control group.
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Reduced activity of AChE and ChAT has been reported 

in the cortex and the hippocampus of AD patients (Fishman 

et al 1986) and is also associated with the decline in cognitive 

function (DeKosky et al 1992). In our study, brain AChE 

activity was decreased in aged rats, in parallel with the 

object recognition and passive avoidance performance 

(Figure 2, 5–6). On the contrary, while rivastigmine (as 

expected) decreases AChE activity, it improves cognitive 

performance. Here a question could arise as to whether the 

20% inhibition of AChE by rivastigmine is enough to produce 

an increase in cortical and hippocampal ACh release. Many 

studies in the literature using different doses of rivastigmine 

revealed a strong correlation between AChE inhibition and 

ACh increase in the aforementioned rat brain areas (Tanaka 

et al 1994; Chen et al 1998; Kozaka 1999; Trabace et al 

2000; Scali et al 2002; Amenta et al 2006; Liang and Tang 

2006). Considering the improved performance in learning 

and memory tests by rivastigmine group of rats, we suggest 

that this percentage reduction of AChE was enough for the 

needed cortical and hippocampal ACh release. Also, while 

selegiline increases AChE activity, it improves cognitive 

performance. In the combination of rivastigmine + selegiline 

treatment no improved performance was observed despite 

decreased AChE activity. Concerning AChE activity, it is 

obvious that the mechanism by which a better performance 

is attained in the behavioral tests following administration 

of rivastigmine or selegiline (given separately) is different. 

Rivastigmine is used in AD according to the cholinergic 

hypothesis, which improves or delays to some extent the 

deterioration of AD patients (Anand et al 1996; Corey-Bloom 

et al 1998; Bartus 2000). At the same time selegiline was 

found to improve cognitive function after long-term adminis-

tration in rats (Knoll 2000) and to slow the progression of AD 

in man (Sano et al 1997). In our past experiments, although 

selegiline increased AChE activity, it improved avoidance 

performance (Carageorgiou et al 2003). The present study 

also shows improvement in both learning parameters. One 

can only speculate that the increased expression of ChAT 

and AChE in the hippocampus by selegiline (Ricci et al 

1992) may have also caused an increase of ACh (which 

is mainly involved in learning and memory) provided that 

ACh release is not affected by selegiline in the hippocampus 

(Knoll 1989; Nowakowska et al 2001; de Lima et al 2005). 

Furthermore, it has been reported that increases in dopamine 

levels enhance a compensatory release of acetylcholine in 

the frontal cortex (Nilsson et al 1992; Shimazu et al 1996) 

and that the forebrain dopaminergic system is related to 

cognitive function (Marie and Defer 2003; Remy and Samson 
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Figure 6 Effects of rivastigmine, selegiline, and rivastigmine + selegiline on passive avoidance test in testing trial (day 36 of the administration of the drugs). Values of the groups 
of aged control rats and of rivastigmine indicate the mean ± standard error (SE) of ten independent experiments (ten rats). Values of the groups of adult control rats, of selegiline, 
and of rivastigmine + selegiline indicate the mean ± SE of eleven independent experiments (eleven rats).
Notes: NS, nonstatistical signifi cance; ***P � 0.001 compared with aged control group.
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2003). According to Koutsilieri and colleagues (2001) 

selegiline (given in a dose of 2 mg/kg) completely restores 

ChAT activity defi cits in simian immunodefi ciency infec-

tion in brain regions containing cholinergic neurons. It is 

unclear whether selegiline acted on the expression of ChAT 

(directly or through increased dopamine availability) thereby 

increasing protein synthesis or as a neuroprotective agent on 

cholinergic and other neurons through its antioxidant effects 

(Kitani et al 2002). In addition, Appleyard (1995) reported 

that AChE induced long-term potentiation in hippocampal 

pyramidal neurons, suggesting that AChE per se might 

enhance cognitive performance. We could refer to Shen´s 

(1994, 2004) hypotheses on the design of agents that could 

enhance the neuronal AChE activity in order to delay the 

degeneration of brain AChE system in the development of 

dementia and AD. Furthermore, Frolich (2002) has come to 

a similar conclusion concerning the cholinergic hypothesis 

in its present form and the use of AChE-inhibitors. Accord-

ing to Kaduszkiewicz and colleagues (2005), the scientifi c 

basis for recommendations of cholinesterase inhibitors for the 

treatment of Alzheimer´s disease is questionable because of 

fl awed methods and small clinical benefi ts; even though the 

AChE inhibitors and memantine is the only available drug 

treatment until now (Lane 2006; Birks 2006).

In any case, one cannot exclude the neuronal adaptations 

to diminished synaptic ACh metabolism in acetylcholines-

terase knockout mice (Volpicelli-Daley et al 2003) and the 

possibility of AChE involvement of the senile plaque (Rees 

and Brimijoin 2003; Castro and Martinez 2006).

The synaptic plasma membrane enzyme (Na+, K+)-

ATPase is very important for neurotransmission-neuronal 

excitability (Sastry and Philips 1977), metabolic energy 

production (Mata et al 1980), the uptake and release of cat-

echolamines (Bogdanski et al 1968; Swann 1984), serotonin 

(Hernandez 1987), glutamate (Lees et al 1990), and at least 

partial ACh release (Meyer and Cooper 1981). Studies sug-

gest that (Na+, K+)-ATPase might play a role on memory 

formation (dos Reis-Lunardelli et al 2007) and that it is a 

particular age-related enzyme (Gorini et al 2002).

Increased activity of whole brain (Na+, K+)-ATPase was 

observed after the administration of rivastigmine, selegiline, or 

their combination (Figure 3). In the latter, the effect seems to be 

additive. Similar results concerning increased enzyme activity 

in aged and selegiline-treated rats were observed in our previous 

studies (Tsakiris et al 1996; Carageorgiou et al 2003).

Dickey and colleagues (2005) reported a decreased 

overall (Na+, K+)-ATPase enzyme activity in the amyloid 

containing hippocampi of the APP + PSI mice. They also 

reported absence of (Na+, K+)-ATPase staining in the zone 

surrounding congophilic plaques, which was occupied by 

dystrophic neurites and that cerebral (Na+, K+)-ATPase can 

be directly inhibited by high concentrations of soluble Ab. It 

has been also reported that (Na+, K+)-ATPase protein levels 

are decreased in AD tissue but not in normal aged tissue 

(Harik et al 1989; Liguri et al 1990). Our study deals with 

normally aged rats in which (Na+, K+)-ATPase activity was 

actually and signifi cantly increased in comparison with the 

adult control, but their performance was decreased. Consid-

ering that ouabain, a (Na+, K+)-ATPase inhibitor, has been 

shown to impair memory consolidation, it was suggested that 

increasing (Na+, K+)-ATPase activity and maintaining ionic 

balance of the neurons may benefi t AD patients by delaying 

the onset of neuritic dystrophia and memory dysfunction 

(Watts and Mark 1971; Mark and Watts 1971).

In our study with aged rats, in spite of enhanced (Na+, K+)-

ATPase activity in comparison with the adult control, the aged 

animals had an impaired learning performance. In addition, 

in the (S) and (R) groups (with enhanced (Na+, K+)-ATPase 

activity) a better learning performance was observed, while in 

the combination group (in which an even higher increase of (Na+, 

K+)-ATPase activity was observed) no statistically signifi cant 

difference in its learning performance was noticed (Figures 3, 

5–6). According to all the above, we come to the conclusion 

that increased (Na+, K+)-ATPase activity is not relevant to the 

cognition enhancement by rivastigmine, selegiline, or their 

combination, at least not under our experimental conditions.

The role of Mg2+-ATPase is to maintain high brain 

intracellular Mg2+, the changes of which can control rates 

of protein synthesis and growth of the cell (Sanui and Rubin 

1982). Decreased Mg2+-ATPase activity in the frontal cor-

tex of old age rats was reported by Gorini and colleagues 

(2002). In our experiments, decreased Mg2+-ATPase activity 

was observed in old rats in parallel with decreased learning 

performance. Mg2+-ATPase activity was found to be higher 

in the groups (R), (R+S) and young controls (Figure 4). 

Consequently, a positive association between increased 

Mg2+-ATPase activity and learning performance could 

be supported for rivastigmine, while selegiline improves 

learning performance without affecting brain Mg2+-ATPase 

activity. In the combination, although there was an increased 

Mg2+-ATPase activity, no signifi cant improvement in the 

behavioral parameters was observed. It is likely that the 

addition of selegiline in some way reduced the effect of 

rivastigmine alone on Mg2+-ATPase activity and this could 

infl uence the better performance of rivastigmine alone. This 

association is questionable as well.
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The observed decrease of brain TAS during aging is 

in accordance with our previous studies (Tsakiris et al 

1996; Carageorgiou et al 2003) and is associated with the 

decreased learning performance (object recognition and pas-

sive avoidance test) (Figures 1, 5–6). Although rivastigmine 

administration in aged rats did not affect TAS, it resulted in 

a better learning performance. On the contrary, selegiline 

administration (as previously shown by Carageorgiou and 

colleagues [2003]) increased TAS and this effect can be 

linked with better learning performance (Figures 1, 5–6). 

Similar results were also reported by Kiray and colleagues 

(2006): increase of spatial memory performance in aged male 

rats after selegiline administration for 21 days, suppression of 

lipid peroxidation, and alleviation of the age-related decrease 

of the number of neurons in the hippocampus. Improved 

performance after long term selegiline administration has 

also been observed by Knoll (1989) and other investigators 

(Nowakowska et al 2001; de Lima et al 2005). In the combi-

nation of rivastigmine + selegiline no statistically signifi cant 

differences were observed either in TAS or in learning perfor-

mance although there is a tendency in the object recognition 

test (Figures 1, 5). It is rather obvious that selegiline effect on 

TAS is blunted by rivastigmine (Figures 1, 5–6). Selegiline is 

a MAO-B inhibitor enhancing dopamine levels and after its 

chronic administration long-term postsynaptic changes have 

most likely occurred. The dopaminergic activity for example 

could be inhibitory to cholinergic striatal inter neurons. This 

probably explains the negation of the behavioral effects of 

rivastigmine by selegiline. In the study of Sagi and colleagues 

(2005) the chronic treatment of rats with ladostigil, a novel 

drug derived from the combination of rivastigmine and a 

MAO-B inhibitor rasagiline, resulted in activation of both 

striatal cholinergic and dopaminergic activity, attenuation 

of stereotyped motor behavior and maintenance of normal 

spontaneous motor performance. However, Takahata and 

colleagues (2005) (donepezil and selegiline in acute and high 

dose in scopolamine + chlorophenylalanine – induced mem-

ory defi cits) and Dringenberg and colleagues (2000) (tacrine 

and selegiline with electroencephalographic and behavioral 

evidence) who used totally different experimental protocols 

observed that the combination of selegiline and another 

AChE inhibitor (donepezil or tacrine) acted synergistically 

and improved reversal of memory impairment in rats.

Conclusions
The overall analysis of our data revealed that rivastigmine 

when given alone decreases AChE, does not infl uence TAS, 

increases (Na+, K+)-ATPase and Mg2+-ATPase activities, 

and improves learning performance of the aged rats. In the 

combination the effect of rivastigmine on AChE activity 

(reduced) appears to prevail that of selegiline (increased) 

and the result is reduced activity of AChE. In the case of 

TAS, although rivastigmine when given alone, did not 

affect TAS, in the combination decreases the enhanced by 

selegiline old rat brain TAS and increases Mg2+-ATPase 

activity. There is also an improved learning performance by 

each drug alone, but not in the combination. It is obvious 

that the better performance of rivastigmine and selegiline 

given separately in the object recognition and in the pas-

sive avoidance test is attributed to a different mechanism 

of action: Selegiline possibly acts through its antioxidant 

effect and increased levels of catecholamines and rivastig-

mine by its anticholinesterase activity and increased levels 

of acetylcholine. Finally, the combination of the two drugs 

does not appear to be benefi cial for the declining memory 

of aged rats at least not under our experimental conditions. 

Reduced Mg2+-ATPase activity is correlated with old age and 

reduced learning performance. Rivastigmine is correlated 

with increased Mg2+-ATPase activity and increased learning 

performance. Decreased TAS is correlated with old age and in 

parallel with decreased performance. Selegiline is correlated 

with increased TAS and increased performance. In the com-

bination, rivastigmine+selegiline did not affect either TAS 

or learning performance. Several transmitter systems can 

probably have a primary function in some cognitive processes 

and among which are the cholinergic and dopaminergic ones, 

but the extent of interactions is diffi cult to be elucidated. The 

subject therefore requires further investigation.

To our knowledge this is the fi rst report about a) the 

effect of rivastigmine on (Na+, K+)-ATPase and Mg2+-ATPase 

activities, TAS, on rat whole brain and b) the combined 

administration of rivastigmine and selegiline and its effect 

on all the studied parameters.
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