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Abstract: Recent advances in understanding the mechanisms underlying the development and 

progression of castration resistant prostate cancer from androgen-sensitive prostate cancer have 

provided new avenues exploring efficacious therapies in a disease which is the second leading 

cause of cancer deaths among men in the western world. In the evolution of second generation 

anti-androgens, enzalutamide, a novel androgen-receptor signaling inhibitor, has emerged tar-

geting multiple steps within the androgenic stimulation pathway. This review discusses what is 

currently known of the mechanisms surrounding castration resistant prostate cancer development 

and the current human clinical trials to determine whether enzalutamide presents a new hope 

for men with advanced prostate cancer. The issues of therapy resistance, withdrawal effects and 

cross-resistance are briefly touched upon.

Keywords: enzalutamide, androgen receptor, metastatic castrate resistant prostate cancer, 

MDV3100, anti-androgen

Introduction
Over 1.1 million cases of prostate cancer were recorded worldwide in 2012, making 

it the second most common malignancy among men, generating a heavy global health 

burden.1 Androgens, primarily testosterone and 5α-dihydrotestosterone, are responsible 

for growth and differentiation of cells within the prostate and consequentially are 

critically important in the development of prostate cancer. The disease is classified as 

castration responsive, when therapies known as androgen deprivation therapy (ADT) 

which aim to remove circulating testosterone of gonadal origin, result in regression of 

the tumor. ADT can be achieved through surgical castration by bilateral orchiectomy 

or medical castration by gonadotropin-releasing hormone analogs, either agonists or 

antagonists.2 Clinical response to ADT occurs in around 80% of cases, with clinical, 

radiological and biochemical improvement, potentially lasting several years (but typi-

cally is 2–2.5 years for men presenting with metastatic disease), a fact that signifies 

the pivotal role of the androgen receptor (AR) in most cases of prostate cancer. Pro-

gression and transition to a more lethal phenotype, which is distinguished by tumor 

growth at minimal levels of testosterone (,50 ng per deciliter) is known as castration 

resistant prostate cancer (mCRPC). mCRPC is usually lethal and is responsible for an 

estimated 258,400 deaths annually.3

It was previously thought that loss of androgen responsiveness led to mCRPC 

 development. More recent findings of ongoing active AR signaling in castration 

resistant prostate cancer (CRPC) cells, suggest that expression and functionality of the 

AR is almost never lost in this form of the disease.4 Indeed, what seems most likely 
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is that AR sensitivity through a number of mechanisms, 

including overexpression, coactivator upregulation, gene 

amplification or AR mutation is retained in a significant 

proportion of cases of mCRPC, with stimulation and 

growth occurring at low levels of circulating androgens. 

As such, novel inhibitors of androgen synthesis and second 

generation anti-androgens have been identified, with better 

pharmacokinetic targeting, providing new hope for men with 

mCRPC. One of these is enzalutamide, recently approved 

by the US Food and Drug administration (FDA) at a dose of 

160 mg/day, which has demonstrated significant efficacy in 

both pre-clinical and human based studies.

This article briefly illustrates the mechanisms thought 

to underlie the development of mCRPC from androgen 

responsive prostate cancer. We then provide a comprehensive 

narrative review of the clinical data involving enzalutamide 

to establish current knowledge on its efficacy, safety, and 

cost-effectiveness.

CRPC
Circulating androgens play a critical role in the development 

and progression of prostate cancer: ever since the initial 

description of orchiectomy for symptomatic metastatic 

prostate cancer by Huggins and Hodges,2 endocrine therapy 

in the form of androgen deprivation therapy (ADT) has been 

the primary treatment for advanced prostate cancer.

Despite the initial response of prostate cancer to ADT 

in most cases, progression to CRPC is inevitable. mCRPC 

is the lethal form of prostate cancer; although there are a 

variety of treatment options available to ameliorate dis-

ease progression (Table 1), mCRPC remains incurable. 

Several in vitro and pre-clinical studies have suggested 

that androgenic stimulation continues to be involved in 

most cases of CRPC through several molecular and cel-

lular mechanisms involving the AR. The AR (Figure 1) is a 

member of the nuclear receptor superfamily of transcription 

factors (NR3C4 – nuclear receptor sub-family 3, group C, 

member 4).5 The receptor consists of a variety of functional 

motifs similar to other nuclear receptors. These functional 

motifs are composed of amino-terminal domain, DNA 

binding domain with two zinc-fingers, and a ligand bind-

ing domain (LBD). The amino-terminal domain and LBD  

contain activation function-1 and -2 domains respectively, 

essential for optimal transactivation. Mechanisms such as 

AR gene amplification6 and mutations, partial AR signaling 

blockade, AR splice-variant expression, AR co-regulator 

up and down regulation and stem cell involvement have all 

been implicated in enhancing AR functionality, resulting in 

promoting tumor growth, despite extremely low levels of 

circulating androgens4 (Figure 2).

It is clear that in most cases of mCRPC, a dynamic 

situation exists which poses an ongoing challenge to the 

development of truly effective disease-modifying treatments. 

Although many of the newer treatments for mCRPC continue 

to target the androgen axis, resistance to the agent with subse-

quent disease progression remains the norm. Anti-androgens 

in the form of flutamide and bicalutamide have been available 

for many years, with some evidence of providing additive 

benefit to ADT in terms of reduction in prostate-specific 

antigen (PSA) levels (so-called complete androgen block-

ade or CAB) but little evidence of improved survival exists. 

Several phenomena such as the development of resistance to 

the initial agent and the anti-androgen withdrawal response 

demonstrate that adaptative changes such as co-activator 

upregulation with subsequent paradoxical agonist effects of 

the anti-androgen occur. Additionally, in vitro and in vivo 

studies have demonstrated the ability of anti-androgens to 

induce AR mutations, again resulting in paradoxical stimu-

lation of tumor progression. Cross-resistance to agents with 

different mechanisms of action, such as abiraterone and 

enzalutamide, has been suggested by the results of smaller 

clinical trials, but the true benefits of simultaneous use and 

drug sequencing have yet to be demonstrated clinically. 

Finally, truly androgen independent tumor progression via 

cross-talk with MAP-kinase pathways (EGF and IGF-1) 

occurs, with some evidence to suggest that anti-androgens 

such as flutamide act directly on these pathways.7 Multiple 

mechanisms exist whereby resistance to novel anti-androgens 

develop and have been recently reviewed.8

Search strategy
A literature search was carried out (Figure 3) using the search 

engines Web of Science, Medline via Ovid, The Cochrane 

library, clinicaltrials.gov, and PubMed. The key search terms 

used were “Castrate resistant prostate cancer”, “CRPC”, 

“Enzalutamide”, “MDV3100”, “study”, “trial”, “safety”, 

“maximum tolerated dose”, and “side effect*” and literature 

was filtered by human studies and English language. Papers 

were assessed at abstract and title and subsequently full 

text. Exclusions were made if the papers were reviews, non-

primary literature (ie, study or trials), and where enzalutamide 

was not the primary therapy tested. In addition, any primary 

literature which reported on results from a trial where there 

is already a leading full text article was also excluded, such 

as abstracts. Records obtained through clinicaltrials.gov 

were excluded where no results were available or where the 
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trial had been published as a full text article. Following the 

initial literature search, the long awaited phase III PREVAIL 

trial was published.9 These new data are fundamental to our 

current knowledge of the efficacy of enzalutamide, so have 

also subsequently been included within our review.

Enzalutamide
Pharmacology and early results
The demonstration of a consistent increase in AR mRNA 

expression associated with CRPC development via anti-

androgen resistance,10 led to the development of second 

generation anti-androgen therapeutics exploiting this 

characteristic.

Development of enzalutamide, formerly MDV3100, orig-

inated from the non-steroidal scaffolding chemical RU59063 

where it was structurally and biochemically optimized for 

its use as an AR antagonist. In a human prostate cancer cell 

line engineered to overexpress wild-type AR (LNCaP/AR), 

enzalutamide was found to have a five- to eight-fold higher 

binding affinity to the AR than bicalutamide, a first genera-

tion anti-androgen in widespread clinical use.11 In addition, 

unlike the first generation anti-androgens, enzalutamide was 

Table 1 Current treatment options for CRPC

Therapeutic agent Mechanism of action Clinical trial status Therapeutic efficacy

Docetaxel Stabilization of tubulin, induction  
of cell cycle arrest and inhibition  
of cell proliferation

FDA approved Overall survival benefit and palliation 
of cancer-associated symptoms

Cabazitaxel Stabilization of tubulin, induction  
of cell cycle arrest and inhibition  
of cell proliferation

FDA approved for men after  
failure of docetaxel

Overall survival benefit and palliation 
of cancer-associated symptoms

Sipuleucel-T (provenge) Enhancement of men’s autologous  
antigen-presenting cells to induce  
cytotoxic response against  
prostate cancer cells

FDA approved increase in overall survival but not 
progression-free survival

Abiraterone acetate Irreversible inhibition of CYP17  
and subsequent androgen  
synthesis

FDA approved in the pre-  
and post-docetaxel settings

increase in overall survival  
(almost 4 months), radiographic 
progression-free survival, time to PSA 
progression, and palliation of cancer-
associated symptoms

MDV3100 (enzalutamide) AR antagonist preventing nuclear  
translocation and binding to  
chromatin

FDA approved in the post-docetaxel  
setting 
Phase III clinical trial in comparison  
with placebo in chemotherapy-naïve men

Increase of overall survival (4.8 months), 
radiographic progression-free survival 
and time to PSA progression. 
Similar benefits reported

BEZ235 Inhibition of PI3K Phase I/II clinical trials in  
combination with Abiraterone  
acetate (NCT01717898)

Results pending

RAD001 (everolimus) Inhibition of mTOR Phase II clinical trial in combination  
with bicalutamide (NCT00630344)

Failure to show increase in time to 
progression

Alpharadin (Radium-223)50 An alpha emitter which  
selectively targets bone  
metastases with alpha particles

Phase III clinical trial in men who had  
received, were not eligible to receive,  
or declined Docetaxel

Increase of overall survival (median, 
14.0 months vs 11.2 months [placebo]; 
hazard ratio, 0.70).

Dovitinib (TK1258) Inhibition of FGFR Phase II clinical trial in men after failure  
of docetaxel-based chemotherapy  
(NCT01741116)

Results pending

Cabozantinib (XL184) Inhibition of c-MET Phase II clinical trial in men  
with mCRPC (NCT01428219) 
Phase III clinical trial in comparison with  
prednisone in men previously treated  
with docetaxel and abiraterone or  
MDV3100 (COMET-1, NCT01605227) 
Phase III clinical trial in comparison  
with mitoxantrone and prednisone  
(COMET-2, NCT01522443)

Reduction of soft tissue lesions, 
resolution of bone scans, increase  
of progression-free survival 
Results pending

Note: Adapted from Karantanos et al.51

Abbreviations: CRPC, castration resistant prostate cancer; FDA, Food and Drug Administration; PSA, prostate-specific antigen; mCRPC, metastatic castration resistant 
prostate cancer; PSA, prostate-specific antigen; AR, androgen receptor; vs, versus.
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a pure antagonist, apparently lacking any agonistic activ-

ity for AR targeted genes, PSA and transmembrane serine 

protease 2.11

Enzalutamide quickly demonstrated anti-tumor activity 

within LNCaP/HR and LAPC4/AR castration-resistant xeno-

graft models,11 the results far superior to bicalutamide.

The findings of these pre-clinical studies subsequently led 

to early human studies with the initial aims of determining a 

safe dose and evidence of clinical efficacy.

Enzalutamide is rapidly absorbed with C
max

 between 

30 minutes and 4 hours following a single dose (160 mg/day).12 

It has a long half-life of approximately 1 week (3–13 days 

irrespective of dose). Blood serum levels reach a steady state 

after a month and the concentrations observed at a daily dose 

of 150 mg are comparative to those in the xenograft models 

in preclinical studies of CRPC.12 In the first human trials 

conducted with enzalutamide, published in 2010,12 a total 

of 140 men with CRPC were enrolled. Cohorts of three to 

six men were treated with an initial oral dose of 30 mg/day 

and subsequent dose escalation. Sequential cohorts were 

treated at 30, 60, 150, 240, 360, 480, and 600 mg/day and 

enrollment was expanded by 24 men following a demon-

stration of a significant decrease in serum PSA levels of 

all of the first six men. Subsequent cohorts contained both 

chemotherapy naïve and post-chemotherapy men, with only 

the post-chemotherapy men receiving the highest doses at 

480 and 600 mg/day.

Although the primary aim of these early studies was to 

establish the pharmacokinetics and safety of enzalutamide, 

significant dose-related anti-tumoral effects were observed: 

for example, results from the Scher et al 201212 study showed 

that at doses ranging from 60 mg to 480 mg per day, positron 

emission tomography (PET) scans indicated that 18-fluoro-

dihydrotestosterone uptake was reduced by approximately 

20%–100% (from baseline to 4 weeks post-treatment) in 

18-fluorodihydrotestosterone avid lesions. Doses at 60 mg/

day had a smaller reduction with a mean decrease of less than 

50% when compared to higher doses which achieved a greater 

than 50% reduction. Differences between the higher doses 

were only apparent in the blood serum with enzalutamide 

concentrations at 12 µg/mL at 150 mg/day and .20 µg/mL 

at 150 mg and 480 mg/day.
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Figure 1 Androgen receptor (AR) gene, protein and its constitutively active variants.
Notes: (A) Full-length AR gene and protein. The AR gene consists of eight exons. Exon 1 codes for the amino-terminal domain (NTD), which contains the AF1 transactivation 
function. Exon 2 and 3 code for the DNA-binding domain (DBD). The hinge region (H) which contains the nuclear localization signal is encoded by the 5′ region of exon 4. The 
3′ region of exon 4 alongside 5–8 encodes for the ligand-binding domain (LBD), which consists of the second transactivation function AF-2. (B) AR splice variants. The two major 
AR splice variants readily detectable in castration resistant prostate cancer specimens, AR-V7 and AR-V12 (also known as AR3 and AR-Ve567s, respectively) have the ability to 
regulate target gene expression in the absence of full-length AR signaling. Gene expression profiles revealed that these variants regulate genes responsible for cell cycle function as 
well as androgen-responsive genes.22 AR-V7 is truncated at the end of exon 3 and lacks the LBD, however contains amino acids from cryptic exon 3 (CE3). AR-V12 splice variant 
is missing exons 5–7, which left the protein with only a small part of the LBD region which is not located at the normal translation frame. AR-V12 is one of the most frequent AR 
splice variants found in 23% of human bone metastasis. It is thought to be responsible for poor disease prognosis, however its precise role remains unknown.23
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This study established the presence of significant anti-

tumor effects in a dose-dependent manner, however, a pla-

teau appeared to be reached between 150–240 mg/day and a 

maximum tolerated dose of 240 mg/day was determined.

Clinical and radiological markers of the disease sug-

gested considerable anti-tumor effects with a reduction in 

serum PSA levels greater than 50% seen in 51% of men in a 

post-chemotherapy setting and 62% in a chemotherapy naïve 

group. Radiological findings also demonstrated tumor regres-

sion (13/59 men), soft tissue stable disease (29/59 men) and 

stable disease in bone (61/109 men). In addition, the time to 

radiological progression was 47 weeks for all men; 29 weeks 

for the post-chemotherapeutic population, and not reached 

in chemotherapy naïve population. Circulating tumor cell 

counts, examined in 120 men, converted to favorable counts 

in 49% of the chemotherapy naïve population and 37% of the 

post-chemotherapy population. Of the men who entered the 

trial with favorable counts, 91% remained favorable.

Enzalutamide: current evidence
The early results seen with enzalutamide therapy led to the 

international phase III AFFIRM trial (A Study Evaluating the 
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Figure 2 Mechanism of castrate-resistant prostate cancer.
Notes: 1) Androgens bind and activate the AR despite the castration of testes-derived androgens. Androgens are secreted from other sources such as adrenal glands, adipose 
tissue, and intratumoral testosterone production.24–27 2) Prostate cancer cells become sensitized to low levels of circulating androgens post-castration by increasing the 
production of AR via gene amplification and by increasing the local conversion of testosterone to potent dihydrotestosterone (DHT) via 5alpha-reductase.28–31 3) Promiscuous 
pathway. Mutations (mostly missense) of the LBD of AR expand the binding specificity, allowing non-androgenic steroids, such as estrogen (E), progesterone (P), and 
glucocorticoid (G) to bind and activate the AR.32–37 4) Alternative splicing within the NTD or LBD of the AR gene allows the AR protein to translocate and bind the DNA 
without the need for ligand binding or dimerization.38,39 Some AR splice variants promote castration resistance and anchorage-independent growth through coupling to the 
full-length AR mRNA production.40 5) Alteration of the levels of coactivators and co-repressors, signaling intermediates between the AR and transcriptional machinery, affect 
the AR activation by sensitizing to lower levels of androgen and alternative activation mechanisms.41–43 6) Bypass pathway. Prostate cancer cells develop the ability to evade 
apoptosis and survive when exposed to low levels of androgen via upregulation of the molecule Bcl-2, a regulator of programmed cell death.44–47 7) Stem cell regeneration may 
continually supply the androgen-independent population of prostate cancer cells after ADT.47–49

Abbreviations: AR, androgen receptor; LBD, ligand binding domain; NTD, amino-terminal domain; ADT, androgen deprivation therapy; CRPC, castration resistant prostate 
cancer; PSA, prostate-specific antigen; mRNA, messenger RNA; LH, luteinizing hormone; ACTH, adrenocorticotropic hormone.
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Literature identified from search
terms* through databases:
The Cochrane library (n=1)

(exclusions: duplicate, terminated,
recruiting, open, no available

results)
Clinicaltrials.gov (n=1)

Web of Science (n=141) Clinicaltrials.gov (n=3)

Medline via Ovid (n=36)
PubMed (n=127)

Total (n=305)

(exclusions: review, non-human studies,
enzalutamide not primary focus, non-clinical

trial/study)

Literature remaining at title and
abstract per database:

The Cochrane library (n=1)
Web of Science (n=21)
Medline via Ovid (n=0)

PubMed (n=5)

Total (n=25)

Literature remaining when
duplicates removed:

Literature remaining at full
text assessment:

Studies included in review with the addition of the newly published
PREVAIL trial:9

Total (n=8)

The Cochrane library (n=0)
Web of Science (n=14)
Medline via Ovid (n=0)

PubMed (n=3)

Total (n=17)

Total (n=6)

Literature excluded:
Total (n=11)

Literature excluded:
Total (n=10)

Literature excluded:
Total (n=278)

Literature
excluded:
Total (n=2)

Records identified from
search terms* through

other sources:

Correct at 17th–19th April 2014

Records remaining:

Figure 3 Summary of the search strategy.
Notes: *“Castrate resistant prostate cancer”, “CRPC”, “Enzalutamide”, “MDV3100”, “study”, “trial”, “safety”, “maximum tolerated dose”, and “side effect*”.
Abbreviation: CRPC, castration resistant prostate cancer.
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Efficacy and Safety of the investigational drug MDV3100); 

a randomized, double-blind, placebo controlled trial in men 

with prostate cancer who had received one or two previous 

chemotherapy treatments, one of which was docetaxel.13 

The study recruited 1,199 men, randomized to enzalutamide 

(160 mg/day by oral administration) or placebo in a 2:1 ratio, 

resulting in 800 men within the enzalutamide arm and 

399 men within the placebo arm. Baseline criteria included; 

demonstration of effective castration with circulating levels 

of testosterone at less than 1.7 nmol/L, previous treatment 

with docetaxel, and progressive disease (including increasing 

levels of PSA and radiographically confirmed progression). 

In addition, Eastern Cooperative Oncology Group (ECOG) 

performance status scores between 0–5 and pain intensity 

scores (the brief pain inventory short form 0–10) were 

recorded. The primary endpoint was overall survival (OS); 

secondary endpoints included measures of response and 

progression (PSA and radiographic analysis), soft tissue 

response, quality of life (QoL) scores, and time to first 

skeletal event.

This study was terminated early at a planned interim 

analysis at 520 deaths. At this analysis, treatment with 

enzalutamide was associated with a 37% reduction in risk 

of death when compared with placebo. Consequentially, the 

trial was halted and men in the placebo arm were offered 

enzalutamide. The median OS with enzalutamide was 18.4 

(95% confidence interval [CI] 17.3 – not yet reached) months 

compared to 13.6 (95% CI) months in the placebo arm. 

Superiority of enzalutamide over placebo was demonstrated 

in all secondary endpoints including PSA declines greater 

than 50% (54% versus [vs] 2%), soft tissue response (29% 

vs 4%), and improvement in QoL ( 43% vs 18%) in the 

enzalutamide group versus the placebo group respectively. 

Time to PSA progression was 8.3 months compared with 

3.0 months, with similar findings for radiological  progression. 

The median time on enzalutamide was 8.3 months compared 

to 3 months on placebo. Overall, within the intention-to-treat 

trial population, 39% on enzalutamide and 53% on placebo 

had died.

In summary, the study found that enzalutamide did indeed 

increase the survival of men who had previously been treated 

by chemotherapy for mCRPC.

More recent studies have assessed the eff icacy of 

enzalutamide following prior treatment with docetaxel and 

abiraterone.14,15

The study by Schrader et al 2013,14 was conducted with 

35 CRPC men from three German medical centers. At base-

line, tumor specific data were obtained from medical records 

and clinical examination as well as PSA testing conducted 

every 3 weeks, for 1–12 weeks, and then every 6 weeks in 

follow-up. All men had previously progressed on abiraterone 

treatment with a mean termination of treatment 14 days prior 

to starting enzalutamide. The primary aim was to assess the 

efficacy of enzalutamide at a 160 mg/day oral dosage in a 

post-abiraterone setting.

A PSA decline of between 19%–99% on at least one occa-

sion was found in 51.5% of men, with 28.6% (10/35) having 

a PSA decline of greater than 50%. At the time of analysis 

13 men continued enzalutamide treatment for clinically stable 

disease or lack of better treatment options but the median 

duration of treatment was short at 5.1 months (3.8 months 

in men with a PSA regression less than 50% and 7.8 months 

in men with a regression greater than 50%). Men who failed 

to achieve a PSA decline of greater than 50% tended to have 

a high Gleason score (8–10) or more poorly-differentiated 

tumors. Three men who had no previous response to abi-

raterone were found to respond to enzalutamide. Two of 

the men who had no significant PSA decline (.50%) did 

not show a significant PSA response ($50%) with first line 

ADT with luteinizing-hormone-releasing hormone analogs 

and bicalutamide; one had a Gleason score of 9 and dem-

onstrated resistance to abiraterone previously and the other, 

with a Gleason of 7, responded well with abiraterone with 

a PSA decline of 99% but subsequent enzalutamide treat-

ment was ineffective. A significant biochemical response to 

Enzalutamide was seen in 43.8% of men who had previously 

achieved >50% PSA decline on Abiraterone. Of 17 men 

assessed radiographically, only one demonstrated a partial 

response. Disease stability was demonstrated in 54.3% of 

men. The mean OS for all men was 7.1 months.

This study demonstrated only a moderate effect of enzalu-

tamide following abiraterone treatment in CRPC men with 

71.4% not achieving a PSA decline of greater than 50%. This 

suggests cross-resistance between abiraterone and enzalut-

amide. Nevertheless, three men previously insensitive to abi-

raterone were responsive to enzalutamide treatment, suggesting 

heterogeneity of response due to multiple drug targets.

Badrising et al15 conducted a multicenter observational 

study in mCRPC men who did not tolerate or progressed 

following docetaxel and abiraterone treatment. The study 

consisted of a total of 61 men given Enzalutamide 160 mg/

day with the primary endpoint to determine the efficacy of 

enzalutamide following failed post-docetaxel and abirater-

one. Baseline inclusion criteria included, evidence of progres-

sive disease (PSA, radiographic or clinical) despite effective 

surgical or medical castration, ECOG score of 0–2 and, at the 
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physicians discretion, no alternative treatment. Treatment was 

continued until clinical deterioration, disease progression, 

and/or unacceptable adverse effects at the discretion of the 

physician. Imaging studies were also performed, again at the 

discretion of the physician. Assessments were made monthly 

to evaluate progression-free survival (PFS) determined as 

PSA, radiographic, and clinical progression.

The median duration of enzalutamide treatment was 

14.9 weeks and $30%, $50%, and $90% declines in PSA 

were observed in 46%, 21%, and 3% of men respectively. 

Eighteen men (30%) had no PSA decline at any time. Reasons 

for discontinuation included no initial activity (26% of men 

who discontinued), progressive disease (36% of men who 

discontinued), and death (3% of men who discontinued: one 

patient due to hemorrhagic stroke and one due to disease 

progression). One patient (2%) was intolerant, experiencing 

severe nausea and fatigue. At analysis, 19 men (31%) were 

still receiving enzalutamide. Median PFS was demonstrated 

at 12.0 weeks, median time to PSA progression 17.4 weeks, 

and median OS 31.6 weeks. There was no difference in 

maximum PSA response with enzalutamide treatment and 

duration of enzalutamide treatment between those who had 

had a greater than 50% PSA response or less than 50% PSA 

response on previous docetaxel or abiraterone treatment. 

This suggests that men who have previously progressed on 

abiraterone may have a modest PSA response on enzalu-

tamide with previous response not predicting response to 

subsequent treatment.

The landmark study in the evolution of enzalutamide as 

treatment for mCRPC, the PREVAIL trial,9 included men 

who had not undergone any previous chemotherapy treat-

ment and were at earlier stages of metastatic disease, unlike 

previous trials, including both mildly symptomatic and 

asymptomatic men. This study included a total of 1,717 men 

of ECOG status 0/1, who were randomly assigned to either 

enzalutamide 160 mg/day administered orally, or placebo. 

A total of 872 men were within the enzalutamide arm and 

845 within the placebo control arm of the study. Criteria 

at baseline included histological or cytological confirmed 

prostate cancer with documented metastases and a PSA or 

radiographic progression in bone or soft tissue despite a 

serum testosterone level of #1.73 nmol following previous 

orchiectomy or luteinizing-hormone-releasing hormone 

therapy. Prior ADT was required and continued but men who 

had received previous cytotoxic chemotherapy, abiraterone 

or ketoconazole were excluded.

Treatment was discontinued if there was evidence of 

radiographic progression, initiation of chemotherapy or 

unacceptable adverse events. Radiographic disease was 

measured via magnetic resonance imaging (MRI) or com-

puted tomography (CT) with bone scans at the time of 

screening (9, 17, and 25 weeks with subsequent screening 

every 12 weeks after). Progression was measurable by the 

RECIST (Response Evaluation Criteria In Solid Tumors) 

criteria.16

The primary endpoints of this study were radiographic 

PFS and OS. Secondary endpoints included time until 

initiation of cytotoxic chemotherapy, time until the first 

skeletal event, best overall soft tissue response, time to PSA 

progression, and a PSA decline of $50% from the baseline. 

Further, exploratory endpoints included QoL (measurable by 

FACT-P [functional assessment of cancer therapy-prostate]) 

and a decline in PSA $90% from the baseline.

The study was halted at the planned interim review, given 

the strength of evidence showing superiority of enzalutamide 

over placebo in the primary endpoint of radiographic progres-

sion and all the planned secondary endpoints. The median 

duration of follow-up at this planned analysis was 22 months, 

with all endpoints reported for, at that point. There was a 

further updated analysis of OS after a further 116 additional 

deaths. The median time which men received enzalutamide 

was 16.6 months compared to 4.6 months for the placebo 

group. Radiographic PFS at 12 months was seen in 65% and 

14% (enzalutamide vs placebo respectively) of men. The 

median time to radiographic progression was not reached in 

the enzalutamide group and was 3.9 months in the placebo 

group. As for OS, there were fewer deaths in the enzalutamide 

group when compared to the placebo group (28% vs 35% 

respectively); the hazard ratio indicating an overall risk reduc-

tion of death with enzalutamide of 21%. There was a modest 

improvement in median OS of approximately 2.2 months with 

enzalutamide, from 30.2 months to 32.4. When the additional 

deaths at a later unspecified interval were taken into account, 

the hazard ratio indicated a similar reduction in risk of death 

(27%) as at the planned interim analysis. Rather surprisingly, 

although the median OS on placebo remained similar (31.0 

months) that for enzalutamide was not reached. The benefit 

of enzalutamide was evident as early as the first assessment 

at 2 months, thus indicating rapid early response.

Perhaps the most telling secondary endpoint was the 

prolongation of median time to cytotoxic treatment of around 

18 months with enzalutamide. This was accompanied by 

a demonstrable increase in time to QoL deterioration of 

approximately 6 months. This indicates significant benefit in 

terms of QoL, particularly given the negative attitude most 

men have toward systemic chemotherapy.
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Adverse events
Adverse effects have been graded on the National Cancer 

Institute common terminology criteria for adverse events. 

Some of the studies, for example Schrader et al 2014,14 did 

not report adverse event outcomes. The first reported human 

study of enzalutamide12 noted the most common adverse effect 

was fatigue at doses of 240 (one of 29), 360 (three of 28), 

and 480 mg/day (five of 22). Dose reduction resulted in 

resolution of symptoms. Grade 2 adverse events found to 

be most common were nausea, constipation, diarrhea, and 

anorexia; one patient ceasing treatment due to nausea but 

it was noted this was also present at baseline. There were 

two witnessed seizures at doses of 600 and 360 mg/day and 

one possible seizure at 480 mg/day. However, all these men 

had extensive complicated medical histories. An additional 

two men discontinued treatment due to a rash and one man 

due to myocardial infarction; this patient had also had a 

complicated medical history. It is likely that men with more 

complex medical histories may be at an increased risk of more 

severe adverse events and further complications, so results 

may not truly reflect enzalutamide’s toxicity.

The study by Badrising et al15 similarly concluded that 

the majority of adverse events were grade 1 (65%), with 

grade 2 and 3 adverse events being notably less common 

(26% and 9% respectively). Grade 1 adverse events included 

hot flashes and the most common grade 2/3 events were 

fatigue, observed in 59% of men, followed by musculoskel-

etal pain in 27% of men.

Within the phase III AFFIRM trial, fatigue, hot flashes, and 

diarrhea were all reported in higher numbers within the enzalu-

tamide group when compared to the placebo controls. Seizures 

occurred in five men (0.6%) within the enzalutamide group with 

none in the placebo group. However, the enzalutamide group 

exhibited lower numbers of grade 3 or above adverse events 

when compared to the placebo group (45.3% vs 53.1%) with 

the time to events significantly longer (12.6 and 4.2 months 

respectively). Cardiac disorders within the enzalutamide group 

were 6% and 8% for the placebo group, however, hypertension 

appeared marginally higher in the enzalutamide group (6.6% vs 

3.3%). There were no other significant differences in adverse 

events within the two groups. Interestingly, this study reported 

no musculoskeletal pain which was present in 27% of the men 

in the phase I/II study by Badrising et al.15

Within the enzalutamide group in the PREVAIL study, 

common adverse events which occurred 20% more and at 

least two percentage points more than in the placebo group 

were fatigue, back pain, constipation, and arthralgia. After 

adjusting for length of exposure, events which were higher 

within the enzalutamide group when compared to the pla-

cebo group were hot flashes, hypertension, and falls, with 

hypertension the most common grade 3 or higher event 

(reported in 7% of patients). The most common cardiac 

event was atrial fibrillation, reported in 2% of patients within 

the enzalutamide group and 1% of the placebo group. One 

patient within each study arm reported a seizure. There was 

no evidence of hepatotoxicity.

The PREVAIL study was carried out in a pre-chemotherapy 

setting and for mPCa patients who were mildly symptomatic 

or asymptomatic. The median reporting time to adverse 

events, which reflected the increased period of exposure of 

patients to enzalutamide, was 17.1 months. Adverse events at 

grade 3 or higher occurred in 43% of men in the enzalutamide 

group and 37% within the placebo group. Unfortunately, the 

median time to emergence of the first grade 3 (or greater) 

adverse event was 22 months, with physical deterioration lead-

ing to death being the most common. As such, it is impossible 

to assign causality to the adverse events. The data from this 

trial subsequently suggest a promising side effect profile in 

a pre-chemotherapy setting, albeit with a median length of 

follow-up at only 22 months. Although tolerability appeared 

relatively good within the early trials, prior to the PREVAIL 

study, men presenting at earlier stages are less likely to have 

complex clinical disease than those who are post-chemothera-

peutic, so it could be argued that the adverse event data in the 

PREVAIL trial give a better indication of enzalutamide’s true 

toxicity. However, given that these men are likely to survive 

for longer, there remains insufficient evidence examining less 

acute or chronic side effects such as cardiovascular morbidity. 

The only studies to have specifically been designed to examine 

adverse events and safety have been the smaller phase I/II 

studies. The evidence to date does not provide sufficient 

data in terms of the number of men enrolled or the length 

of follow-up to justify completely what was concluded as an 

“excellent side-effect profile”, particularly as the drug is likely 

to be initiated earlier in the disease, given the demonstration 

of improved OS. Currently, the true lond-term adverse event 

rate of enzalutamide cannot be determined until treatment 

for men with earlier stage disease is approved. Thus, there is 

an ongoing need for the adverse eventsof enzalutamide to be 

studied and documented.

Cross resistance
One of the major mechanisms that have been postulated 

to be responsible for an overall resistance to conventional 

and next generation ADT is the synthesis of AR splice 

variants (AR-V) (Figure 2) that lack the LBD. Indeed, the 
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Table 2 Cost effectiveness analysis – results

Strategy Total cost (US$) Total effect (QALYs) Incremental cost (US$) Incremental eff (QALYs) ICER (US$/QALY)

Placebo $82,929 0.43 0 0 0
Abiraterone $116,700 0.70 $33,770 0.27 $123,430
Enzalutamide $129,769 0.73 $13,069 0.03 $437,623
Cabazitaxel $136,979 0.76 $20,279 0.06 $351,865

Notes: Reprinted by permission of © 2013 SAGE Publications. Wilson L, Tang J, Zhong L, et al. New therapeutic options in metastatic castration-resistant prostate cancer: 
Can cost-effectiveness analysis help in treatment decisions? J Oncol Pharm Pract. 2013.30

Abbreviations: QALY, quality adjusted life years; eff, effect; ICER, incremental cost-effectiveness ratio.

transcriptionally active NDT and presence of DNA bind-

ing domains are sufficient enough for AR-V to function 

as a transcription factor in a ligand-independent manner. 

Over-expression of AR-V at mRNA and protein levels in 

prostate cancer tissue is associated with disease progression 

and poor prognosis.17

Recent studies show that enzalutamide is moderately 

effective after abiraterone failure. In vitro studies revealed 

that induction of AR-V is responsible for prompt resistance 

to enzalutamide and abiraterone.18 However, a small number 

of abiraterone-insensitive patients responded to enzalutamide 

which demonstrates that there are other possible mechanisms 

of resistance. One possible mechanism for abiraterone 

resistance can be gain-of-function AR mutations which sensi-

tizes AR to non-androgenic steroids through the promiscuous 

pathway (Figure 2). Evaluating the therapy responses in the 

reverse sequence, enzalutamide-abiraterone, demonstrates 

fewer responses to abiraterone treatment after enzalutamide. 

AR LBD mutations are known to cause conversion of steroi-

dal and non-steroidal anti-androgens such as bicalutamide 

from antagonist to an agonist. This could suggest the role of 

such mutations in resistance to enzalutamide in abiraterone-

sensitive patients.14

Cost-effectiveness
A press release by NICE (National Institute for Health and 

Care Excellence) published in 201319 concluded that the cost 

per quality of life years (QALY) for enzalutamide, although 

uncertain when compared with abiraterone, is below the 

NICE guideline of £30,000 per QALY gained. The cost 

for a single pack of 112 40 mg capsules is £2,734.67 and 

this, when based on an average length of treatment around 

8.5 months and a dosage per day of 160 mg, amounts to an 

average of £25,269.

Conversely, a study by Wilson et al, comparatively 

assessed cost-effectiveness of the three major treatment 

options for CRPC post-docetaxel; abiraterone, cabazitaxel, 

and  enzalutamide; to a placebo group.20 It concluded that 

enzalutamide was less cost-effective than abiraterone 

(Table 2) after adjustments were made against the other trials’ 

placebo controls due to large differences between survival 

of the study groups. In this case, Wilson et al concluded that 

abiraterone was the most cost-effective treatment available 

for CRPC and recommended its use over the other treatment 

options.  However, had these adjustments not been made, 

enzalutamide’s cost per QALY would fall to $33,532/QALY, 

well below the US threshold of US$100,000, and making it 

the most cost effective. Additionally, more recent data pre-

sented at the 2014 Genitourinary Cancers Symposium21 also 

found that abiraterone was more cost effective per QALY than 

enzalutamide. The population, intervention, comparison, and 

outcomes approach was used to compare the data from the 

abiraterone study COU-AA-301 and the AFFIRM trial. The 

data suggested that abiraterone was substantially cheaper 

than enzalutamide with an average saving of US$13,322 

per patient.

However, the cost-effectiveness data have been obtained 

from studies which focused on the use of enzalutamide in a 

post-chemotherapy setting, therefore no data are available on 

the longer term use of enzalutamide prior to chemotherapy, 

which may result in long-term effects, potential risks, and 

excess treatment costs. In addition, the efficacy of enzalut-

amide demonstrated at late stage CRPC will surely warrant 

its use in earlier stages of disease. As a result, true cost-

effectiveness data cannot be demonstrated until evaluated 

with data from studies involving greater long-term follow-up 

and earlier stage prostate cancer.

Ongoing issues
Uncertainty remains around the timing, sequence, and 

additive benefits of the treatment options available for the 

treatment of mCRPC. Enzalutamide has clear advantages 

over some of the other options (Table 1) in terms of ease 

of administration, no requisite co-medication (eg, ste-

roids,) and a favorable side effect profile (eg, compared to 

systemic docetaxel). The current evidence would suggest 

significant delay in QoL deterioration, disease progression 

and requirement for further therapy, but with only a modest 
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improvement in OS shown to date. Combining treatments 

has a rationale (eg, abiraterone with enzalutamide) as 

many of the options have different mechanisms of action, 

however the long-term results and cost-effectiveness of 

such an approach are yet to be demonstrated. Similarly, the 

results of trials evaluating the effects of enzalutamide in 

maximal androgen blockade, monotherapy, and in earlier 

stage disease are awaited.

Conclusion
The disease-modifying effects of enzalutamide are clear from 

the clinical trial data and match the expectation raised by the 

early in vivo models. That there is considerable benefit at all 

stages of metastatic CRPC is equally clear, however questions 

remain around optimal timing of initiation of therapy, identi-

fication of men most likely to benefit, and cost-effectiveness 

of the treatment when compared with other options, either in 

isolation, or as is most likely in such a progressive lethal disease, 

in  combination. Equally, it is not clear yet as to the long-term 

effects enzalutamide may pose for these men. Current data on 

more acute adverse events within these trials are very promis-

ing, but with little information given on the long-term follow-up 

of these men, further data are essential and eagerly awaited.

In conclusion, enzalutamide, a second generation 

 anti-androgen, is among a number of agents demonstrating prom-

ise for men progressing with mCRPC. Clinical trials have clearly 

demonstrated enzalutamide’s efficacy for men with advanced 

disease but further data involving its use in less advanced stages 

will give a greater insight into the potential of enzalutamide. We 

have yet to establish the full benefit this drug may have for men 

with prostate cancer, but the future looks brighter for men with a 

hitherto essentially untreatable condition.
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