
© 2015 Fallahi et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

Drug Design, Development and Therapy 2015:9 3459–3470

Drug Design, Development and Therapy Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
3459

R e v i e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/DDDT.S72495

Selective use of vandetanib in the treatment 
of thyroid cancer

Poupak Fallahi1

Flavia Di Bari2

Silvia Martina Ferrari1

Roberto Spisni3

Gabriele Materazzi3

Paolo Miccoli3

Salvatore Benvenga2

Alessandro Antonelli1

1Department of Clinical and 
experimental Medicine, University 
of Pisa, Pisa, 2Department of Clinical 
and experimental Medicine, Section 
of endocrinology, University of 
Messina, Messina, 3Department of 
Surgical, Medical, Molecular Pathology 
and Critical Area, University of Pisa,  
Pisa, italy

Abstract: Vandetanib is a once-daily orally available tyrosine kinase inhibitor that works by 

blocking RET (REarranged during Transfection), vascular endothelial growth factor receptor 

(VEGFR-2, VEGFR-3), and epidermal growth factor receptor and to a lesser extent VEGFR-1, 

which are important targets in thyroid cancer (TC). It is emerging as a potentially effective 

option in the treatment of advanced medullary thyroid cancer (MTC) and in dedifferentiated 

papillary thyroid cancer not responsive to radioiodine. The most important effect of vandetanib 

in aggressive MTC is a prolongation of progression-free survival and a stabilization of the 

disease. Significant side effects have been observed with the vandetanib therapy (as fatigue, 

hypertension, QTc prolongation, cutaneous rash, hand-and-foot syndrome, diarrhea, etc), 

and severe side effects can require the suspension of the drug. Several studies are currently 

under way to evaluate the long-term efficacy and tolerability of vandetanib in MTC and in 

dedifferentiated papillary TC. The efficacy of vandetanib in patients with MTC in long-term 

treatments could be overcome by the resistance to the drug. However, the effectiveness of 

the treatment could be ameliorated by the molecular characterization of the tumor and by the 

possibility to test the sensitivity of primary TC cells from each subject to different tyrosine 

kinase inhibitor. Association studies are evaluating the effect of the association of vande-

tanib with other antineoplastic agents (such as irinotecan, bortezomib, etc). Further research 

is needed to determine the ideal therapy to obtain the best response in terms of survival and 

quality of life.

Keywords: vandetanib, medullary thyroid cancer, papillary thyroid cancer, tyrosine kinase 

inhibitors, adverse events

Introduction
Thyroid cancer (TC) accounts for about 1% of all cancers1 and is the most common 

malignant endocrinological tumor.2 In the last few decades, an increased TC incidence 

has been shown (from 10.3 per 100,000 individuals in 2000 to 21.5 per 100,000 

individuals in 2012),3 especially for papillary carcinoma, while mortality seems not 

changed.

The increased incidence of TC is probably due to more sophisticated diagnostic 

procedures (ultrasonography, fine-needle aspiration [FNA], etc), but also environmental 

factors have been implicated (radiation exposure, pollutants, etc). Furthermore, new 

risk factors have emerged in the last decade.4,5 Histologically, TCs include different 

subtypes (Table 1).6–16

Molecular pathways in TC
In the last few decades, several molecular pathways involved in the development of 

TC have been identified.17
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Rat sarcoma
Rat sarcoma (RAS) genes encode proteins activating MAPK 

and PI3K pathways (Figure 1). RAS activation depends 

on epidermal growth factor receptor (EGFR), and is often 

overexpressed if mutated. RAS mutations are more frequent 

in follicular thyroid cancer (FTC) and in half of anaplastic 

thyroid cancer (ATC) and poorly differentiated thyroid 

cancer (PDTC), while they are present in only 10%–15% 

of papillary thyroid cancer (PTC; especially in follicular 

variant).16,18,19 Somatic RAS mutations are also found in 

medullary thyroid cancer (MTC) without RET (REarranged 

during Transfection) mutations.20

BRAF is a member of RAF family proteins that binds 

RAS and activates MAPK cascade. Valine to glutamate 

amino acid substitution at residue 600 (V600E) is the most 

frequent point mutation (45% of PTC, 10%–20% of PDTC, 

20% of ATC, rarely in FTC) that is associated with tumor 

recurrence, absence of tumor capsule, and loss of response 

to radioiodine (RAI).21 Other BRAF mutation or rearrange-

ments (as AKP9/BRAF) are less frequent.

ReT (Rearranged during Transfection)
RET is a proto-oncogene (10q11.2), which codes for a 

tyrosine kinase transmembrane receptor and is expressed 

on tissues deriving from the neural crest including thyroid 

C cells but not in normal thyroid follicular cells.22,23 In 

thyroid tumors, RET can be activated by point mutations 

in C cells or by rearrangements (fusion to other genes) in 

epithelial cells.16

RET/PTC rearrangements (the 3′ portion of RET gene is 

fused to the 5′ portion of various genes) activate transcription 

of the RET tyrosine kinase domain inducing uncontrolled 

proliferation.24,25 Approximately 20%–40% of sporadic 

PTC are found RET/PTC rearrangements,26 that are also 

present in thyroid adenomas and benign lesions.27,28 Among 

13 RET/PTC rearrangements reported, RET/PTC1 (by the 

fusion with the CCDC6, formerly H4) and RET/PTC3 (by 

the fusion with the NCOA4, formerly ELE1) are the most 

common.29

Some authors have suggested a role of RET/PTC in the 

initial step of childhood PTC or in PTC arising after expo-

sure to ionizing radiations (mainly RET/PTC3).30,31 RET/

PTC3 appears to be related with poor prognostic factors, 

such as a greater tumor size and a more advanced stage at 

diagnosis.32

Activating mutations involving RET have been identi-

fied in 98% of hereditary MTC and 50% of sporadic MTC.33 

Germ line gain of function RET mutations are found in 98% 

multiple endocrine neoplasia type 2A (MEN2A) families, 

85% familial medullary thyroid cancer (FMTC), and more 

Table 1 Histological thyroid cancer subtypes

Histological thyroid cancer subtypes Description

DTC
[PTC (80% cases); FTC (11% cases); Hürthle cells TC]

Tumor dedifferentiation in DTC occurs in up to 5% of tumors and it is 
associated with a more aggressive behavior and loss of iodide uptake

PDTC it is a subset of thyroid tumors more aggressive than DTC
ATC Highly aggressive, undifferentiated thyroid cancer (2% of all TCs)
MTC
[Sporadic (75%) or hereditary (25%); hereditary MTC 
might be (a) FMTC, defined by the presence of MTC 
alone; (b) involved in MeN2 syndrome]

it is derived from C cells (2%–5% of all TCs)

Lymphomas and sarcomas Rare TCs

Abbreviations: DTC, differentiated thyroid cancer from follicular cells; PTC, papillary thyroid cancer; FTC, follicular thyroid cancer; TC, thyroid cancer; PDTC, poorly 
differentiated thyroid cancer; ATC, anaplastic thyroid cancer; MTC, medullary thyroid cancer; FMTC, familial medullary thyroid cancer; MeN2, multiple endocrine neoplasia 
type 2.

Figure 1 The RAS/MAPK/Pi3K pathway.
Abbreviation: RAS, rat sarcoma.
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than 98% multiple endocrine neoplasia type 2B (MEN2B).34 

In MEN2A, the most frequent mutation of RET is in cysteine 

634,35 while the most common mutations associated with 

MEN2B are M918T and A883F.35–37

In sporadic MTC, the substitution of methionine by threo-

nine at codon 918 (M918T) is the most common mutation 

and is associated with a more aggressive disease and poorer 

prognosis.38,39

Rearrangements of PAX8/peroxisome proliferator–

activated receptor γ is detected in 30%–40% of FTC and 

2%–13% of follicular adenomas.40,41

vascular endothelial growth factor
Angiogenesis plays a crucial role for growth and metasta-

sis of a tumor; in fact, several studies showed correlation 

between angiogenesis and tumor aggressiveness.42,43 The 

vascular endothelial growth factor (VEGF) family includes 

VEGF A-C and placental growth factor (P1GF) and stimu-

lates angiogenesis, endothelial cell proliferation, migration, 

survival, and vascular permeability binding to the VEGF 

receptors: VEGFR-1, VEGFR-2, and VEGFR-3.44 VEGF 

signal is mediated mainly by VEGFR-2 receptor, expressed 

at high levels by endothelial cells involved in angiogenesis.45 

VEGFR-2 stimulation results in activation of different path-

ways, including MAPK and PI3K-Akt.46 An overexpression 

of VEGF and angiopoietin-247 has been shown in DTC, 

while in MTC, overexpression of VEGF and VEGFR-2 was 

found.48 Also, there is an increased expression of VEGF-C 

and VEGFR-3 in metastatic MTC.49 Increased VEGF expres-

sion is associated with a worse prognosis in many DTC.50 

Furthermore, overexpression and activation of VEGFR-2 in 

MTC correlate with metastasis.39 In experimental models, 

drugs interfering with VEGF block the growth of DTC and 

PDTC.51–53 These discoveries have led to the development of 

systemic antiangiogenic drugs that act on VEGF-A pathway, 

for the treatment of patients with various types of cancers 

including TC.54

epidermal growth factor
Epidermal growth factor is also important for the growth and 

metastasis ability of the tumor and acts by binding to EGFR, 

thus stimulating VEGF expression.55 In TC, EGFR (ErbB-1; 

HER1 in human beings) mutations contribute to RET kinase 

activation and favor growth and spread of tumor; in turn, 

activation of RET/PTC1 and RET/PTC3 induces expression 

of EGFR.56,57

The incidence of EGFR mutations in TC was previously 

thought to be low, but more recently, it has been suggested that 

EGFR mutations are almost 30%.58 EGFR is overexpressed and 

correlated with tumor progression and lymph node metastasis 

in ATC and PDTC, compared to normal thyroid tissue.59–61 Lote 

et al have described a case of metastatic PDTC with an EGFR 

mutation, treated with erlotinib (selective EGFR tyrosine 

kinase inhibitor [TKI]) and responsive to therapy, suggesting 

the importance of EGFR as therapeutic target in PDTC.62 In 

PTC, the expression of EGFR-1 protein is absent or poor. It 

suggests that overexpression of EGFR-1 can favor progression 

toward an angiogenic, poorly differentiated, thyroid-stimulating 

hormone (TSH)-independent phenotype.63

Thyroid carcinoma therapy
Differentiated thyroid carcinoma
DTC is treated by surgery, followed by RAI in selected 

patients and levothyroxine therapy in all patients.64 Gener-

ally, patients with DTC have a good prognosis, with a 5-year 

survival rate of 97.8%, when properly treated.65 However, 

5% of patients have distant metastasis at the diagnosis or 

recurrent disease that cannot be treated with surgery and/or 

are resistant to RAI (because during progression, tumor cells 

lose RAI uptake ability).66,67

For patients with metastatic disease, the NCCN Thyroid 

Carcinoma Panel recommends individualized treatment 

based on tumor location. Although not curative, systemic and/

or locoregional therapy may be recommended for patients 

with symptomatic and/or progressive disease who cannot be 

treated with RAI.68 Systemic therapy (including cytotoxic 

chemotherapy) can be considered for tumors not surgically 

resectable, not responsive to RAI, and not treatable with 

external beam radiation therapy or that have shown progres-

sion during the past 6–12 months.15 However, conventional 

chemotherapy and radiotherapy often have a modest effect 

on aggressive TC.6

TKIs represent an option of systemic treatment in case 

of progressive, aggressive refractory cancers.69

Medullary thyroid carcinoma
MTC prognosis varies in relation to the extension of the tumor 

and RET mutations. MEN2A and FMTC patients commonly 

have a better treatment outcome than those with sporadic 

MTC, who are frequently diagnosed at a more advanced stage. 

Three risk levels related RET mutations have been identified. 

Level 1 (low risk) includes patients with RET codon 768, 

790, 791, 804, and 891 mutations; level 2 (high risk), patients 

with MEN2A/FMTC-related mutations (codon 609, 611, 618, 

620, 630, and 634); and level 3 (very high risk), patients with 

MEN2B mutations in codon 883 or 918.26
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Generally, MTC is curable by surgery in an early stage, 

followed by postoperative levothyroxine therapy. No curative 

systemic therapy exists for locally advanced and metastatic pro-

gressive MTC that does not respond to conventional cytotoxic 

chemotherapy. TKIs are actually recommended for selected 

patients with recurrent or persistent aggressive MTC.15,69,70

Tyrosine kinase inhibitors
TKIs act by blocking the ATP site of the tyrosine kinase recep-

tors, preventing tyrosine kinase activation.19 Already, several 

TKIs are used in the treatment of various advanced cancers.

Whereas TKIs do not act selectively on pathways specific 

for a tumor, they have been tested on different tumors includ-

ing DTC, MTC, and ATC.71 TKIs improve progression-free 

survival (PFS) and stable disease (SD) rates in TC.72

It has been demonstrated that TKIs have a clinically 

significant activity in randomized, placebo-controlled clinical 

trials in locally recurrent unresectable and metastatic MTC 

and in RAI refractory DTC. Particularly, in aggressive  

DTC, or MTC, several studies have evaluated the use of axi-

tinib, lenvatinib, motesanib, pazopanib, sorafenib, sunitinib, 

cabozantinib, and vandetanib.73 Sorafenib and lenvatinib are 

currently approved by the US Food and Drug Administration 

(FDA) and EMA for the treatment of aggressive DTC, while 

vandetanib and cabozantinib are used for the treatment of 

aggressive advanced MTC.74–76

Cabozantinib is an oral once-daily multitarget TKI of 

MET, VEGFR-2, RET, acting against KIT, AXL, FLT3, and 

Tie-2.77 In a Phase III clinical study, cabozantinib improved 

PFS of patients with MTC, and it is actually approved by 

FDA and EMA for the treatment of aggressive MTC.76 Cabo-

zantinib has also been evaluated in metastatic DTC patients, 

because they have activation on tyrosine kinases, including 

MET, VEGFR-2, and RET, suggesting the possible use of 

cabozantinib in metastatic DTC.78

Actually, studies focus on refining combination treatment 

strategies and determining which patients will obtain the best 

benefit from TKIs (with the least toxicity).79

vandetanib
Vandetanib (Caprelsa, ZD6474; AstraZeneca) is an oral 

once-daily TKI that works by blocking RET, VEGFR-2, 

VEGFR-3, and EGFR and to a lesser extent VEGFR-1, which 

are important targets in TC (Figure 2).80

Thyroid tumor cell

RET

RAS PI3K

BRAFCRAF

MEK AKT

ERK mTOR NFkB

IKK

STAT

JAK

RAS PI3K

BRAF AKT

MEK

mTOR
ERK

Transcription factors Transcription factors

EGFR VEGFR3 VEGFR2

Endothelial cell
Vandetanib

Downstream cellular effects:
Downstream cellular effects:

� Proliferation
� Survival
� Migration
� Differentiation

� Proliferation
� Survival
� Migration

� Differentiation
� Growth

Figure 2 Molecular pathways involved in the development of thyroid cancer and action of vandetanib.
Abbreviations: ReT, Rearranged during Transfection; eGFR, epidermal growth factor receptor; veGFR, vascular endothelial growth factor receptor.
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Initially, it was shown that vandetanib blocks the enzy-

matic activity of RET-derived oncoproteins and in vivo 

phosphorylation and signaling of the RET/PTC3 and RET/

MEN2B oncoproteins and of an epidermal growth factor-

activated EGFR/RET chimeric receptor. Vandetanib inhib-

ited the proliferation of two human PTC cell lines that carry 

spontaneous RET/PTC1 rearrangements. Finally, it blocked 

formation of tumors in vivo after injection of RET/PTC3-

transformed NIH3T3 fibroblasts into nude mice.81

Also, most of the mutant oncoproteins (RET/E768D, 

RET/L790F, RET/Y791F, RET/S891A, and RET/A883F) 

were found sensitive to vandetanib, while mutations substi-

tuting valine 804, either to leucine or to methionine (as occur 

in some cases of MEN2A), were significantly resistant.82

Furthermore, it was shown that vandetanib was able to inhibit 

the growth of a transplantable MTC (from a sporadic human 

MTC carrying a RET C634R mutation) in nude mice.83

The most important antitumoral effect of vandetanib, 

in vivo, is an “indirect” effect on angiogenesis, interfer-

ing with EGFR-induced production of angiogenic growth 

factors.84,85

Several clinical trials have been conducted to evaluate 

the efficacy and tolerability of vandetanib in patients with 

TC (Table 2).

Phase i trials
The first Phase I trial was conducted on 77 patients with 

advanced solid tumors (not including MTC), treated with 

vandetanib; this study concluded that 500 mg/day was the 

maximum tolerated dose and once-daily oral dosing of 

300 mg/day was generally well tolerated.86 A Phase I trial, 

carried on 18 patients, established the maximum tolerated 

dose at 400 mg/day. In both trials, the authors recommended 

a dose of 300 mg/day.87

Phase ii trials
Medullary thyroid cancer
A Phase II, single-arm trial evaluated the efficacy of treat-

ment with vandetanib (300 mg/day) in 30 adult patients 

with unresectable, locally advanced, or metastatic hereditary 

MTC. In this study, the majority of patients had MEN2A 

(70%); RET mutations were located in codons: 634 (33% 

of patients), 618 (27%), 620 (13%), 918 (13%), 791 (7%), 

768 (3%), and 891 (3%). In this study, objective partial 

response (PR) was observed in 20% of patients and 53% of 

patients had SD for a median of 24 weeks with a manage-

able adverse event (AE) profile. There was no apparent 

association between RET germ line mutation and response 

to vandetanib treatment.88

Another trial investigated efficacy and safety of van-

detanib at 100 mg/day (or up to 300 mg/day in cases with 

disease progression) in 19 patients with advanced hereditary 

MTC and the results were similar to the previous study 

(PR in 16% and SD in 53% of patients for 24 weeks).89 

Both trials showed important reduction ($50%) in CEA 

and calcitonin levels; the latter did not correlate with the 

degree of tumor growth inhibition. It was suggested that 

CEA levels may be a better marker of tumor response to 

vandetanib.

Recently, a Phase I/II trial has been conducted for 

adolescents (13–18 years) and children (5–12 years) with 

metastatic or locally advanced MTC. In this trial, 16 patients 

were treated with vandetanib 100 mg/m2/day, concluding that 

this dosage is a well-tolerated and highly active treatment for 

adolescents and children with locally advanced or metastatic 

MTC and MEN2B.90

Differentiated thyroid cancer
Leboulleux et al91 carried out a double-blind, Phase II, 

randomized trial, in 145 patients with metastatic or locally 

advanced DTC (papillary, follicular, or poorly differenti-

ated) evaluating efficacy of vandetanib (300 mg/day) vs 

placebo (72 patients were allocated in vandetanib arm and 

73 patients in placebo arm). PFS (primary endpoint) in van-

detanib group was 11.1 months compared to 5.9 months in 

placebo group, while PR was 8% and 5% respectively, and 

SD 57% vs 42%. Better results have occurred in PTC than 

in FTC and PDTC.91

Table 2 Clinical trials of vandetanib in patients with thyroid cancer

Authors  
and references

Drug Thyroid  
cancer

Responses
PR SD PD PFS (months)

wells et al88 vandetanib 30 MTC 20% 53% 3% 27.9
Robinson et al89 vandetanib 19 MTC 16% 53% 16% 5.6
Leboulleux et al91 vandetanib 145 DeTC 8% 57% 11.1
wells et al92 vandetanib 231 MTC 45% 42%
Chougnet et al95 vandetanib 60 MTC 20% 55% 12% 16.1

Abbreviations: PR, partial response; SD, stable disease; PD, progressive disease; PFS, progression-free survival; MTC, medullary thyroid cancer; DeTC, dedifferentiated 
thyroid cancer.
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Phase iii trials
A randomized, double-blind, placebo-controlled multicenter 

Phase III trial (ZETA trial) was conducted in 331 advanced 

(5% of all patients) or metastatic (95%) MTC patients.92 

In this study, all MTC patients were offered the option 

of receiving vandetanib (300 mg daily administered until 

disease progression) in an open-label phase. Ten percent of 

patient had hereditary MTC, while 90% sporadic or unknown 

origin MTC. Also, 56% of patients were RET mutation posi-

tive, 2% RET mutation negative, and 41% unknown. The 

results of this study showed better PFS in the vandetanib 

group compared to placebo (30.5 vs 19.3 months; P,0.001), 

while OS was not significantly changed and calcitonin (69% 

vs 3%) and CEA (52% vs 2%) response rates were higher 

(P,0.001) in patients receiving vandetanib. Patients with 

sporadic MTC (RET positive) benefited from vandetanib and 

there was a good response in patients with M918T-negative 

tumors and in RET unknown status.92

Because vandetanib is effective in stabilizing symptom-

atic and/or progressive disease, it was approved, since April 

(FDA) and November (European Union) 2011, for the treat-

ment of unresectable, locally advanced or metastatic MTC in 

patients with symptomatic or progressive disease, in Europe 

and the United States.93

Recently, a retrospective study showed efficacy of vande-

tanib in the treatment of eleven progressive metastatic MTC 

patients with 36% PR.94

Moreover, a recent French study conducted to describe 

the toxicity profile and efficacy of vandetanib treatment 

outside any trial showed vandetanib efficacy in advanced 

MTC patients, but in consideration of the appearance of 

at least one AE in all patients, a careful monitoring was 

recommended.95

Actually, a new randomized, double-blind, placebo-

controlled, multicenter Phase III study is ongoing in DTC 

patients.96

Also, a first Phase IV randomized trial is ongoing to 

evaluate differences in the response in MTC patients treated 

with 300 mg/day vs 150 mg/day of vandetanib.97

Safety and tolerability
Clinical studies showed that vandetanib treatment is associ-

ated with several AEs but it has an acceptable tolerability 

because AEs are generally mild and manageable. The most 

frequent AEs in vandetanib-treated patients are diarrhea, rash 

and folliculitis, nausea, QTc prolongation, hypertension and 

fatigue, headache, decreased appetite, and acne (diarrhea, 

hypertension, prolongation QTc, and fatigue were the most 

common AEs of at least grade 3).88–92 In the management of 

AEs, it is important to remember that the half-life of vande-

tanib is 19 days.98,99 Dose reduction can induce AEs grade 1 

or 2 improvement, but for AEs grade 3 or 4, it is advisable 

to interrupt vandetanib until AEs resolve, then therapy might 

be resumed but at a lower dose.89

Moreover, vandetanib treatment requires increased thy-

roxine, calcium, and vitamin D analog.100

Dermatological Aes
Several trials showed a high incidence of dermatological 

AEs in patients treated with vandetanib. In the ZETA 

trial, in fact, these AEs occurred in 45% of cases.92 Van-

detanib, as other EGFR inhibitors, is associated especially 

with a papulopustular eruption. The development of the 

rash is related to EGFR inhibition by vandetanib (in fact, 

EGFRs are abundantly expressed in the epidermis and 

its appendages)101,102 that induces hyperkeratosis, follicle 

obstruction, and then inflammation of the pilosebaceous 

follicle.103

In a review of 2,961 MTC patients treated with vande-

tanib, incidence of all-grade and high-grade rash was 46.1% 

and 3.5%, respectively.104

Other dermatological AEs associated to the treatment 

with vandetanib are photosensitivity (observed in all 

patients), xerosis, hair changes, paronychia, genital skin 

reactions, finger clefts, subungual splinter hemorrhages, and 

blue dots.105,106 AEs less frequently observed are mucositis, 

erythrodysesthesia, and pruritus,107 and in one case, Stevens-

Johnson syndrome has been described.108

Recently, a study confirmed that dermatologic AEs in 

children treated with target anticancer therapy (including 

vandetanib) are similar to those in adults.109

Generally, dermatological AEs are easily manageable, but 

given the high incidence of these dermatological AEs, their 

prevention and early management are important to reduce the 

risk of vandetanib dose reduction or interruption.110

Gastrointestinal Aes
Diarrhea is the most frequent gastrointestinal AE in patients 

treated with vandetanib during ZETA trial (56% of all 

patients), followed by nausea (33% of cases), decreased 

appetite (21%), vomiting (14%), and abdominal pain (14%).92 

Often, these AEs (especially diarrhea) cause poor patient 

compliance and treatment interruption. Patient education is 

important with dietary measures.

Sometimes, diarrhea in MTC may be due to excessive 

hormone production by tumor, which accelerates intestinal 

transit; in these cases, it improves with vandetanib treatment. 

In most cases, treatment with vandetanib causes diarrhea, 
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which can be rectified by correct hydration and possibly by 

administering loperamide.

For the treatment of nausea, the use of 5-HT3 antagonists 

(ondansetron) is not recommended as it might increase the risk 

of prolongation of the QTc interval.111 For the same reason, 

metoclopramide should also be used with caution.102 In the 

antiemetic therapy, an alternative may be palonosetron.112

When gastrointestinal AEs are severe, vandetanib should 

be stopped until symptoms improve.102,113

Cardiovascular Aes
Vandetanib treatment may induce development of cardio-

vascular AEs including hypertension, bleeding, arterial 

thrombosis, ventricular dysfunction, fatal cardiac failure, and 

QTc interval prolongation.114,115

In a systematic review and meta-analysis of 3,154 

patients treated with vandetanib, incidences of all-grade and 

high-grade hypertension in patients were 24.2% (95% con-

fidence interval, 18.1%–30.2%) and 6.4% (95% confidence 

interval, 3.3%–9.5%), respectively, with a higher incidence 

of all-grade hypertension in MTC patients than non-MTC 

patients.116 Because of this risk of hypertension, adequate 

blood pressure monitoring and therapy with ACE inhibi-

tors (if necessary) is recommended in patients being treated 

with vandetanib. If blood pressure is not controlled, calcium 

antagonist and beta blockers can be used.102

A cardiological very important AE in vandetanib treat-

ment (and TKIs therapy) is QTc prolongation. Particularly 

QTc .500 ms was observed in 14% of patients treated with 

vandetanib in the ZETA trial; two cases of death in patients 

with QTc .550 ms have been reported (one due to sepsis 

and one due to heart failure).99

Before starting vandetanib treatment, ECG and echocar-

diogram are recommended and vandetanib must not be started 

in patients with QTc .450 ms (US) or .480 ms (European 

Union). During therapy, coadministration of drugs which 

prolong QTc interval should be avoided. Also, electrolyte 

levels and serum TSH should be maintained in normal 

range. Usually, QTc interval prolongation is relatively mild 

at clinical doses and has not led to appreciable morbidity 

clinically,115 although because of the potential for QT pro-

longation, torsades de pointes, and sudden death, vandetanib 

is restricted via a Risk Evaluations and Mitigation Strategy 

program.93

Other Aes
Other common side effects of vandetanib include fatigue, 

headache, hypocalcemia, hypoglycemia, increased transami-

nase levels, and thyroid dysfunction.102,117,118

Limits, drug resistance, and 
combination studies
Although therapy with TKIs is less toxic than chemotherapy, 

severe AEs require discontinuation of the drug. Further-

more, TKIs block tumor growth but do not eliminate it.  

Clinical trials have given contrasting results regarding the 

efficacy of TKIs in DTC patients: probably, these discordant 

results depend on mechanisms of drug resistance, via activa-

tion of alternative mitogenic signals.119 For this reason, studies 

are evaluating the combinations of TKIs targeting different 

pathways.120 Mechanisms of primary and acquired resistance 

to vandetanib have been investigated; actually, RET mutations 

cannot be used clinically to predict response in MTC.121

ZETA trials confirmed the clinical efficacy of vandetanib 

in patients with sporadic MTC tumors harboring the M918T 

mutation; while, the clinical efficacy of vandetanib in patients 

harboring other RET mutations needs other studies.

In vitro studies showed that the RET V804M and V804L 

mutations (that are rare and occur in sporadic and hereditary 

MTC) confer resistance to vandetanib82 and result clinically 

in primary or acquired resistance to vandetanib. However, 

sorafenib has shown activity against the V804 mutant  

in vitro.122

Moreover, other studies are needed to evaluate if Ras 

mutations, identified in 60%–80% of RET-negative spo-

radic MTC,123 confer clinical resistance to vandetanib. 

However, it has been shown (in vitro) that cell lines with 

acquired resistance to vandetanib present persistent activa-

tion of the Ras/Raf/MEK pathway (that can be abrogated 

by sorafenib).124

The response to therapy could be improved by testing the 

sensitivity of TC cells to different TKIs. In fact, in vitro drug 

screening with human primary neoplastic cells has a 60% pos-

itive predictive value of clinical response in vivo in the same 

patient and a 90% negative predictive; thus, the administration 

of inactive drugs could be avoided.125–129 More recently, it has 

been demonstrated that primary TC cell cultures from ATC 

(ANA) may be obtained from FNA opening the possibility to 

the use of FNA-ANA to test the chemosensitivity to different 

drugs in each patient (avoiding unnecessary surgical biopsies, 

until now used to obtain ANA).129–135

Combination studies
Several studies have evaluated the effectiveness of the syn-

ergic action of different antineoplastic drugs in combination 

studies.

It has been shown that combined therapy with bortezomib 

(proteasome inhibitor) and EGFR inhibitors (gefitinib, 

vandetanib, and cetuximab) induced (in EGFR-expressing 
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human cancer cell lines) a synergic inhibition of neoplastic 

growth.136 Currently, nonrandomized, Phase I/II trial of the 

combination of vandetanib plus bortezomib is recruiting 

patients with solid tumors (including MTC).137

Other studies have evaluated the combination of vande-

tanib and irinotecan. Preclinical data showed that vandetanib 

has antiproliferative antitumor activity in vitro, which acts in 

a sequence-dependent manner with chemotherapeutic agents, 

such as irinotecan, in colon cancer cell lines.138 A subsequent 

study was conducted in a murine xenograft model of human 

colon cancer treated with vandetanib in combination with 

irinotecan that showed an additive synergic effect of these 

drugs.139 Another study evaluated the response to vandetanib, 

radiotherapy, and irinotecan of human LoVo colorectal 

tumoral cells, demonstrating that vandetanib significantly 

increases the antineoplastic effects of irinotecan and radia-

tion when given in combination, resulting in a reduction of 

tumor growth.140 Recently, a Phase I trial was conducted in  

27 patients with metastatic colorectal cancer refractory to 

cytotoxic chemotherapy, treated with vandetanib, cetuximab, 

and irinotecan, showing no apparent increase of the efficacy 

with this combination.141 Several studies have recently sug-

gested that the PI3K/Akt/mTOR signaling pathway is impli-

cated in the pathogenesis and progression of neuroendocrine 

tumors and MTC. The deregulation of the PI3K/Akt/mTOR 

pathway seems to contribute to the tumorigenic activity of 

RET proto-oncogene mutations. Targeting this pathway 

through specific inhibitors at simple or multiple sites may 

represent an attractive potential therapeutic approach for 

patients with advanced MTCs. It has been recently suggested 

that the concomitant targeting of RET and mTOR may rep-

resent another innovative therapeutic strategy in MTC.142

Conclusion
Vandetanib is emerging as a potentially effective option in the 

treatment of advanced MTC. Furthermore, vandetanib seems 

to be a promising therapeutic option in patients with advanced 

dedifferentiated PTC that is not responsive to traditional 

therapies or RAI. The most important effect of vandetanib in 

aggressive MTC is a prolongation of PFS and a stabilization 

of the disease, while overall survival is not changed. Signifi-

cant side effects have been observed with vandetanib therapy 

(as fatigue, hypertension, QTc prolongation, cutaneous rash, 

mucositis, hand-and-foot syndrome, nausea, diarrhea, vomit-

ing, and thyroid dysfunction), and severe side effects can 

require the suspension of the drug. Several studies are currently 

under way to evaluate the long-term efficacy and tolerability 

of vandetanib in MTC, and in dedifferentiated PTC, because 

progression can be slow. The efficacy of vandetanib in patients 

with MTC in long-term treatments could be overcome by the 

resistance to the drug that could arise from the activation of 

alternate mitogenic signals. The effectiveness of the treatment 

could be ameliorated by the possibility to test the sensitivity of 

primary TC cells from each subject to different TKIs. In fact, 

disease-orientated in vitro drug screening permit to predict  

in vivo effectiveness in 60% of cases, while a negative chemo-

sensitivity test in vitro is associated with a 90% ineffectiveness 

of the chemotherapy in vivo, avoiding the administration of 

inactive (potentially toxic) drugs to these patients. Moreover, 

association studies are evaluating the effect of the associa-

tion of vandetanib with other antineoplastic agents (such as 

irinotecan, bortezomib, etc), in patients with various types 

of cancer. Further research is needed to determine the ideal 

targeted therapy, based on molecular characterization of the 

tumor and of the host factors, to obtain the best response in 

terms of survival and quality of life.
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