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Abstract: The aim of the present study was to develop novel daptomycin-loaded 

poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against 

mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus 

(MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Dap-

tomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation 

method. For comparison purposes, formulations containing vancomycin were also prepared. 

Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, 

and in vitro release were assessed. All formulations exhibited a spherical morphology, micro

meter size, and negative surface charge. From a very early time stage, the released concentra-

tions of daptomycin and vancomycin were higher than the minimal inhibitory concentration and 

continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing 

concentrations of the drug being released up to 72 hours, whereas the release of vancomycin 

stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal 

microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic 

bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity 

against both strains. Isothermal microcalorimetry also revealed that lower concentrations of 

daptomycin-loaded microparticles were required to completely inhibit the recovery of mature 

MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded 

PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. 

Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas 

S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important 

attachment of the microparticles to MRSA and S. epidermidis biofilms was observed. Finally, 

all formulations proved to be biocompatible with both ISO compliant L929 fibroblasts and 

human MG63 osteoblast-like cells.

Keywords: antibiotic release, Staphylococcus aureus, Staphylococcus epidermidis, fluorescence 

in situ hybridization, isothermal microcalorimetry

Introduction
Staphylococci are known to be one of the main concerns in orthopedic implant-associated 

infections due to their capability of readily forming biofilms that show increasing tol-

erance toward antibiotics and are able to effectively evade the immune system.1 In 

biofilms, bacteria are surrounded by an extracellular polysaccharide matrix, which 

prevents antibiotic penetration. Hence lower concentrations of the drug are found 

inside these communities.2 In addition, sessile bacteria have a low replication rate, 

which is associated with a stationary metabolic state. Since most antibiotics target 

active metabolic pathways, such as RNA transduction, enzymatic activity, and DNA 
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translation, their activity is limited within biofilms.3 These 

two key features make sessile staphylococci up to 1,000 

times more tolerant to antibiotics than the planktonic form; 

hence higher concentrations of antibiotics and longer treat-

ment times are required for eradication.2,3 The persistence 

of the infection endangers the functionality of the orthope-

dic implant since it reduces bone and tissue regeneration, 

prevents osteoblast adhesion and proliferation, and induces 

chronic inflammation.1,2,4

For the last decade, research has been focused on 

improving the effectiveness of clinically available antibiot-

ics against biofilms by encapsulating them into micro- and 

nanoparticles.1,5 This strategy has several advantages such 

as: 1) possibility of targeted and triggered drug release, 

2) incorporation of lipophilic as well as hydrophilic drugs, 

3) protection of the encapsulated antibiotic, and 4) reduc-

tion of unwanted side effects. Liposomes, have been widely 

studied and different antimicrobials have been successfully 

encapsulated with improved antibiofilm activity.5 In contrast, 

a lesser number of polymeric particles have been success-

fully developed. The main advantages of polymeric particles 

versus liposomes lie on their higher stability during storage 

and the possibility of tailoring the rate and duration of drug 

release, thus enhancing the antibiofilm effect by increasing 

the long-term antibiotic concentration in situ.5

The aim of the present work was to develop novel 

daptomycin-loaded poly-epsilon-caprolactone (PCL) 

microparticles in order to achieve a sustained drug release 

and thus higher antibiofilm activity against pre-grown 

staphylococci biofilms, which typically occur in implant-

associated bone infections. Daptomycin, a glycopeptide 

selective against Gram-positive bacteria, has shown superior 

activity against staphylococcal biofilms compared to other 

antibiotics commonly used in bone infection treatment, such 

as ciprofloxacin and vancomycin, due to the fact that it targets 

the cell membrane by opening ion channels that ultimately 

lead to cell lysis.6 Consequently, it does not target metabolic 

active pathways, making it more active against metaboli-

cally stationary bacteria, such as sessile bacteria. The PCL 

is a slow biodegradable polymer that has been often used 

in medical devices and in micro- and nanoencapsulation of 

antibiotics, such as vancomycin and gentamicin.7 Particles 

made of PCL have proven to be a useful strategy to encap-

sulate both lipophilic and hydrophilic antibiotics with high 

encapsulation efficiencies and controlled drug release profiles 

without losing antibacterial activity. To date, no published 

studies have addressed the encapsulation of daptomycin in 

PCL microparticles.

The antibiofilm activity of antibiotic-loaded PCL 

microparticles was assessed in real time by isothermal micro-

calorimetry and the surviving biofilms were characterized by 

fluorescence in situ hybridization (FISH). For comparison 

purposes, similar formulations were prepared with vanco-

mycin, often recommended for Staphylococcus infection 

control.2 In addition, the biocompatibility of the formulations 

was also characterized using an ISO-compliant cell line and 

osteoblasts.

Materials and methods
Chemicals and test strains
Daptomycin (Cubicin, 350 mg) was kindly provided by 

Novartis (Basel, Switzerland) and vancomycin hydrochlo-

ride (Vancomicina, 1,000 mg) was purchased from Farma 

APS Produtos Farmacêuticos, Lda. (Lisboa, Portugal). 

PCL (average MW =45,000 g/mol) and poly(vinyl alco-

hol) (MW =13,000–23,000, 87%–89% hydrolyzed) were 

purchased from Sigma-Aldrich (St Louis, MO, USA). All 

other reagents were analytical grade. Mueller–Hinton broth 

(MHB; CM 0405, Oxoid, UK) and tryptic soy broth (236950, 

Becton, Dickinson and Company, Franklin Lakes,  NJ, 

USA) was freshly prepared and sterilized in autoclave 

(121°C, 15 minutes) before use. The study microorganisms 

were methicillin-resistant Staphylococcus aureus (MRSA; 

ATCC 43300) and polysaccharide intercellular adhesin 

(PIA)-positive Staphylococcus epidermidis 8400 (kindly 

provided by Mack et al).8 Bacteria were stored at -70°C 

using the cryovial bead preservation system (Microbank;  

79 Pro-Lab Diagnostics, Richmond Hill, ON, Canada).

Preparation of antibiotic-loaded PCL 
microparticles
Antibiotic-loaded microparticles were prepared using a modi-

fication of a previously described double-emulsion w/o/w-

solvent evaporation method.9,10 Briefly, PCL was dissolved 

in 5 mL dichloromethane and emulsified by homogenization 

using an Ultra-Turrax T10 basic (IKA, Staufen, Germany) 

for 3 minutes with a 10% (w/w) poly(vinyl alcohol) solu-

tion, where the antibiotics were previously solubilized. The 

resulting (w/o) emulsion was added to 30 mL of 1.25% (w/w) 

poly(vinyl alcohol) solution and emulsified by homogeniza-

tion using a Silverson Laboratory Mixer Emulsifier L5M 

(Silverson Machines Inc., Buckinghamshire, UK) for 7 

minutes at maximum rotation speed. The resulting w/o/w 

double emulsion was magnetically stirred at room tem-

perature for 4 hours to evaporate the organic solvent. PCL 

microparticles were harvested by centrifugation (5,723× g,  
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10 minutes, 4°C; Allegra 64R High Speed Centrifuge, 

Beckman Coulter Inc., Brea, CA, USA), washed three times 

and resuspended in a 0.5% (w/V) sucrose solution. All  

microparticles were subsequently freeze-dried (Christ Alpha 

1–4, B. Braun Biotech International, Melsungen, Germany) 

to obtain a fine, free-flowing dry powder. For preparation of 

fluorescence labeled microparticles, nile red was added to the 

polymer solution in dichloromethane. Mean yield of produc-

tion was calculated according to the equation: y= (practical 

yield/theoretical yield) ×100. All batches were prepared in 

triplicate and plain microparticles were used as controls.

Particle characterization
Particle morphology was analyzed a by transmission electron 

microscopy. The suspension sample was applied to the cop-

per grid, dried at room temperature, and analyzed on a Hitachi 

8100 with ThermoNoran light elements, EDS detector, and 

digital image acquisition.

Size distribution of lyophilized microparticles was deter-

mined by light scattering, using the Malvern Mastersizer 

2000 – Hydro SM (Malvern Instruments, Worcestershire, 

UK). Diluted samples were loaded to the sample dispersion 

unit under constant agitation. The size distribution measure-

ments were performed using at least three replicate samples. 

Size distribution of microparticles was characterized using 

the volume mean diameter (µm) and the width of particle 

size distribution is given by the span. Surface charge of lyo-

philized microparticles was determined by electrophoretic 

light scattering using the Malvern Nanosizer Z (Malvern 

Instruments) and water as a dispersant.

Encapsulation efficiency (EE, %) was determined spec-

trophotometrically (Spectrophotometer U-2001, Hitachi 

Instruments Inc., Tokyo, Japan) by quantification of the anti-

biotics in the supernatants (ie, non-encapsulated antibiotic) 

obtained during particle preparation. Antibiotic detection 

was performed at 220.5 nm for daptomycin and 280 nm for 

vancomycin.11,12 The EE is expressed as the percentage of 

encapsulated antibiotic reported to the initial amount used for 

particle preparation. Drug loading (DL, %) was calculated 

according to the equation: 

	 DL (%)
Amount of antibiotic in microparticles

Theoretical a
=

mmount of microparticles
100.× 	

All results are presented as mean ± standard deviation (SD).

Differential scanning calorimetry analysis of plain, 

daptomycin-, and vancomycin-loaded PCL microparticles was 

performed in a Q200 (TA Instruments, New Castle, DE, USA). 

Samples (1–3 mg) were placed in sealed aluminum pans and 

heated at 10°C/min under a nitrogen atmosphere from 25°C–

240°C. An empty aluminum pan was used as reference.

In vitro release
Daptomycin and vancomycin release from PCL micropar-

ticles was assessed using dialysis membranes with a pore 

size of 100 kD (Float-A-Lyzer G2®, Spectrum Laboratories 

Inc., Rancho Dominguez, CA, USA). Briefly, microparticles 

(12 mg) were suspended in phosphate buffered saline (PBS; 

pH 7.4, supplemented with 0.01% [w/V] sodium azide) and 

added to the dialysis membranes. Samples, in triplicate, 

were incubated at 37°C under constant agitation (350 rpm). 

At predetermined intervals, a 1 mL aliquot was collected and 

an equal volume of PBS was added to keep the total volume 

constant. Released antibiotics were quantified by previously 

optimized high-performance liquid chromatography methods 

(Beckman Coulter System Gold with 126 solvent module and 

166 UV-Vis detector coupled with a Stark Holland Midas 

autosampler). Linearity and reproducibility were analyzed and 

considered adequate for sample analysis. Briefly, quantifica-

tion of daptomycin was performed using a Merck LiChospher 

125-4, RP18 5 µm, LiChroCART 100 column and the follow-

ing chromatographic conditions: 0.7 mL/min flow; injection 

volume of 20 µL; mobile phase of 35% acetonitrile and 65% 

PBS (pH 7.4), and detection at 230 nm.11 As for vancomycin, 

the same type of column was used and the chromatographic 

conditions were as follows: 1.2 mL/min flow; injection volume 

of 40 µL; mobile phase of 10% acetonitrile and 90% H
2
KPO

4
 

(pH 2.75), and detection at 280 nm.12 All samples were ana-

lyzed in triplicate. Results are presented as mean ± SD.

Susceptibility testing of daptomycin 
and vancomycin
In vitro determination of minimal inhibitory concentration 

(MIC) and minimal bactericidal concentration (MBC) of 

non-encapsulated daptomycin and vancomycin against Gram-

positive biofilm-forming staphylococci, namely methicillin-

resistant S. aureus ATCC 43300 (MRSA) and PIA-positive S. 

epidermidis 8400, was performed by the macro-broth dilution 

method.13 In addition, the minimal heat inhibitory concentration 

(MHIC) was determined by isothermal microcalorimetry (TAM 

III, TA Instruments). In both methods, serial twofold dilutions 

of daptomycin and vancomycin were prepared in MHB. For 

inoculum preparation, bacteria were resuspended in 2 mL 

sterile saline and adjusted to turbidity of McFarland 0.5 (cor-

responding to approximately 108 colony forming unit (CFU)/

mL; Densimat, BioMérieux, SA, France). A 1:100 dilution 

of the bacterial suspension was prepared in sterile saline and 
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added to the samples in order to achieve a 1–5×105 CFU/mL 

inoculum. Samples were incubated aerobically for 24 hours at 

35°C±2°C. The samples for isothermal microcalorimetry were 

sealed and vortexed and measurements of heat flow (W) were 

performed for 24 hours at 10 seconds intervals. The isothermal 

microcalorimetry results are presented as curves of heat flow 

(µW) versus time (hours). All samples were tested in triplicate. 

The MHIC was defined as the lowest antibiotic concentration 

that completely inhibited visible growth at 24 hours or did 

not exhibit heat flow production in the isothermal microcalo-

rimeter.14 The MBC was defined as the lowest antimicrobial 

concentration, which killed $99.9% of the initial bacterial 

count (ie, $3 log10 CFU/mL) in 24 hours using MHB.13 For 

MBC determination, all samples that did not exhibit turbidity 

or heat flow production (ie, bacterial growth) after 24 hours 

were diluted with sterile saline, spread onto Mueller–Hinton 

agar plates and incubated for 24 hours at 35°C±2°C.

In vitro growth of staphylococcal biofilms
Biofilms of MRSA and PIA-positive S. epidermidis 8400 

were grown onto polyurethane (PU) pieces of fixed dimen-

sions. An overnight culture of MRSA or S. epidermidis was 

appropriately diluted in tryptic soy broth in order to achieve 

a final inoculum of 1–5×108 CFU/mL. Each PU piece was 

then incubated with 0.5 mL of the final bacterial suspen-

sion at 37°C for 48 hours. Fresh medium (tryptic soy broth 

supplemented with 50 mg/L Ca2+) was added at 24 hours. 

After 48 hours, biofilms were washed with PBS to remove 

remaining planktonic bacteria.

Antibacterial activity of antibiotic-loaded 
PCL microparticles by isothermal 
microcalorimetry
Planktonic bacteria
The in vitro determination of MIC and MBC of encapsulated 

daptomycin and vancomycin against MRSA and PIA-positive 

S. epidermidis was performed by isothermal microcalorimetry 

(TAM III, TA Instruments). Daptomycin- and vancomycin-

loaded microparticles suspensions were prepared by serial 

twofold dilutions in MHB. The highest microparticle concen-

tration tested was 10 mg/mL and the lowest was 0.04 mg/mL. 

Growth media for daptomycin studies were supplemented 

with 50 mg/L Ca2+. Negative controls (ie, without bacteria) 

were used: MHB alone and a suspension of microparticles 

in MHB. Also, a bacteria growth control (GC) was included. 

Inoculum preparation was performed as stated previously 

in the susceptibility testing of daptomycin and vancomycin 

section in order to achieve a 1–5×105 CFU/mL inoculum. 

Samples were sealed and vortexed and measurements of 

heat flow (W) were performed for 24 hours at 10 seconds 

intervals. Results are presented as curves of heat flow (µW) 

versus time (hours). All samples were tested in triplicate. The 

MHIC and MBC values were determined as described earlier 

in the susceptibility testing of daptomycin and vancomycin 

section.

Sessile bacteria
For determination of antibiofilm activity of antibiotic-loaded 

PCL, MRSA, and PIA-positive S. epidermidis, biofilms were 

grown onto PU pieces as previously described in the in vitro 

growth of staphylococcal biofilms section. After 48 hours of 

biofilm growth, each PU piece was added to a microcalo-

rimetry glass ampoule and incubated for 24 hours at 37°C 

(TAM III, TA Instruments) with different concentrations of 

microparticles (20, 10, 5, 2.5, 1.25 mg/mL). The ampoules 

were hermetically sealed and measurements of heat flow 

(W) were performed for 24 hours at 10 seconds intervals. 

The minimal biofilm inhibitory concentration (MBIC) was 

defined as the lowest microparticle concentration leading 

to absence of recovering biofilm, indicated by absence of 

growth related heat flow.14 Results are presented as curves 

of heat flow (µW) versus time (hours). All samples were 

tested in triplicate.

Interaction between PCL microparticles 
and biofilms by fluorescence in situ 
hybridization
Biofilms of MRSA and PIA-positive S. epidermidis were 

grown for 48 hours on PU pieces as described earlier in 

the in vitro growth of staphylococcal biofilms section. 

Each sample was then incubated with different concentra-

tions of nile red-labeled microparticles (20, 10, 5, 2.5, 

and 1.25 mg/mL) at 37°C for 24 hours. The samples were 

subsequently washed with PBS, fixated and embedded in a 

cold polymerizing resin (Technovit 8100; Kulzer, Hanau, 

Germany) according to the manufacturer’s instructions. After 

polymerization of the resin, the blocks were sectioned in 2 µm  

sections on a rotary microtome (Medim America, Type DDM 

0036, Wilmington, DE, USA.) using steel knives with hard 

metal blades. The slides were mounted and each sample 

was permeabilized prior to probe binding with an enzymatic 

step including lysozyme and lysostaphin. FISH was used to 

characterize the biofilms.15 Biofilms were hybridized with 

the pan-bacterial probe EUB 338
FITC

 and the staphylococci-

specific probe STAPHY
FITC

 as well as stained with the unspe-

cific nucleic acid stain 4′,6-diamidino-2-phenylindole.16,17 All 

samples were prepared in triplicate.
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Cell viability assays
The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetra-

zolium bromide) and resazurin (Alamar Blue, Invitrogen 

Life Technologies, Carlsbad, CA, USA) reduction assays 

were used to investigate in vitro cytotoxicity of plain and 

antibiotic-loaded microparticles in two different cell lines: 

L929 mouse fibroblast (ATCC CCL-1™), and MG63 human 

osteoblast-like cells (ATCC CRL-1427).18,19

Cell viability was assessed after 24-hour incuba-

tion with different concentrations of PCL microparticles 

(10–2,000 µg/mL) in RPMI 1640 medium. After incubation, 

cells were exposed to a MTT dye solution (5 mg/mL in PBS 

at pH 7.4) for 3 hours at 37°C, after which the complete 

media was removed and the intracellular formazan crystals 

were solubilized and extracted with dimethylsulfoxide. After 

15 minutes at room temperature, the absorbance was mea-

sured at 570 nm in a microplate reader (FLUOstar Omega, 

BMG Labtech, Offenburg, Germany).18 For the Alamar Blue 

assay, the resazurin solution was added to each well and 

incubated for 3 hours at 37°C. A 3% sodium dodecyl sulfate 

(SDS) solution was used to stop the reaction and fluorescence 

was measured at 530/590 nm (FLUOstar Omega, BMG 

Labtech). For both assays, culture medium and SDS served 

as negative and positive controls, respectively. The relative 

cell viability (% of control) was calculated and compared 

with the untreated control.18

Statistical evaluation of data was performed using one-

way analysis of variance (ANOVA). A Tukey–Kramer multi-

ple comparison test (GraphPad Prism 6, GraphPad Software, 

San Diego, CA, USA), was used to compare the significance 

of the difference between the groups, a P-value ,0.05 was 

accepted as significant.

Results
Microparticle characterization
Transmission electron microscopy analysis revealed a 

spherical shape within the micrometer size range (Figure 1). 

Different concentrations of antibiotics were added to the 

formulation to study the effect on EE and DL (Figure 2). 

Increasing the antibiotic percentage added to the formulation 

steadily increased DL values, with maximum values of 

18.9%±2.5% and 12.6%±2.1% for 30% (w/w) of dapto-

mycin and vancomycin, respectively. The EE values did 

not follow the same trend. Daptomycin EE decreased as 

the antibiotic percentage in formulation increased from 

2.5% to 15%, with a minimum value of 42.9%±0.5%, 

but it increased to 83.0%±3.6% as 30% of antibiotic was 

added to the formulation. Vancomycin presented EE values 

between 54.3%±4.0% and 73.0%±7.1% for 7.5% and 5% 

of antibiotic in the formulation, respectively. Neverthe-

less, the most promising formulations for the antibacterial 

effect assessment would be those with higher DL (ie, mg of 

antibiotic/mg of microparticles), which in this case are the 

microparticles loaded with 30% daptomycin or vancomycin. 

These formulations, as well as the plain microparticles, were 

further characterized taking into consideration particle size 

distribution and surface charge. A summary of the charac-

teristics of the final formulations is presented in Table 1. 

Plain and antibiotic-loaded PCL microparticles presented a 

monomodal particle size distribution within the micrometer 

range. All formulations presented a negative surface charge. 

The encapsulation of daptomycin or vancomycin did not 

alter particle size distribution or surface charge (Table 1).

Additional physical characterization of freeze-dried 

microparticles was performed by differential scanning calorimetry 

(Figure 3). As shown in Figure 3, PCL (raw material) presents an 

endothermic peak at 59.7°C, which corresponds to the melting 

temperature of the polymer. The same peak is observed in plain 

and antibiotic-loaded PCL microparticles. The antibiotic-loaded 

PCL microparticles did not show the daptomycin and vancomy-

cin melting peaks (226.6°C and 212.0°C, respectively).

In vitro release
Daptomycin and vancomycin cumulative release from PCL 

microparticles is presented in Figure 4. Overall, daptomy-

cin release is higher and steadily increases up to 72 hours 

Figure 1 Representative TEM pictures of (A) plain, (B) daptomycin, and (C) vancomycin-loaded PCL microparticles.
Abbreviations: TEM, transmission electron microscopy; PCL, poly-epsilon-caprolactone.
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Figure 2 Encapsulation efficiency, EE% (•), and drug loading, DL% (), of (A) daptomycin- and (B) vancomycin-loaded PCL microparticles with increasing concentrations 
of antibiotics (2.5%, 5%, 7.5%, 15%, and 30% w/w). 
Note: Results are presented as mean ± SD (n=3).
Abbreviations: EE, encapsulation efficiency; DL, drug loading; PCL, poly-epsilon-caprolactone; SD, standard deviation.

Table 1 Properties of antibiotic-loaded PCL microparticles

Formulation Particle size distribution Zeta  
potential (mV)

EE (%) DL (%)

VMD (µm) Span

Plain 1.28±0.12 0.91±0.05 -17.6±1.4 - –
Daptomycin (30%) 1.37±0.12 0.79±0.18 -17.2±1.8 83.0±3.5 18.9±2.5
Vancomycin (30%) 1.18±0.05 1.60±0.04 -15.9±0.8 54.6±9.1 12.6±2.1

Note: Results are presented as mean ± SD (n=3).
Abbreviations: PCL, poly-epsilon-caprolactone; VMD, volume mean diameter; EE, encapsulation efficiency; DL, drug loading; SD, standard deviation.

(10.4%±1.38%), whereas vancomycin release reaches its 

maximum at 24 hours (4.03%±1.41%). In terms of concentra-

tion of released antibiotic, these values equal 12.1±1.6 and 

4.4±1.5 µg/mL, respectively.

Susceptibility testing of daptomycin  
and vancomycin
For both staphylococci strains, the MIC and MBC obtained 

with the macro-broth dilution method was 0.25 µg/mL and 

2 µg/mL for daptomycin and vancomycin, respectively. 

In order to confirm the correlation between the macro-

broth dilution method and isothermal microcalorimetry, the 

MHIC of the antibiotics against both strains was determined 

(Figure 5). The MHIC values obtained by isothermal micro-

calorimetry were consistent with the MIC and MBC obtained 

by the macro-broth dilution method.

Antibacterial activity of antibiotic-
loaded PCL microparticles by isothermal 
microcalorimetry
The in vitro determination of MHIC of encapsulated dap-

tomycin and vancomycin against planktonic and sessile 

bacteria was performed by isothermal microcalorimetry.

Regarding planktonic bacteria, 24 hours thermograms 

for MRSA and S. epidermidis incubated with different 

concentrations of antibiotic-loaded PCL microparticles were 

obtained (Figure 6). It was possible to identify the MHIC 

(ie, concentration of microparticles that completely inhibits 

heat flow production caused by bacterial growth) as well 

as to characterize the concentration-dependent effect of the 

microparticles on bacterial growth.

Table 2 summarizes the MHIC values of daptomycin- and 

vancomycin-loaded PCL microparticles against planktonic 

MRSA and S. epidermidis.

It was possible to confirm that the released antibiot-

ics retained their antibacterial activity. As presented in 

Table 2, daptomycin-loaded PCL microparticles showed 

lower MHIC values for both strains, meaning that lower 

amounts of microparticles were required to inhibit bacterial 

growth in vitro. A comparison of the MHIC values for the 

encapsulated antibiotics shows that encapsulated vancomycin 

had the same value for both strains (10 mg/mL), whereas 

daptomycin-loaded microparticles presented a twofold 

higher MHIC value for S. epidermidis (0.625 mg/mL) than 

for MRSA although the daptomycin MIC/MBC values for 

both strains are equal (ie, 0.25 µg/mL; Table 2).

The activity of the antibiotic-loaded PCL microparticles 

against MRSA and S. epidermidis pre-grown biofilms was 

also assessed by isothermal microcalorimetry (Figure 7). 

In this case, the method quantified the heat flow associated 
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°

Figure 3 DSC thermograms of plain and antibiotic-loaded microparticles, as well as from the main raw materials (PCL, daptomycin, and vancomycin).
Abbreviations: DSC, differential scanning calorimetry; PCL, poly-epsilon-caprolactone.

Figure 4 Cumulative release (%) of daptomycin () and vancomycin () from PCL microparticles. 
Note: Results are presented as mean ± SD (n=3).
Abbreviations: PCL, poly-epsilon-caprolactone; SD, standard deviation.

with the recovery of the biofilm once fresh medium, with 

or without microparticles, was added. Daptomycin-loaded 

microparticles were able to inhibit MRSA biofilm recovery 

at 10 mg/mL, whereas vancomycin-loaded microparticles 

at the highest concentration (20 mg/mL) did not com-

pletely inhibit biofilm recovery. Nevertheless, vancomycin 

microparticles were able to delay biofilm recovery (growth 

peak at 21 hours) when compared to the GC. Regarding 

S. epidermidis biofilms, 20 mg/mL of daptomycin-loaded 

microparticles were required to inhibit biofilm recovery and 

no inhibition was achieved with vancomycin microparticles. 

It was possible to observe that subinhibitory concentrations 

of microparticles (ie, 1.25–10 mg/mL for encapsulated dap-

tomycin and 10 and 20 mg/mL for encapsulated vancomycin) 

decreased the maximum heat flow production, as can be seen 

by the decrease in the peak height as compared to the GC.
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Figure 5 Heat production (µW) of planktonic (A) MRSA and (B) Staphylococcus epidermidis incubated with different concentrations of free daptomycin and vancomycin.
Abbreviations: MRSA, methicillin-resistant Staphylococcus aureus; GC, growth control.

Figure 6 Heat production (µW) of planktonic (A) MRSA and (B) Staphylococcus epidermidis incubated with different concentrations of daptomycin- and vancomycin-loaded 
PCL microparticles. 
Notes: The bacteria incubated in MHB served as growth control (GC). A suspension of particles in MHB and MHB alone served as negative controls. All samples were 
tested in triplicate.
Abbreviations: MRSA, methicillin-resistant Staphylococcus aureus; PCL, poly-epsilon-caprolactone; MHB, Mueller–Hinton broth.
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Table 2 Summary of the MHIC values of daptomycin- and 
vancomycin-loaded PCL microparticles against planktonic MRSA  
and Staphylococcus epidermidis determined by isothermal micro
calorimetry

Bacterium MHIC (mg/mL)

Daptomycin-loaded  
microparticles

Vancomycin-loaded  
microparticles

MRSA 0.313 10
S. epidermidis 0.625 10

Abbreviations: MHIC, minimal heat inhibitory concentration; PCL, poly-epsilon-
caprolactone; MRSA, methicillin-resistant Staphylococcus aureus.

Table 3 summarizes the MBIC values of daptomycin- and 

vancomycin-loaded PCL microparticles.

Daptomycin-loaded microparticles presented a higher 

antibiofilm effect against MRSA and S. epidermidis biofilms 

than vancomycin microparticles. In addition, encapsulated 

daptomycin MBIC values against MRSA and S. epidermidis 

were 40- and 80-fold increased, respectively, when compared 

to the MHIC values (Figure 5).

Figure 7 Heat production (µW) of (A) MRSA and (B) Staphylococcus epidermidis biofilms incubated with different concentrations of daptomycin- and vancomycin-loaded 
PCL microparticles.
Notes: The biofilms incubated in TSB served as growth control (GC). A suspension of particles in TSB and TSB alone served as negative controls. All samples were tested 
in triplicate.
Abbreviations: MRSA, methicillin-resistant Staphylococcus aureus; PCL, poly-epsilon-caprolactone; TSB, tryptic soy broth.

Interaction between PCL microparticles 
and biofilms by fluorescence in situ 
hybridization
Further characterization of the biofilms before and after 

incubation with PCL microparticles was performed by FISH. 

This molecular biological imaging technique enables the 

characterization of the microparticles’ effect on biofilm size 

and structure in situ as well as the visualization of particle-

biofilm interaction (Figures 8–10).

In the untreated samples (ie, controls), the biofilms of 

MRSA or S. epidermidis were 20–30 µm thick and had a 

confluent appearance. The signal of the EUB 338
FITC

 and 

STAPHY
FITC

 probes was low, which correlates to few FISH-

positive (ie, labeled) cells. 

The microparticles used in this assay were labeled with 

nile red, which enabled their visualization with the Cy3 

filter set (orange). Except for the MRSA biofilms treated 

with daptomycin microparticles, it was possible to observe 

orange-labeled masses inside the biofilms, indicating that 
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Table 3 Summary of the MBIC values of daptomycin- and 
vancomycin-loaded PCL microparticles against MRSA and 
Staphylococcus epidermidis biofilms determined by isothermal 
microcalorimetry

Bacterium MBIC (mg/mL)

Daptomycin-loaded  
microparticles

Vancomycin-loaded  
microparticles

MRSA 10 .20
S. epidermidis 20 .20

Abbreviations: MBIC, minimal biofilm inhibitory concentration; PCL, poly-epsilon-
caprolactone; MRSA, methicillin-resistant Staphylococcus aureus.

there is a strong interaction between the microparticles and 

sessile bacteria (Figures 8 and 9).

The MRSA biofilms treated with daptomycin-loaded 

microparticles revealed in the FISH analysis a reduction 

in biofilm thickness from 20 µm (as seen in the control) to 

a one-layered irregular biofilm (Figure 8). In contrast, the 

treatment of S. epidermidis biofilms with daptomycin-loaded 

microparticles showed that it was not possible to eradicate 

the biofilm, displaying only a disruption of the regularity of 

the biofilm (Figure 9). In addition, it was possible to observe 

an increase in the number of EUB338- and STAPHY-labeled 

cells in the outer layers of the S. epidermidis biofilm as 

compared to the controls (Figure 10).

The vancomycin-loaded microparticles showed no observ-

able antibiofilm effect, since the FISH images of MRSA and 

S. epidermidis biofilms revealed no difference between the 

treated and control biofilms (Figures 8 and 9).

Cell viability assay
The in vitro cytotoxicity of the microparticles was evaluated 

with the MTT and Alamar Blue assays using L929 mouse fibro-

blasts and MG63 human osteoblast-like cells (Figure 11). 

Regarding the ISO-compliant cells L929, no significant 

reduction of cellular viability was observed after incubation 

Figure 8 FISH of MRSA biofilms after 24 hours incubation with 20 mg/mL of daptomycin- and vancomycin-loaded PCL microparticles. 
Notes: Sessile staphylococci were hybridized with pan-bacterial EUB 338FITC and staphylococci-specific STAPHYFITC probes (green) as well as stained with DAPI (blue). 
Untreated biofilms were used as controls. Magnification: 400×.
Abbreviations: FISH, fluorescence in situ hybridization; MRSA, methicillin-resistant Staphylococcus aureus; PCL, poly-epsilon-caprolactone; DAPI, 4′,6-diamidino-2-
phenylindole.

with plain and antibiotic-loaded PCL microparticles in the 

Alamar Blue or in the MTT assay. Since these formulations are 

intended to be in contact with osteoblasts, the cellular viability 

of MG63 human osteoblast-like cell was also assessed. The 

Alamar Blue assay did not reveal any cytotoxicity, whereas 

the MTT assay revealed a reduction in cellular viability for 

nearly all concentrations and types of microparticles used. No 

significant differences between plain and antibiotic-loaded 

microparticles were found, except between 10 µg/mL of plain 

and daptomycin-loaded microparticles.

Discussion
Characterization of polymeric 
microparticles
Plain and antibiotic-loaded PCL microparticles presented a 

spherical form with a diameter of 1–2 µm (Figure 1). Regard-

ing DL (Figure 2), it was possible to observe a steady increase 

for both daptomycin and vancomycin as the concentrations of 

the antibiotics in the formulation increased from 2.5% to 30% 

(w/w). The EE values obtained for daptomycin decreased 

as the antibiotic percentage in the formulation increased 

from 2.5% to 15%. From 15% to 30% of daptomycin in the 

formulation, the EE strongly increased from 42.9%±0.5% 

to 83.0%±3.6%. This may be explained by the formation of 

micelles of daptomycin above 1 mg/mL, which is observed 

when 30% of daptomycin is used for particle preparation.20 

In the case of the w/o/w double emulsion-solvent evaporation 

method, daptomycin micelles will have the lipophilic tail 

of the molecule facing the organic phase of the emulsion, 

thus enabling the increase in EE. Unlike daptomycin, van-

comycin presents lower EE values, which are consistent 

with the values found in the literature. For PCL micropar-

ticles prepared by the same method with 7.5% and 25% of 

vancomycin, the reported EE values were 57.3%±4.2% and 

49.6%±3.6%, respectively.21,22 The formulations chosen for 
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Figure 9 FISH of Staphylococcus epidermidis biofilms after 24 hours incubation with 20 mg/mL of daptomycin- and vancomycin-loaded PCL microparticles. 
Notes: Sessile staphylococci biofilms were hybridized with pan-bacterial EUB 338FITC and staphylococci-specific STAPHYFITC probes (green) as well as stained with DAPI 
(blue). Untreated biofilms were used as controls. Magnification: 400×.
Abbreviations: FISH, fluorescence in situ hybridization; PCL, poly-epsilon-caprolactone; DAPI, 4′,6-diamidino-2-phenylindole.

Figure 10 Detailed section of sessile Staphylococcus epidermidis hybridized with pan-bacterial EUB 338FITC and staphylococci-specific STAPHYFITC probes (green) as well as 
stained with DAPI (blue) after 24 hours incubation with 20 mg/mL of daptomycin-loaded PCL microparticles. 
Notes: Magnification: (A) 400× and (B) 1,000× (B corresponds to magnification of the boxed area of the biofilm of A).
Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole; PCL, poly-epsilon-caprolactone.

Figure 11 Relative cell viability (%) of L929 mouse fibroblasts and MG63 human osteoblast-like cells after incubation with plain (white), daptomycin (light gray), and 
vancomycin-loaded PCL (dark gray) microparticles. 
Notes: For each experiment, culture medium (dashed) and SDS (black) were used as negative and positive controls, respectively. *, **, ***, and **** are significantly different 
from negative control (P,0.05, P,0.01, P,0.001, and P,0.0001, respectively). Results are presented as mean ± SD (n=6).
Abbreviations: PCL, poly-epsilon-caprolactone; SDS, sodium dodecyl sulfate; SD, standard deviation; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
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further physicochemical characterization and assessment 

of antibacterial activity were the ones loaded with 30% of 

antibiotic due to the higher DL values (ie, mg of antibiotic/mg 

of microparticles) (Table 1). The particle size distribution of 

plain and antibiotic-loaded PCL microparticles presented a 

monomodal population within the micrometer range, which 

is consistent with reports of polymeric microparticles pre-

pared with the same method.9,10 The negative charge from all 

formulations is attributed to the fact that PCL is negatively 

charged.10 In addition, the encapsulation of daptomycin 

or vancomycin did not influence particle size distribution 

or surface charge (Table 1). Furthermore, the differential 

scanning calorimetry (DSC) thermograms revealed that 

PCL in the microparticles maintained its crystalline state, 

whereas both antibiotics were amorphous (Figure 3).23 The 

same findings for the thermal behavior of drug-loaded PCL 

microparticles prepared by the solvent evaporation method 

have been reported elsewhere.23,24 The amorphization of the 

encapsulated antibiotics may be due to the rapid precipitation 

of both drugs during particle preparation.23

In vitro release
The in vitro release profile is an important predictor of the 

antibacterial activity of antibiotic-loaded microparticles. 

In this case, after 2 hours of incubation, it was possible to 

achieve released concentrations of daptomycin and vancomy-

cin above the reported MIC/MBC values for the strains used 

in this study, 8.2%±1.3% and 4.4%±1.4% corresponding to 

9.1±1.4 µg/mL and 4.4±1.5 µg/mL respectively, remaining 

so up to 72 hours (Figure 4). Overall, daptomycin release 

is expressively higher than vancomycin (12.1±1.6 µg/mL 

vs 4.4±1.5 µg/mL). The lower release of vancomycin can 

be explained by the lowest encapsulation values observed 

for these microparticles in comparison with daptomycin. 

In addition, vancomycin is a more hydrophobic molecule 

than daptomycin and presents a larger molecular size.25,26 

These factors may hinder vancomycin diffusion through 

the polymeric matrix, thus reducing the concentration of 

released antibiotic.

Susceptibility testing of daptomycin 
and vancomycin
The values for the MIC and MBC of non-encapsulated dap-

tomycin and vancomycin were 0.25 µg/mL and 2.0 µg/mL 

respectively, for both strains. These results are consistent 

with the values in the literature.14,27

Regarding both strains, the MHIC obtained by iso-

thermal microcalorimetry were consistent with the MIC 

and MBC obtained by the macro-broth dilution method 

(Figure 5). In addition, it was possible to observe that MRSA  

and S. epidermidis growth was delayed at 0.125 µg/mL of dap-

tomycin and at 1 µg/mL of vancomycin, when compared to the 

GC. In conclusion, isothermal microcalorimetry proved to be a 

suitable method to evaluate the antibacterial activity of soluble 

antibiotics against different strains, yielding the same results 

as the gold standard method (ie, macro-dilution broth).

Antibacterial activity of PCL 
microparticles by isothermal 
microcalorimetry
The MHIC of encapsulated daptomycin and vancomy-

cin against planktonic and sessile bacteria was assessed 

by isothermal microcalorimetry (Figure 6 and Table 2). 

Daptomycin- and vancomycin-loaded PCL microparticles 

are insoluble and turbid when in suspension; hence it was 

not possible to assess their antibacterial activity through the 

macro-broth dilution method. In addition, due to their micro-

metric size these microparticles readily sediment causing 

changes in the sample’s turbidity, which in turn hinders the 

use of OD 600 nm measurement to assess bacterial growth 

in the sample (ie, micro-broth dilution method). In the last 

years, the use of isothermal microcalorimetry in microbiol-

ogy has been increasing among others for characterization 

of antibacterial and antibiofilm activity of several antibiotics 

against staphylococci strains.14,28,29 It is a highly sensitive 

method able to assess in real-time changes in bacterial 

growth based on the measurement of heat flow produced by 

replicating bacteria.29 Thus, it is not affected by the turbidity 

of the sample like the broth dilution methods, making it very 

useful for the study of the antibacterial effect of insoluble 

compounds, such as microparticles.30

Regarding planktonic bacteria, daptomycin-loaded PCL 

microparticles presented lower MHIC values (0.313 mg/mL 

for MRSA and 0.625 mg/mL for S. epidermidis) than 

vancomycin-loaded microparticles (10 mg/mL for both 

strains) (Table 2). This is consistent with the MIC/MBC 

values of daptomycin and vancomycin for both strains as 

well as with the release profiles obtained (Figure 4). Not 

only did daptomycin present higher antibacterial activity 

(ie, lower MIC/MBC values) but it was also released in 

higher concentrations than vancomycin. Although the MIC/

MBC values of solubilized daptomycin for both strains were 

equal (ie, 0.25 µg/mL), daptomycin-loaded microparticles 

presented a twofold higher MHIC value for S. epidermidis 

(0.625 mg/mL) when compared to the MRSA values. As 

shown in Figure 6B, S. epidermidis growth with 0.313 mg/mL 
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of daptomycin-loaded microparticles started at approximately 

20 hours, which is close to the end of the incubation time 

(24 hours). In some publications, a heat flow threshold for 

the MHIC is set and any heat flow production below does not 

correspond to a significant bacterial growth. For example, 

Mihailescu et al and Entenza et al set the threshold at 10 µW 

and 20 µW, respectively.14,28 In this case, a more conservative 

approach was chosen and the MHIC corresponded to the 

concentration of microparticles that completely inhibited 

bacterial growth, hence the difference between the MHIC 

values of daptomycin-loaded microparticles against MRSA 

and S. epidermidis.

The antibiofilm activity of antibiotic-loaded PCL 

microparticles was assessed by the quantification of heat 

flow associated with the recovery of the biofilm once fresh 

medium, with or without microparticles, was added (Figure 7 

and Table 3). Overall, daptomycin-loaded microparticles 

presented a higher antibiofilm effect against MRSA and 

S. epidermidis biofilms than vancomycin microparticles. 

This may be explained by the lower release rate of vanco-

mycin (Figure 4) as well as the higher intrinsic antibiofilm 

activity of daptomycin compared to vancomycin. Biofilms 

are characterized by their increased tolerance toward anti-

biotics, which has been demonstrated in vitro by reports 

of ten- to 1,000-fold increase in the MBIC values when 

compared to the MIC.3 The structure of biofilms, as well 

as the low metabolic activity of the cells, is thought to be 

accountable for the increased tolerance to antibiotics.3 

The penetration of some antibiotics into biofilms may be 

hindered by their multilayered structure and extracellular 

polysaccharide matrix. In addition, some bacteria within 

the biofilm present a decreased metabolic activity, which 

prevents antibiotic action, since most antibiotics target 

important metabolic pathways, such as protein produc-

tion, enzymatic activity, and DNA transcription. Previous 

reports indicate that daptomycin shows higher antibiofilm 

activity than vancomycin against MRSA biofilms with 

MBIC values of 40 and .1,024 µg/mL for daptomycin 

and vancomycin, respectively.14 The reason for this dif-

ference lies in the different mechanism of action of each 

antibiotic, since vancomycin inhibits the peptidoglycan 

synthesis, which only occurs in metabolically active bac-

teria, whereas daptomycin targets the cell membrane by 

opening pores and causing cell lysis.31,32 For this reason, 

it is not surprising that vancomycin-loaded microparticles 

did not exhibit a considerable antibiofilm effect. Regard-

ing daptomycin-loaded microparticles, our results showed 

the MBIC of daptomycin-loaded microparticles for MRSA 

biofilms was 40-fold higher than the MHIC for the plank-

tonic form of the same strain, whereas for S. epidermidis 

biofilms there was a 80-fold higher MBIC compared to the 

MHIC. This increase was expected due to the differences 

in terms of antibiotic tolerance between planktonic and 

sessile bacteria. Nevertheless, this increase of the MBIC 

values of daptomycin microparticles was considerably 

lower than the 320-fold increase of the MBIC for solubilized 

daptomycin against MRSA reported by Mihailescu et al.14 

In fact, additional reports of higher antibiofilm activity of 

encapsulated antibiotics include the reduction of S. aureus 

biofilms by vancomycin-loaded chitosan microparticles and 

the prolonged antibiofilm activity of gentamicin-loaded 

PLGA microparticles against Pseudomonas aeruginosa.33,34 

There are three main mechanisms that may be accountable 

for the higher antibiofilm effect of these systems; prevention 

of drug degradation, controlled drug release, and interac-

tion between microparticles and biofilm. In this case both 

antibiotics are stable; thus, no degradation is expected. 

In fact, controlled drug release was observed with increas-

ing amounts of daptomycin being released up to 72 hours, 

which may prolong the antibiofilm effect. Finally, increas-

ing the interaction between microparticles and biofilms will 

increase the residence time of the microparticles near the 

biofilm, thus increasing the local antibiotic concentration.

Interaction between PCL microparticles 
and biofilms by fluorescence in situ 
hybridization
FISH enabled to gain further insights on the interac-

tion between MRSA or S. epidermidis biofilms and PCL 

microparticles (Figures 8–10). It allowed the assessment of 

the microparticles’ effect on biofilm size and structure as well 

as the visualization of particle–biofilm interaction.

FISH has been used to characterize medical biofilms by 

using strain-specific probes labeled with a fluorescent dye 

to target the ribosomal 16S RNA. The high copy number 

of 16S rRNA in each replicating and metabolically active 

cell offers sufficient target to visualize single bacterial cells 

within biofilms.35 The concomitant use of two or more spe-

cific probes labeled with the same fluorescent dye (ie, EUB 

338FITC and STAPHYFITC here) intensifies the FISH signal 

by increasing the number of fluorescent molecules per cell, 

thus improving sensitivity and detection of active cells.35 In 

the untreated biofilms (ie, control) a low number of FISH-

positive cells were observed. This is due to the fact that most 

bacteria within mature biofilms present a low metabolic 

activity, thus the 16S rRNA content is low.
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The untreated biofilms and the biofilms treated with 

vancomycin-loaded microparticles presented no observable 

differences for both strains by FISH analysis, meaning that 

these microparticles were microscopically not active against 

staphylococci biofilms (Figures 8 and 9). These findings cor-

relate to the isothermal microcalorimetry results, in which 

vancomycin microparticles did not prevent the recovery of 

MRSA and S. epidermidis biofilms (Figure 7).

Regarding daptomycin-loaded microparticles, it was 

possible to observe a strong difference in the activity 

against MRSA and S. epidermidis biofilms. MRSA biofilm 

was successfully reduced to single bacterial cells by these 

microparticles. Also in this case, FISH complemented 

the isothermal microcalorimetry results; both methods in 

combination showed that these microparticles not only 

inhibited biofilm recovery but also reduced biofilm mass. In 

contrast, S. epidermidis biofilms were more tolerant toward 

daptomycin-loaded microparticles than MRSA biofilms, a 

result, which was also corroborated by the microcalorimetry 

analysis (Figure 7). The FISH images revealed that dapto-

mycin-loaded microparticles were not able to eradicate the 

biofilm, although some disruption of the biofilm structure was 

observed. In addition, clusters of FISH-positive cells were 

present in the outer biofilm layers, which is of the upmost 

importance since these are most probably viable cells that 

survived the treatment with daptomycin-loaded micropar-

ticles and would have been able to regrow the biofilm, thus 

compromising treatment efficacy and causing reinfection in 

the clinical setting (Figure 10).

FISH also provided valuable insights on the interaction 

between microparticles and biofilm as can be seen in the 

orange-labeled remnants found enclosed by the surviv-

ing biofilms. The attachment of positively charged nano- 

and microparticles to biofilms has previously been reported 

and attributed to the overall negative charge of bacteria and 

extracellular matrix.5 In this case, PCL microparticles are 

negatively charged, meaning that the interaction may be 

due to other factors, such as hydrogen binding or similar 

hydrophobicity. Isothermal microcalorimetry alone was not 

able to provide such information, thus these two techniques 

complement each other in terms of characterizing the anti-

biofilm effect of polymeric microparticles as well as their 

interaction with biofilms.

Cell viability studies
The determination of in vitro cytotoxicity of antibiotic-loaded 

PCL microparticles is a fundamental aspect in the assess-

ment of their biocompatibility. In this case, the cytotoxicity 

assessment of plain and antibiotic-loaded PCL microparticles 

was performed with two cell lines (mouse fibroblasts L929 

and MG63 human osteoblast-like cells). The MTT and Alamar 

Blue assays were used for assessment of cell viability.

Regarding the ISO-compliant cells L929, no significant 

reduction of cellular viability was observed after incubation 

with plain and antibiotic-loaded PCL microparticles. Since 

these formulations are intended to be in contact with osteo-

blasts, the cellular viability of MG63 human osteoblast-like 

cell was also assessed. Although the Alamar Blue assay 

did not reveal a significant cytotoxicity, it was possible to 

verify that the MTT assay revealed a slight reduction in cell 

viability. Nevertheless, results show that neither the plain nor 

the different antibiotic-loaded microparticles led to a reduc-

tion in cell viability below 50%, even for concentrations as 

high as 2,000 mg/mL, meaning that the cytotoxicity of the 

microparticles was very limited.36 The fact that the cytotox-

icity assays presented different results can be explained by 

the different evaluated endpoints. Both assays rely on the 

assessment of cytotoxicity by quantification of the products 

of enzymatic reactions.37 The MTT assay is based on the 

quantification of formazan crystals produced by the reduc-

tion of the tetrazolium salt by the mitochondrial succinic 

dehydrogenases. In contrast, the Alamar Blue assay is based 

on the reduction of resazurin to resofurin by mitochondrial, 

cytosolic, and microsomal enzymes; hence it is not neces-

sarily specific for mitochondrial dysfunction. In this case, it 

is possible to observe that PCL microparticles may hinder 

mitochondrial activity, thus decreasing cell viability but such 

is compensated by the less specific enzymes present in the 

cytoplasm and microsomes of the cells, hence no cytotoxicity 

is observed in the Alamar Blue assay. Overall, the cellular 

viability of both cell lines presented acceptable values, 

which leads to the conclusion that both daptomycin- and 

vancomycin-loaded PCL microparticles are biocompatible.

Conclusion
Daptomycin-loaded PCL microparticles presented the high-

est antibacterial effect against clinically relevant planktonic 

MRSA and S. epidermidis, proving to be more effective 

than vancomycin-loaded microparticles. This formulation 

also showed superior activity against MRSA biofilms by 

inhibiting biofilm recovery as well as significantly decreas-

ing biofilm mass. Regarding S. epidermidis biofilms, dapto-

mycin-loaded PCL microparticles were also superior, since 

they were able to inhibit biofilm recovery, but no significant 

biofilm mass decrease was observed. All PCL microparticles 

presented a high interaction with MRSA and S. epidermidis 
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biofilms. Furthermore, all formulations proved to be biocom-

patible with both mouse fibroblasts L929 and MG63 human 

osteoblast-like cells.

Isothermal microcalorimetry showed to be a highly sen-

sitive and accurate tool to evaluate the antibiofilm effect of 

antibiotic-loaded PCL microparticles without the previously 

mentioned drawbacks of the routine microbiology methods. 

Moreover, FISH provided crucial information regarding bio-

film structure and viability as well as particle–biofilm inter-

actions. Combining these techniques proved to be essential 

in order to fully characterize the antibiofilm activity of PCL 

microparticles against MRSA and S. epidermidis.

Daptomycin-loaded PCL microparticles showed poten-

tial to be a useful strategy to successfully manage Gram-

positive biofilm-associated infections, due to their enhanced 

antibiofilm activity and to their considerable interaction with 

biofilms, especially when compared to the free drug. The 

interaction between polymeric nano- and microcarriers and 

Gram-positive biofilms is still unclear. The presented study 

showed further insights on this, clarifying the antibiofilm 

activity of daptomycin-loaded PCL microparticles against 

mature staphylococcal biofilms.
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