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Abstract: Quantum chemical calculations predict that the spin states of simple carbenes can be 

switched over from triplet to singlet via hydrogen bonding, and thus the spin specificity of their 

reactions can be tuned. The stability of the singlet state of simple carbenes like: CH
2
 increases 

due to hydrogen bond formation with a single molecule of water or methanol, although the 

triplet state is found to be the ground state. However, the most dramatic effect of spin switch is 

found for diphenylcarbene (Ph
2
C), which becomes a ground state singlet due to formation of a 

hydrogen bond with the hydrogen atom of water or methanol. The present calculations reveal 

that the effect of hydrogen bonds on switching the spin state of carbenes is only applicable to 

Ph
2
C, as it has a very small singlet–triplet gap in its free form, ie, when it is not hydrogen bonded 

with water or methanol. Further, the presence of such hydrogen-bonding interaction has been 

verified within the realm of atoms-in-molecules analysis of the electron density.

Keywords: carbenes, spin states, quantum chemical calculations, hydrogen bonding, atoms 

in molecules

Introduction
Carbenes (R

2
C:) are divalent carbon species having two nonbonding electrons. These 

nonbonding electrons may have antiparallel spins (singlet state) or parallel spins (triplet 

state).1–6 The parent carbene CH
2
 has a triplet ground state with an experimental singlet–

triplet (S–T) energy gap of 9.05±0.06 kcal/mol.7–9 The small difference between the 

S
0
 and T

1
 may be easily overcome by tuning the substituents attached to the carbene 

center.10 Various factors dictate the ground state multiplicity or the S–T separation of 

carbenes.11 Apart from the effect of substituents, solvents are found to stabilize the 

singlet state more than the triplet state.12–16

Products of carbene reactions are solely determined by the carbene’s spin state. 

For example, the singlet carbene inserts in to the O-H bonds of alcohol,17 whereas 

the triplet carbene undergoes insertion into C-H bonds18 (Figure 1).19 This reactivity 

difference of carbenes with alcohol has been extensively studied, and spin selectivity 

of carbene chemistry has been developed.19–22

Recently, Costa and Sander19 investigated the reaction of diphenylcarbene (DPC), 

Ph
2
C, an archetypical ground state triplet carbene, with methanol and isolated a singlet 

metastable complex (the complex was found to be electron spin resonance silent) in 

low-temperature matrices. The formation of the metastable methanol complex has 

been monitored and characterized by infrared spectroscopy. They also characterized 

the O-H insertion product, a typical product expected for singlet state carbene. Based 

on a different spectroscopic technique and theoretical calculations, they predicted that 
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the singlet state of DPC can become more stable by hydrogen 

bonding interactions with solvents. Their results showed an 

interesting chemistry of switching the ground state multiplic-

ity of carbenes by solvent interactions, and there by providing 

a hint toward a unique way to control the carbene’s chemical 

reactivity. In another report, Costa et al20 observed that the 

reaction of DPC with a single molecule of water switches 

its spin state. This prompted us to investigate the effect of 

hydrogen bond donors such as H
2
O and CH

3
OH on the spin 

states of simple alkyl and aryl carbenes, R
2
C: (R=H, Me, Et, 

Ph). Here, we present quantum chemical calculations,23–37 

which reveal that the spin states of alkyl or aryl carbenes 

can be tuned by interaction with a hydrogen bond donor 

solvent or reactant. The goal of controlling the spin state of 

a carbene is to change the reaction path so as to achieve the 

good desired reaction selectivity. In order to react with an 

alcohol, the hydrogen bond between carbene and the solvent 

molecules should be broken first. Then, the carbene carbon 

atom can get close to and react with the alcohol. In this case, 

the hydrogen-bond-induced spin state change may have no 

effect on the real reactions. However, this hydrogen bonded 

interaction may prevent the dimerization of triplet carbenes 

by providing stability to the singlet state.

Computational details
Geometry optimization of all the molecules without any 

symmetry constraint were performed at B3LYP,23,24 BNL,25–27 

B3LYP-D,28 LC-BLYP,29 and M06-2X30 functional using 

the 6-311++G(d, p) basis set frequency calculations have 

been performed at these levels of theory to characterize the 

nature of stationary points. Single point energy calculations 

at CCSD(T)/6-311++G(d, p)31 level of theory has been per-

formed using the ORCA32 suite of program. However, the per-

formance of B3LYP functional is found to better (Figure S1, 

supporting information) and hence, the discussion in the text 

is based on B3LYP level of theory. We have also calculated 

the S–T gap of the parent carbenes at B3LYP/Aug-cc-pVDZ. 

All geometry optimizations and frequency calculations have 

been performed using NWChem 6.1 program in gas phase.33 

Quantum theory of atoms in molecules (QTAIM)34 and elec-

tron localization function (ELF)35,36 have been performed 

using Multiwfn 3.1 suite of program.37

Results and discussions
Table 1 lists the S–T energy separations, ∆E

ST
, calculated at 

B3LYP level using the 6-311++G(d, p) and Aug-cc-pVDZ 

basis sets in the gas phase for four carbenes. The B3LYP/6-

311++G(d, p) method gave the least absolute error in the 

S–T energy gaps when compared with the values computed 

at CCSD(T)/6-311++G(d, p) level of theory (Figure S1). The 

calculated values of ∆E
ST

 at B3LYP/6-311++G(d, p) level are 

very close to those obtained in the previous studies38,39 and are 

very close to the values calculated at CCSD(T)/6-311++G(d, p) 

level of theory. Similar results are obtained using the larger 

basis set (Aug-cc-pVDZ). However, the S–T gaps are 

slightly smaller with the Aug-cc-pVDZ basis set than with 

the 6-311+G(d, p) basis set. Thus, the discussion in this text 

is based on the B3LYP/6-311(d, p) results. The simplest 

carbene, methylene, has a triplet ground state with ∆E
ST

 of 

11.73 kcal/mol calculated at B3LYP/6-311++G(d, p) level of 

theory. The experimental value of S–T separation of CH
2
 is 

9.05 kcal/mol,7 which is 2.68 kcal/mol less than our B3LYP/6-

311++G(d, p) calculated value. Increase in the basis set size to 

Aug-cc-pVDZ leads to a ∆E
ST

 value of 11.13 kcal/mol, which 

is 2.08 kcal/mol less than the reference value.

The S–T gap of dimethylcarbene, Me
2
C, is found to 

be -0.75 kcal/mol at B3LYP level of theory. This implies 

that the ground state of Me
2
C is singlet. The stability of the 

singlet state of Me
2
C can be explained by hyperconjugation. 

Since, singlet carbenes are isoelectronic with carbocations, 

hyperconjugation stabilizes the singlet state more than the 
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Figure 1 Proposed reactions of singlet and triplet carbenes with an alcohol. 
Note: Methanol was the alcohol used in this figure.

Table 1 B3lYP calculated gas phase singlet–triplet energy 
separations (kcal/mol) for carbenes

Entry Calculated, ΔEST at 6-311 
++G(d, p)

ΔEST at Aug-cc-
pVDZ without ZPE

With ZPE Without ZPE

h2C 11.73 12.15 (12.06) 11.13
Me2C -0.75 -0.36 (-0.38) -1.02
et2C -3.18 -2.45 -3.05
Ph2C 5.64 5.92 4.82

Notes: Values in parentheses were calculated at CCsD(T)/6-311++g(d, p) level 
without ZPe correction. Basis set used are 6-311++g(d, p) and aug-cc-pVDZ.
Abbreviations: ∆EsT, singlet–triplet energy separation; ZPe, zero-point energy.
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triplet radical species.11 The effect of hyperconjugation is 

more pronounced in case of Et
2
C. Similarly, the conjuga-

tion of aryl groups, as in Ph
2
C, reduces the S–T gap of aryl 

carbenes.11 However, the effect of conjugation is somewhat 

less compared to the stabilization provided by the hyper-

conjugation of methyl and ethyl groups in Me
2
C and Et

2
C, 

respectively.

Previous studies reveal that polar solvents reduce the 

S–T gap of carbenes by increasing the dipole moment 

of the singlet state.11–16 The reduction of the S–T gap for 

carbenes in polar solvents has been computationally veri-

fied.12 The plot of experimentally determined S–T gaps as 

a function of solvent polarity was found to be linear,11 

which led to the conclusion that specific carbene–solvent 

interaction does not play a significant role.11 However, the 

recent report by Costa and Sander19 and Costa et al20 clearly 

establishes that the spin states of carbenes can be tuned by 

interaction with hydrogen bond donor solvents and that the 

carbene–solvent interaction has a vital role to play in the 

ground state multiplicity of carbenes. Although the effect 

of solvent polarity on the S–T gap of carbenes has been 

theoretically explored, the explicit interaction of solvent 

molecules with carbenes needs to be understood.

Table 2 collects the S–T gap of carbene–solvent 

complexes. Interaction of H
2
O with CH

2
 reduces the S–T 

gap by 3.81 kcal/mol (triplet state is more stable). The most 

dramatic effect of solvent interaction is found in the case of 

Me
2
C…solvent complexes (the … signifies a weak interac-

tion between atoms). The S–T gap is dramatically reduced, 

thus making the singlet state more stable. The effect of solvent 

interaction in reducing the S–T gap is also observed in the 

case of Ph
2
C. The singlet state of Ph

2
C…solvent complexes 

are found to be slightly more stable. This is in agreement with 

recent observation of Costa and Sander19 and Costa et al.20

The interaction of hydrogen bond donors (H
2
O and 

CH
3
OH) increases the dipole moment of the singlet more than 

that of the triplet. This increase in dipole moment indicates a 

higher stability of the more polar singlet state over the triplet 

state. This is in agreement with previous theoretical studies 

on the preferential stabilization of the singlet state in a polar 

solvent due to an increase in dipole moment.11–16

Table 2 gas-phase B3lYP/6-311++g(d, p) calculated singlet–
triplet energy separations (in kcal/mol) and dipole moments 
(in debye) for carbene–solvent complexesa,b

Entry ΔEST Δ(ΔEST) μ

With ZPE Without ZPE S T

h2C…h-Oh 7.95 7.04 (7.74) 3.78 3.95 2.50

h2C…h-OCh3
7.74 7.10 (7.76) 3.99 3.70 2.06

Me2C…h-Oh -5.73 -6.03 (-4.15) 4.98 4.26 2.66

Me2C…h-OCh3 -5.82 -5.97 5.07 4.22 2.40

et2C…h-Oh -3.75 -4.18 0.57 4.36 2.74

et2C…h-OCh3 -3.91 -4.28 0.73 4.37 2.67

Ph2C…h-Oh -0.45 -0.62 6.09 4.47 2.72

Ph2C…h-OCh3 -0.18 -0.42 5.92 4.36 2.53

Notes: Values in parentheses refer to CCsD(T)/6-311++g(d, p) energies without 
ZPe correction. a∆(∆EsT) = ∆EsT (free carbene) – ∆EsT (carbene…solvent complex); 
bsinglet states are more stable. The … signifies a weak interaction between atoms.
Abbreviations: ∆EsT, singlet–triplet energy separation; ZPe, zero-point energy; 
μ, dipole moment; s, singlet; T, triplet.
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Figure 2 B3lYP/6-311++g(d, p) optimized singlet state geometries of carbene–
solvent complexes.
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Figure 3 spin cross-over for Ph2C…h-OCh3 complex calculated at the B3lYP/6-
311++g(d, p) level without zero-point energy correction.
Note: The … signifies a weak interaction between atoms.
Abbreviation: Eel, electronic energy.
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Figure 2 shows the optimized geometries of the carbene…

solvent complexes at the B3LYP/6-311++G(d, p) level of 

theory. The C…HO distances are found to be close to 2 Å, 

which are ∼30% shorter than the sum of the van der Waals 

radii of carbon and hydrogen (2.85 Å).40

The spin cross-over of Ph
2
C complexed with CH

3
OH 

were explored by a relaxed potential energy scan, keeping 

the C…HO distance fixed and optimizing all other coordi-

nates at B3LYP/6-311++G(d, p) level. Figure 3 is a plot of 

the energies (kcal/mol) of the respective singlet and triplet 

states of the Ph
2
C…H-OCH

3
 complex. It is evident from 

Figure 3 that the spin cross-over from triplet to singlet takes 

place at C…HO distance of ∼2.30 Å, which is longer than 

the C…HO equilibrium distance of 1.971 Å.

The formation of hydrogen bonds has been confirmed by 

applying the QTAIM34 and the ELF35,36 analysis (Figure 4 and 

Table 3). These topological analyses reveal a bond path and 

a (3, -1) bond critical point between the carbenic carbon 

and the hydrogen atom of the H-O bond of H
2
O or CH

3
OH 

(Figure 4). The Laplacian of the electron density, ∇2ρ, is 

positive and the local electronic energy density, H(r), is 

negative, which is a characteristic feature of a polar covalent 

bond.34 The ELF35,36 values at the bond critical points of these 

complexes are also significant. All these topological features 

confirm the presence of such interaction.

Conclusion
In conclusion, quantum chemical calculations showed that the 

interaction of hydrogen bond donor molecules can modify the 

S–T gap of alkyl or aryl carbenes. This interaction may lead 

to a higher stability of the singlet state over the triplet state by 

increasing the dipole moment of the former. This increase in 

dipole moment results in more charge reorganization in the 

singlet state, rendering them more stable. A simple carbene 

like CH
2
 shows a decrease in S–T gap of ∼4.0 kcal/mol due 

to formation of hydrogen bonds with water or methanol, 

although the triplet state is still the ground state. The most 

dramatic effect of hydrogen bond formation on the spin state 

of carbenes is observed for DPC, for which the singlet state 

becomes the ground state. Thus, it appears that hydrogen 

bond-induced spins witch over is applicable to DPCs among 

the four carbenes considered in this study. This might be due 

to the fact that the S–T gap of the parent Ph
2
C is very small 

(∼5 kcal/mol) and may get reduced upon hydrogen bond 

formation to such an extent that the hydrogen bonded singlet 

Ph
2
C becomes the ground state. This observation is in line 

with the recent experimental finding of Costa and Sander19 

and Costa et al.20 The existence of this hydrogen-bonded 

interactions has been verified by our topological studies of 

the electron density. The outcome of this study is encouraging 

in the sense that a single hydrogen bond donor molecule may 

switch the ground state spin multiplicity of those carbenes 

with a smaller S–T gap, and thus may prevent their dimeriza-

tion in solutions of polar solvents.
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Supplementary material
Cartesian coordinates of all the molecules calculated at 

B3LYP/6-311++G(d, p) level.
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