
© 2015 Harris et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

Neuropsychiatric Disease and Treatment 2015:11 2599–2604

Neuropsychiatric Disease and Treatment Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
2599

O r i g i N a l  r e s e a r c h

open access to scientific and medical research

Open access Full Text article

http://dx.doi.org/10.2147/NDT.S84292

cognitive reserve and aβ1-42 in mild cognitive 
impairment (argentina-alzheimer’s Disease 
Neuroimaging initiative)

Paula harris1,2

Marcos Fernandez suarez1

ezequiel i surace1,2

Patricio chrem Méndez1

María eugenia Martín1

María Florencia clarens1

Fernanda Tapajóz1,2

Maria Julieta russo1

Jorge campos1

salvador M guinjoan1,2

gustavo sevlever1

ricardo F allegri1,2

1instituto de investigaciones 
Neurológicas, 2consejo Nacional de 
investigaciones científicas y Técnicas, 
Buenos aires, argentina

Background: The purpose of this study was to investigate the relationship between cognitive 

reserve and concentration of Aβ1-42 in the cerebrospinal fluid (CSF) of patients with mild 

cognitive impairment, those with Alzheimer’s disease, and in control subjects.

Methods: Thirty-three participants from the Argentina-Alzheimer’s Disease Neuroimaging 

Initiative database completed a cognitive battery, the Cognitive Reserve Questionnaire (CRQ), 

and an Argentinian accentuation reading test (TAP-BA) as a measure of premorbid intelligence, 

and underwent lumbar puncture for CSF biomarker quantification.

Results: The CRQ significantly correlated with TAP-BA, education, and Aβ1-42. When 

considering Aβ1-42 levels, significant differences were found in CRQ scores; higher levels of 

CSF Aβ1-42 were associated with higher CRQ scores.

Conclusion: Reduced Aβ1-42 in CSF is considered as evidence of amyloid deposition in 

the brain. Previous results suggest that individuals with higher education, higher occupational 

attainment, and participation in leisure activities (cognitive reserve) have a reduced risk of 

developing Alzheimer’s disease. Our results support the notion that enhanced neural activity 

has a protective role in mild cognitive impairment, as evidenced by higher CSF Aβ1-42 levels 

in individuals with more cognitive reserve.
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Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by 

progressive functional and cognitive decline.1 Increasing evidence suggests that 

the pathological substrate of AD may begin years to decades before the clinical 

diagnosis, with an initial asymptomatic stage followed by a phase of mild cognitive 

impairment (MCI).

MCI is a nosological entity useful for identifying adults at risk of developing AD 

or other dementia syndromes. It is defined by objective evidence of cognitive impair-

ment, subjective memory complaints, and preserved global cognition and activities 

of daily living.2,3

Although rates of conversion from MCI to AD range from 5% to 23%, many indi-

viduals diagnosed with MCI remain stable or progress to a non-AD dementia.4

Hallmark lesions of sporadic AD comprise intraneuronal inclusions of abnormally 

phosphorylated tau protein and extracellular deposits of amyloid-beta peptide, espe-

cially the 42 amino acid isoform (Aβ1-42).

Cerebrospinal fluid (CSF) biomarkers, ie, Aβ1-42, phosphorylated tau181, and 

total tau, are altered in AD patients compared with controls: decreased Aβ1-42 reflects 
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deposition of amyloid-beta in plaques while high total tau 

levels reflect active axonal and neuronal damage.5–7

In other types of dementia, as well as in a subgroup of 

patients with MCI, less specific changes in these biomarker 

concentrations have been reported.8–10 Likewise, correlations 

between cognitive status and amyloid burden at autopsy have 

not been found. This fact raises the question about a possible 

relationship between cognitive status, amyloid burden, and 

disease progression.

On the other hand, many studies indicate that a set of life 

experiences, such as educational and occupational attain-

ment and leisure activities, is associated with reduced risk 

of developing dementia and with a slower rate of memory 

decline during normal aging. Several prospective studies 

reported that up to 25% of older subjects who were cogni-

tively normal in life met full pathological criteria for AD at 

autopsy.11,12 The cognitive reserve (CR) construct has been 

proposed to account for the discrepancy between the degree 

of brain pathology and its clinical manifestation. Therefore, 

individuals with high CR may tolerate substantial pathology 

before showing cognitive loss, whereas those with low CR 

may decline earlier. The CR paradigm postulates that indi-

vidual differences in cognitive achievement, and/or neural 

networks underlying task performance, allow some people 

to cope better than others with brain damage; according 

to the CR hypothesis, persons with higher CR can sustain 

cognitive function in the presence of more brain pathology 

than subjects with lower CR.13

Stimulating environments, a component of CR measured 

in humans by variables such as engagement in leisure activi-

ties and occupational attainment, promote neurogenesis in 

animals, and upregulate brain-derived neurotrophic factor, 

which fosters neural plasticity.14 There is evidence suggesting 

that environmental enrichment might act directly to prevent 

or slow the accumulation of AD pathology.15 Therefore, as 

cognitive stimulation regulates factors that increase neuronal 

plasticity, a complete account of CR should integrate the 

interactions between genetics, environmental influences on 

brain reserve, pathology, and the ability to actively compen-

sate for the effects of pathology.

Roe et al have investigated the relationship between 

CR, AD biomarkers, and the risk of cognitive impair-

ment, and found that Aβ1-42 combined with education 

and normalized whole brain-volume better predicts 

progression across follow-up.16 The purpose of this study 

was to investigate the relationship between CR and Aβ1-42 

con centrations.

Patients and methods
Patients
Thirty-three Caucasian participants from the Argentina 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-

base (eight cognitively normal, 23 with amnesic MCI, two 

with AD; mean age 68.3±8.4 years, education 13.6±3.8 years 

and Mini Mental State Examination [MMSE] score 27.7±3.1) 

recruited at the Neurological Institute of Investigation 

between February and December 2013 were included for this 

investigation after giving their informed consent. The sub-

jects were included only if they agreed to undergo a lumbar 

puncture. Approval for the study was obtained from the ethics 

committee of the Neurological Institute of Investigation.

The diagnosis of MCI was established according to 

Petersen criteria, while the diagnosis of AD was done accord-

ing to the recommendations from the National Institute on 

Aging.3,17

Inclusion criteria were: age 55–90 years; written informed con-

sent obtained prior to the study; a Geriatric Depression Scale 

score 4; and education equivalent to 6 grade. Exclusion 

criteria included: medical history of psychiatric or any other 

neurological disease that could interfere with completion of 

assessments; consumption of psychoactive drugs; severe sen-

sory or comprehension deficit; and not consenting to lumbar 

puncture for CSF biomarkers.

Materials
During assessment, subjects completed the ADNI neuropsy-

chological battery, an Argentinian accentuation reading test 

(TAP-BA) that assesses the accentuation of 50 infrequent, 

irregularly stressed Spanish words as a measure of premorbid 

intelligence, and the Cognitive Reserve Questionnaire (CRQ) 

devised by Rami et al to estimate CR.18,19 They all underwent 

lumbar puncture to study CSF levels of total tau, phospho-

rylated tau181, and Aβ1-42. The research was conducted in 

accordance with the Declaration of Helsinki (1975).

CSF was collected by lumbar puncture at the L3/L4 or 

L4/L5 level during the morning. The first 20 drops were 

discarded and the remaining CSF (approximately 4–5 mL) 

was collected and aliquoted in polypropylene tubes. These 

tubes were stored at -80°C until analysis. Quantification of 

Aβ1-42, total tau, and phosphorylated tau181 was performed 

using commercially available enzyme-linked immunosorbent 

assay kits (Innogenetics, Ghent, Belgium) according to the 

manufacturer’s instructions. Briefly, 25 µL or 75 µL of CSF 

samples were used for measurement of Aβ1-42 and total tau or 

phosphorylated tau181, respectively. Samples were incubated 
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in the corresponding capture antibody-coated polypropylene 

plate with specific biotinylated monoclonal detector antibodies.  

After washing, the antigen-antibody complexes were detected 

by peroxidase-labeled streptavidin followed by addition of 

tetramethyl benzidine as the peroxidase substrate. Absorbance 

at 450 nm and 620 nm (used as reference wavelengths) was 

measured using a Benchmark Plus microplate spectrophotom-

eter (Bio-Rad, Hercules, CA, USA). Standard curve interpola-

tion of the data and subsequent analysis were performed using 

GraphPad Prism 5 software. Receiver operating characteristic 

analysis using a cohort of cognitively normal controls and AD 

patients showed that the cut-off point of 532.5 pg/mL best dis-

criminated these two populations (sensitivity 100%, specificity 

87.5%). MCI subjects were divided in two groups according to 

Aβ1-42 level (median 560 pg/mL; cut-off 532.5 pg/mL).

The ADNI is a large, multicenter, longitudinal neuroim-

aging study launched in 2004 by the National Institute on 

Aging, the National Institute of Biomedical Imaging and 

Bioengineering, the US Food and Drug Administration, 

private pharmaceutical companies, and nonprofit organiza-

tions. ADNI includes adult subjects aged 55–90 years who 

meet entry criteria for a clinical diagnosis of amnestic MCI, 

probable AD, or normal cognition. Participants receive 

baseline and periodic physical and neurological examina-

tions and standardized neuropsychological assessments, and 

provide biological samples (blood, urine, and in a subset, 

CSF) throughout the study. Imaging (magnetic resonance 

imaging and for a subset, F-fluorodeoxyglucose positron 

emission tomography [PET] and Pittsburgh compound B 

PET) is performed at baseline and at regular intervals there-

after (http://www.adni-info.org/).

The ADNI neuropsychological battery comprises the 

Spanish versions of: MMSE;20 Logical Memory;21 Clinical 

Dementia Rating;22 The Alzheimer’s Disease Assessment 

Scale-Cognitive Subscale (ADAS-Cog);23 Rey Auditory 

Verbal Learning Test (RAVLT);24 Montreal Cognitive 

Assessment (MoCA);25 Clock Drawing Test;26 Category 

fluency-animals;27 Trail Making Test A and B;28 and Boston 

Naming Test.29 Some of the tests selected for ADNI are:

•	 The MMSE, a 30-point questionnaire that is widely used 

to screen for cognitive impairment (10 points for spatial 

and temporal orientation; 6 points for memory retention 

and recall; 5 points for attention and calculation; 8 points 

for language; and 1 point for visual construction).

•	 The Boston Naming Test, a confrontation naming test that 

measures word retrieval using a set of pictures (30 items 

in the ADNI version).

•	 Story A from the WMS-III Logical Memory (subtest of 

the Wechsler Memory Scale) is an immediate and delay 

measure of episodic memory.

•	 The RAVLT, a list-learning paradigm in which the 

patient, after hearing a list of 15 nouns (list A) is asked 

to recall as many words from the list as possible (five 

repetitions of free-recall). An “interference” list (list B) is 

presented in the same manner, after the interference trial, 

the participant is immediately asked to recall the words 

from list A. After a 20-minute delay, the participant is 

asked to again recall the words from list A, followed by 

a recognition phase (50 words).

•	 The ADAS-Cog, a brief standardized test battery that 

assesses learning and memory, language production, lan-

guage comprehension, constructional praxis, ideational 

praxis, and orientation. Following the objective testing, 

subjective clinical ratings of language ability and the 

ability to remember test instructions are performed by 

the examiner.

•	 The Clinical Dementia Rating, a global measure of 

dementia, which is usually completed by a clinician by 

means of an interview with the patient and the caregiver 

(covered areas are memory, orientation, judgment and 

problem-solving, community affairs, home and hobbies, 

and personal care).

•	 Category fluency (animals), a widely used measure of 

semantic memory in which the subject is asked to name 

different exemplars from a given semantic category. 

The number of correct unique exemplars named is 

scored.

•	 The MoCA, designed as a rapid screening instrument 

for mild cognitive dysfunction, assesses attention and 

concentration, executive functions, memory, language, 

visuoconstructional skills, conceptual thinking, cal-

culations, and orientation. The total possible score is 

30 points; a score of 26 or above is considered normal.

•	 Trail Making Test, a test of processing speed and execu-

tive function. Although both Parts A and B depend on 

visual-motor and perceptual scanning skills, Part B also 

requires cognitive flexibility in shifting from number to 

letter sets under time pressure.

The CRQ included:

A) Education: (0–10)

•	 Patient years of education (0–5)

•	 Patient’s parents educational level (0–2)

•	 Patient training courses (0–3)

B) Working activity: (0–4)
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C) Leisure activity: (0–8)

•	 Musical training (0–2)

•	 Reading (0–4)

•	 Intellectual activities (0–2)

D) Languages (multilingualism): (0–3)

•	 Only mother tongue (first language; 0)

•	 Mother tongue plus a low fluency second language (1)

•	 Bilingualism (2)

•	 Multilingualism (3)

The total score is 25. The authors divided scores into 

quartiles to determine the level of CR (first quartile 6; sec-

ond quartile 7–9; third quartile 9–14; fourth quartile 15).

Data analysis
Analyses were performed using Statistical Package for the 

Social Sciences version 17.0 software. Association between 

variables (CSF biomarkers, CR, accentuation test, and neu-

ropsychological battery) was estimated using Spearman’s 

correlation coefficient. An independent-samples t-test was 

used for comparing groups according to AB1-42 or CR levels. 

Linear regression was performed to estimate the association 

between CRQ score and CSF Aβ1-42.

Results
There were no significant differences between the groups 

(control, MCI, AD) regarding sex, education, CRQ, or 

TAP-BA. The CRQ had a positive correlation with TAP-BA 

(rs=0.54; P0.005), education (rs=0.69; P0.001), and 

Aβ1-42 (rs=0.42; P0.05; Figure 1). Inverse correlations 

were found between CRQ and Trail Making Test A 

(rs=-0.54; P0.01) and Trail Making Test B (rs=-0.75; 

P0.001). Aβ1-42 significantly correlated with total 

tau (rs=-0.53; P0.005), Alzheimer’s profile (rs=0.79; 

P0.001) category fluency (animals; rs=0.45; P0.05), and 

RAVLT. Differences remained significant after correction 

for age. Significant correlations were found too between total 

tau and cognitive measures (category fluency and RAVLT). 

Sixteen subjects presented a positive Alzheimer’s profile 

(12 MCI, three controls, one AD). After dividing the MCI 

patients according to Aβ1-42 levels (cut-off 532.5 pg/mL), 

significant differences were found within subgroups in CRQ 

scores (P0.05; Table 1), showing that higher levels of CSF 

Aβ1-42, were associated with higher CRQ scores.

Significant differences were also found after classifying 

subjects according to their CR level (low, 15; high, 15); 

only four patients with high CR had CSF Aβ1-42 lower than 

the cut-off (Table 2). No other measure differed significantly 

across groups. No significant differences between MCI 

groups were found regarding age, education, and MMSE 

score (Table 2).

Discussion
Pathological hallmarks of AD include synaptic and neuronal 

degeneration and the presence of extracellular deposits of 

amyloid-beta in the cerebral cortex. With the advent of CSF 

biomarkers, such as tau and amyloid-beta (Aβ1-42), measur-

ing in vivo levels of peptides in CSF has been helpful for 

the diagnosis of AD.30 Some studies have reported that these 

markers could reflect brain pathology and could be used as 

surrogates for AD lesions.

Based on the CR theory, highly educated subjects 

would have more marked abnormalities in the CSF than 

those with a shorter education because of the compensatory 

effect over brain damage. Moreover, the CR hypothesis 

predicts that, at the same level of cognitive impairment, the 
Figure 1 correlation between cognitive reserve Questionnaire and aβ1-42 level. 
Abbreviation: crQ, cognitive reserve Questionnaire.

β

Table 1 Demographic data

Normal MCI AD

n 8 23 2
education 14.71 (2.55) 13.88 (4.52) 15 (4.24)
age, years 60.75 (6.67) 65.88 (7.10) 81 (4.24)
sex (M/F) 4M/4F 11M/12F 2M
TaP-Ba 41.25 (8.32) 38.50 (8.57) 46 (2.83)
crQ 16 (2.24) 14.88 (4.99) 14 (2.83)
M31-42 861.15 (2.59) 684.71 (340.18) 704 (445.87)
MMse 29.14 (1.73) 28.75 (1.52) 19 (7.07)

Note: Data are expressed as the mean (standard deviation). 
Abbreviations: aD, alzheimer’s disease; Mci, mild cognitive impairment; 
crQ, cognitive reserve Questionnaire; MMse, Mini-Mental state examination; 
TaP-Ba, argentinian accentuation reading test.
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underlying pathology will be more advanced in individuals 

with higher CR.

According to Stern et al AD patients with higher educa-

tion exhibited a stronger brain pathology, including reduced 

temporoparietal PET with fluorodeoxyglucose or single 

photon emission computed tomography measurements, when 

compared with patients with AD with low educational attain-

ment at similar levels of dementia severity.31

The aim of the current investigation was to investigate 

the relationship between CR and concentrations of Aβ1-42 

in patients from our ADNI cohort. Several studies found an 

inverse correlation between Aβ1-42 and CR, suggesting that 

subjects with high CR have greater biomarker abnormalities 

than subjects with low CR. Similarly, Rolstad et al observed 

that, at the same level of clinical severity, patients converting to 

dementia with high CR had lower Aβ1-42 than converters with 

a medium and low CR (measured by educational level).32

On the other hand, recent studies proposed that amyloid-

beta secretion might be affected by neural activity and that 

enhanced lifestyle practices are associated with reduced 

amyloid-beta deposition (based on Pittsburgh compound B 

PET and CSF Aβ1-42).33–35

Jagust and Mormino observed that brain activity regulates 

amyloid-beta secretion and deposition.11 They hypothesize 

that CR may play different roles during pre-amyloid and 

post-amyloid plaque stages: once Aβ1-42 deposition begins, 

CR allows high CR individuals to cope better with neuronal 

dysfunction than in individuals with low CR. However, in 

pre-amyloid plaque stages, CR could act to diminish Aβ1-42 

production through better neural efficiency.

Our study revealed a significant direct relationship 

between CSF Aβ1-42 level and CRQ score. These results 

are consistent with the observation that participation in 

cognitively stimulating activities is associated with less 

accumulation of amyloid-beta.

Liang et al examined associations between exercise 

engagement and biomarker levels in older adults without 

clinical symptoms of AD, and observed that individuals 

with elevated Pittsburgh compound B PET, CSF tau or phos-

phorylated tau181, or decreased CSF Aβ1-42 consistently 

exercised less.36

The notion that cognitive activity influences the develop-

ment of AD pathology is supported by recent findings that 

cognitively normal older individuals with greater lifelong 

participation in complex mental activities showed less hip-

pocampal atrophy, another biomarker of AD pathology. These 

authors reported a direct association between cognitive activity 

and [11C] Pittsburgh compound B uptake, suggesting that life-

style factors found in individuals with high cognitive engage-

ment may prevent or slow deposition of Aβ1-42-amyloid.35

Bennet et al using crude counts of AD pathology from 

the maximally involved area from four 6 µm sections stained 

with modified Bielschowsky silver stains, reported that edu-

cation modified the relationship between senile plaques – but 

not neurofibrillary tangles – and level of cognition.37 Thus, 

focusing on amyloid-beta as the measure of primary AD 

pathology is based on previous studies showing that educa-

tion (cognitive reserve) reduced the impact of amyloid-beta 

pathology but not tau pathology on cognitive performance.

This preliminary result supports the hypothesis of the 

protective role of enhanced lifelong neural activity on amy-

loid deposition and the utility of biomarkers, specifically 

Aβ1-42, as substitutes for pathology in relation to CR. To our 

knowledge, this preliminary study is the first Argentinian 

investigation reporting this association. A prospective analysis 

of cognitive decline in a larger cohort would be important in 

order to determine the frequency of conversion from MCI to 

dementia. The limitations of this paper include the small size of 

the sample due to the inclusion criterion requiring that patients 

from the ADNI protocol consent to a lumbar puncture.

Disclosure
The authors report no conflicts of interest in this work.
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