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Abstract: Magnetic iron oxide (IO) nanoparticles with a long blood retention time, 

biodegradability and low toxicity have emerged as one of the primary nanomaterials for bio-

medical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be 

engineered to provide a large number of functional groups for cross-linking to tumor-targeting 

ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or 

delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which 

generate signifi cant susceptibility effects resulting in strong T
2
 and T*

2
 contrast, as well as T

1
 

effects at very low concentrations for magnetic resonance imaging (MRI), which is widely used 

for clinical oncology imaging. We review recent advances in the development of targeted IO 

nanoparticles for tumor imaging and therapy.
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Introduction
Cancer remains one of the leading causes of death in the world. Despite advances in 

our understanding of molecular and cancer biology, discovery of cancer biomarkers 

and conventional surgical procedures, radiotherapy, and chemotherapy, the overall 

survival rate from cancer has not signifi cantly improved in the past two decades 

(Jemal et al 2008). The development of novel approaches for early detection and 

cancer marker-specifi c and personalized treatment of cancers is urgently needed to 

increase patient survival.

Recent advances in nanoscience and nanotechnology have led to the development 

of nanomaterials for molecular and cellular imaging, cancer therapy, and integrated 

nanodevices for cancer detection and screening (Jain 2005; Nie et al 2007; Sengupta 

and Sasisekharan 2007; Wang et al 2007). It is highly desirable that nanoparticles can 

not only provide sensitive and specifi c imaging information in cancer patients but also 

selectively deliver anticancer drugs to tumor sites. Currently, there is limited knowl-

edge of suitable biomarkers for imaging, selection of the imaging target and contrast 

enhance materials, and the chemistry required to assemble the bioactive imaging probe. 

In addition, numerous obstacles are faced in developing cancer-specifi c imaging agents, 

such as 1) delivery of the probe to the targeted tissue/tumor; 2) biocompatibility and 

toxicity; 3) stability of the probe and effective signal enhancement in vivo; 4) adequate 

imaging methods and strategies. During chemotherapy, pharmacologically active 

cancer drugs reach the tumor tissue with poor specifi city and induce dose-limiting 

toxicities. Nanoparticle drug delivery may provide a more effi cient, less harmful solu-

tion to overcome these problems.

To date, the development of tumor-targeted nanoparticles remains extremely chal-

lenging. Magnetic resonance imaging (MRI) provides superb image resolution and 

exquisite soft tissue contrast for revealing tissue morphology and anatomical details, 

while allowing for whole body imaging of animals and humans. Although MRI has 
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become one of the primary oncology imaging modalities, 

its sensitivity is challenged when applied to molecular and 

cellular imaging (Bradbury and Hricak 2005; Ito 2006). To 

obtain contrast enhancement and signal amplifi cation, mag-

netic contrast agents are often used. Although gadolinium 

diethylenetriaminopentaacetic acid (Gd-DTPA), which 

shows a strong T1 shortening effect, is widely accepted in 

clinical use, it has relatively low contrast effects and a very 

short retention time in vivo. In addition, the toxicity and 

biocompatibility of gadolinium during and after endocytosis 

by cells are still largely unknown (Bird et al 1988; Bulte and 

Kraitchman 2004; Kim et al 2007). Recently, magnetic iron 

oxide (IO) nanoparticles have emerged as a new generation of 

target-specifi c MRI T2 contrast agents. Magnetic IO nanopar-

ticles are much more effi cient than Gd-DTPA as relaxation 

promoters and their magnetic properties can be manipulated 

by controlling the sizes of core and coating surface (Rogers 

and Basu 2005). More importantly, IO nanoparticles have a 

long blood retention time, biodegradability and low toxicity 

(Harisinghani et al 2003; Funovics et al 2004; Jain et al 2005; 

Bradbury and Hricak 2005; Montet et al 2006). In this review, 

we focus on recent advances in the development of targeted 

IO nanoparticles for tumor imaging and therapy.

Production of magnetic iron oxide 
nanoparticles and functionalization 
of the nanoparticle surface
There are many different kinds of chemical methods for 

synthesizing magnetic nanoparticles. The most commonly 

used are precipitation-based approaches, either by coprecipi-

tation or reverse micelle synthesis (Shen et al 1993; Nitin 

et al 2004). IO nanoparticles without any surface coating 

are not stable in aqueous media and readily aggregate and 

precipitate. For in vivo applications, the particles often form 

aggregates in blood and are sequestered by macrophages 

(Lee et al 2006). Therefore, the surface of IO nanoparticles 

should be coated with a variety of different moieties that 

can eliminate or minimize their aggregation under physi-

ological conditions. Usually, two main approaches are used 

for coating magnetic IO nanoparticles, including in situ 

coatings with which the magnetic nanoparticles are coated 

during the synthesis process and post-synthesis coatings 

(Berry et al 2004; Jodin et al 2006; Horak et al 2007). In 

addition, magnetic IO nanoparticles can also be encapsulated 

in liposomes to create magnetoliposomes (De Cuyper and 

Joniau 1988).

The amphiphilic polymeric surfactants such as poloxamers, 

poloxamines and poly(ethylene glycol) (PEG) derivatives are 

usually used for coating the surface of IO nanoparticles, since 

they can minimize or eliminate opsonization of IO nanopar-

ticles. Among them, PEG is the most used chemical material, 

which confers on IO nanoparticles several important proper-

ties such as high solubility and stability in aqueous solutions, 

biocompatibility, and prolonged blood circulation time. More 

importantly, the functional groups of modifi ed PEG allow 

for bioconjugation of various ligands or therapeutic agents 

to IO nanoparticles (Kohler et al 2004; Mikhaylova et al 

2004; Nitin et al 2004; Gupta and Gupta 2005; Veiseh et al 

2005; Lee et al 2006, 2007a; Kumagai et al 2007). However, 

PEG-coated IO nanoparticles may have limited binding 

sites available for further ligand binding, since the number 

of functional groups on the surface of each IO nanoparticle 

is limited (Gupta and Gupta 2005). Laconte and colleagues 

(2007) reported that the molecular weight of the PEG portion 

of the micelle coating is related to the overall IO nanopar-

ticle diameter, while coating thickness can signifi cantly 

affect their relaxivity. Our group recently observed that 

the molecular weight of PEG could signifi cantly affect the 

distribution of PEG-coated IO nanoparticles in vivo. Thus, 

it is critical to select the ratio and molecular weight of PEG 

when designing IO nanoparticle probes for targeted imaging 

and therapy in vivo.

In addition to PEG coating, other materials such as 

antibiofouling poly(TMSMA-r-PEGMA) (Lee et al 2006), 

hyaluronic acid (HA) layers (Kumar et al 2007) and carboxyl-

functionalized poly(amidoamine) (PAMAM) dendrimers 

of generation 3 (G3) (Shi et al 2007) have also been used 

to coat the surface of IO nanoparticles for either increasing 

circulation time in the blood or delivering peptides at high 

effi ciency.

Recently, we have developed a new class of superpara-

magnetic iron particles that have uniform sizes ranging from 

5–30 nm and can be further functionalized through surface 

coating with amphiphilic triblock polymers, which provide 

functional groups for conjugating tumor-targeting biomol-

ecules such as peptides or antibodies. The triblock polymer 

developed in our group has surface reactivity for introducing 

various or multiple functional groups including the carboxylate 

group that can be used to cross-link “probe molecules” for 

biomarker-targeted specifi c binding (Gao et al 2004).

Despite signifi cant efforts in developing MRI contrast 

agents based on IO nanoparticle formulations, several 

obstacles remain to be overcome. The major challenge is to 

develop a surface coating material that can not only stabilize 

the nanoparticle but also provide active functional groups for 

controllable bioconjugation of “probe” ligands. Traditional 
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ligands (eg, dextran) used for the stabilization of magnetic 

nanocrystals often have weak ligand-particle interactions and 

can be easily detached from the surface of the nanocrystals, 

leading to the aggregation of nanoparticles and eventually 

their precipitation under physiological conditions or simply 

during storage times. When further derivatization is needed, 

such a weak interaction between ligand and particle may not 

sustain the required reaction conditions. The magnetism of 

IO nanoparticles and its effect on MR imaging can depend 

signifi cantly on their morphology, crystal structure, size and 

uniformity. Currently, most studies using IO nanoparticles 

to develop molecular imaging probes utilize commercially 

available formulations such as Ferumoxtran, which offers 

limited control over particle size and morphology, critical to 

the mass magnetization value and potential effect on imaging 

contrast. When specifi cally considering their use in imag-

ing applications in vivo, IO nanoparticles with small size 

(5–150 nm) and high mass magnetization value are desired, 

in addition to the proposed target specifi city, for which easy 

conjugation with biomolecules is required. Different sizes 

of IO nanoparticles including SPIO (superparamagnetic 

IO, 60–150 nm), USPIO (ultrasmall SPIO, 10–50 nm), and 

MINO (monocrystalline IO) can lead to different magnetic 

properties and function differently in various applications 

(Wang et al 2001; Thorek et al 2006).

Targeted IO nanoparticles
for tumor imaging
Although the feasibility of using IO nanoparticles for cancer 

detection and drug delivery has been demonstrated (Corot 

et al 2006; Thorek et al 2006), a major obstacle limiting their 

clinical application is that nontumor-targeted nanoparticles 

are unable to reach suffi cient concentrations in the tumor 

site to either produce a strong signal for tumor imaging or to 

carry optimal amounts of therapeutic agents into tumor cells. 

One approach to overcome this problem is to develop tumor-

targeted IO nanoparticles that are highly sensitive imaging 

probes and/or are capable of conjugating large amounts of 

therapeutic agents (Rhyner et al 2006) (Figure 1).

Development of human cancer is a multistage process 

involving various genetic alterations and cellular abnormali-

ties that provide advantages for growth and progression of 

tumors. Differences in the expression of cellular receptors 

between normal and tumor cells represent a great opportu-

nity for targeting imaging probes to those cellular surface 

molecules.

For engineering tumor targeted-IO nanoparticles, 

different ligands such as antibodies, peptides and small 

molecules targeting the related receptors that are highly 

expressed in tumor cells are usually conjugated to the surface 

of IO nanoparticles. A few studies using targeted IO nanopar-

ticles for tumor imaging have been evaluated in vitro and in 

animal experiments (Table 1).

Antibody-based targeted IO nanoparticles for in vitro 

or in vivo imaging have been studied in several laboratories 

(Cerdan et al 1989; Remsen et al 1996; Tiefenauer et al 

1996; Artemov et al 2003; Funovics et al 2004; Huh et al 

2005; Toma et al 2005; Serda et al 2007) and were found 

to maintain both the properties of the antibody and the 

magnetic particles. Among these studies, conjugation of the 

magnetism-engineered iron oxide (MEIO) nanoparticles 

with Herceptin, a well-known antibody against the HER2/

neu receptor which is overexpressed in breast cancer cells, 

showed in vivo cancer targeting and imaging of HER2/neu 

with high sensitivity which enables the MR detection of 

tumors as small as 50 mg (Lee et al 2007b). Although the 

effi cacy of monoclonal antibody-targeted IO nanoparticles 

has been demonstrated, the size of antibodies used in these 

studies is very large and is not ideal for effi cient conjuga-

tion to the surface of IO nanoparticles. The large size of the 

intact antibody also limits the ability of the IO nanoparticle to 

permeate through the vasculature into areas with tumor cells. 

In addition, the interaction of antibody with Fc receptors on 

normal tissues can alter the specifi city of tumor-targeted 

nanoparticles. To solve those problems, peptides or single 

chain antibodies with small molecular weight can be used 

as target moieties for engineering targeted IO nanoparticles. 

In this review, we describe several recent advances in using 

peptides for tumor imaging.

Peptides that target related receptors on tumor cells surface 

can be internalized via receptor-mediated endocytosis, which 

Figure 1 Targeted IO nanoparticles for tumor imaging in vivo. The tumor-specifi c 
ligands/antibodies were conjugated to the surface of SPIO coated by PEG. Targeted 
IO nanoparticles accumulate in solid tumor tissue mainly by receptor-mediated 
endocytosis and are usually taken up by macrophages in the liver (Küpffer cells) 
and spleen.
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Table 1 Targeted iron oxide nanoparticles for tumor imaging

Iron oxide 
nanoparticles

Targeting ligands Targets Tumor Experimental 
conditions

USPIO (Cerdan et al 1989) Monoclonal antibody-610 Surface antigen Colon carcinoma cell lines In vitro

SPIO (Tiefenauer 
et al 1996)

Antibody to carcinoem-
bryonic antigen (CEA)

CEA Colon tumor In vivo

MINO (Remsen 
et al 1996)

Monoclonal antibody L6 Surface antigen Intracranial tumor LX-1 In vivo

USPIO (Kresse et al 1998) Transferrin Transferrin receptor Rat mammary carcinoma In vivo

Streptavidin-conjugated 
SPIO (Artemov et al 2003)

Monoclonal antibody-
Her/Neu

Her-2/neu receptors Breast cancer In vitro

CLIO-NH2 
(Moore et al 2004)

EPPT peptide Underglycosylated 
mucin-1 antigen 
(uMUC-1)

Breast , colon, pancreas 
and lung cancer cell lines

In vivo

Dextran-coated super-
paramagnetic maghemite 
(γ-Fe2O3) nanocrystals 
(Sonvico et al 2005)

Folic acid Folate receptor Human epithelial 
mouth carcinoma

In vitro

Ferumoxides (SPIO) 
(Toma et al 2005)

Monoclonal antibody A7 Colorectal tumor 
antigen

Colorectal carcinoma In vivo

Iron oxide nanocrystals 
(Fe3O4 ) (Huh et al 2005)

Herceptin Her-2/neu receptors NIH3T6.7 In vivo

SPIO (Kohler et al 2005) Methotrexate Folate receptor Human cervical 
cancer cells

In vitro

SPIO (Veiseh et al 2005) Chlorotoxin peptide membrane-bound 
matrixmetallopro-
teinase-2 (MMP-2)

Rat glioma In vitro

Biofunctional PEG-SPIO 
(Sun et al 2006)

Folic acid Folate receptor Human cervical 
cancer cells

In vitro

SPIO encapsulated with 
photodynamic agent 
(Reddy et al 2006)

F3 peptide Surface-localized 
tumor vasculature

Rat glioma In vivo

HFn-IO (Uchida et al2006) RGD4C αvß3 integrins Melanoma cells In vitro

SPIO (Leuschner 
et al 2006)

Luteinizing hormone 
releasing hormone 
(LHRH)

LHRH receptor Breast cancer In vivo

SPIO (Simberg et al 2007) CREKA peptide Clotted plasma 
proteins

Breast cancer In vivo

USPIO (Zhang et al 2007) Arg-Gly-Asp (RGD) αvß3 integrins Human epidermoid 
carcinoma

In vivo

PEG-SPIO 
(Chen et al 2007b)

Folic acid Folate receptor Human epithelial 
mouth carcinoma

In vivo

Streptavidin-SPIO 
(Serda et al 2007)

Antibody to Prostate-
specifi c membrane 
antigen (PSMA)

PSMA Human prostate 
cancer cells

In vitro

Magnetism-engineered iron 
oxide (MEIO) nanopar-
ticles (Lee et al 2007b)

Herceptin Her-2/neu receptors NIH3T6.7 In vivo

PEG- IO (Sun et al 2008) chlorotoxin membrane-bound 
matrixmetallo  pro-
teinase-2 (MMP-2)

Rat glioma In vivo
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will increase the uptake of conjugated IO nanoparticles and 

provide persistent MRI contrast enhancement, therefore, 

such types of peptides are ideal ligands for constructing 

targeted IO nanoparticles for tumor imaging. Chlorotoxin 

(Cltx) is a 36-amino acid peptide that can specifi cally bind 

to matrix metalloproteinase-2 (MMP-2) on the surface of 

cells. MMP-2 is overexpressed in gliomas and other related 

cancers and degrades the extracellular matrix during can-

cer invasion (Soroceanu et al 1998; Deshane et al 2003; 

Veiseh et al 2007). Sun and colleagues (2008) conjugated 

Cltx to IO nanoparticles with covalently bound bifunctional 

PEG polymer and showed that internalization of the Cltx-

conjugated IO nanoparticles by 9L glioma cells was 10-fold 

higher than that of the nontargeted nanoparticles after 2hrs 

incubation. The R2(1/T2) relaxivity was 5.20mm-1s-1 and 

0.22mm-1s-1 for the tumor cells after incubation with the Cltx-

targeted IO nanoparticles and nontargeted IO nanoparticles, 

respectively. In vivo MRI showed that the tumor contrast 

enhancement in the superimposed R2 change was signifi -

cantly higher in the mouse injected with Cltx-targeted IO 

nanoparticles than in the mouse receiving the nontargeted 

nanoparticles (Sun et al 2008).

The development of targeted IO nanoparticles for early 

tumor detection remains challenging. Underglycosylated 

mucin-1 antigen (uMUC-1) is an early tumor marker that is 

overexpressed on almost all human epithelial cell adenocarci-

nomas. Some important features render uMUC-1 a promising 

target for tumor imaging, 1) expressed in over 50% of all 

human cancers and remained homogeneously upregulated 

during the life growth of the tumor, 2) underglycosylated 

in tumor tissues but heavily glycosylated in normal tissues, 

make it possible to design probes that discriminate between 

normal and adenocarcinoma cells, 3) ubiquitously expressed 

on the cell surface, making it an accessible target for bind-

ing and imaging. Moore and colleagues (2004) synthesized 

EPPT1 peptide which specifi cally recognizes uMUC-1 and 

conjugated it to the dextran coat of crosslinked superpara-

magnetic iron oxide nanoparticles (CLIO). As shown in 

Figure 2, 24 hours after injection of targeted CLIO nanopar-

ticles, a signifi cant T2 signal reduction was observed in some 

regions of uMUC-1-positive LS174T tumors, while no sig-

nifi cant change was seen in uMUC-1-negative U87 tumors. 

In addition, these results were further demonstrated by near-

infrared fl uorescence (NIRF) imaging. In this study, NIRF 

Cy5.5 dye-labeled CLIO nanoparticles were used both as 

MR- and NIRF-imaging contrast agent. This unique imaging 

probe produced a high-resolution signal on MR images and 

real-time NIRF imaging data, providing comprehensive 

information on tumor localization, environment, and status. 

This agent may have the potential to be applied for early 

tumor detection (Moore et al 2004).

To date, tumor metastasis is still one of the main causes of 

death for breast cancer patients. Approximately 37% of breast 

cancer patients have tumor metastases in the bone and lymph 

nodes at the time of diagnosis, and the 5-year survival rates for 

these patients is only 27% (Jemal et al 2008). Development of 

targeted IO nanoparticles that could be used for the detection of 

early metastasis may improve the 5-year survival rates of breast 

cancer patients. About 52% of human breast cancers express 

binding sites for receptors for luteinizing hormone-releasing 

hormone (LHRH) (Chatzistamou et al 2000). LHRH is a 

decapeptide that has the primary sequence of EHWSYGLRPG. 

LHRH-SPIO nanoparticles specifi cally accumulated in primary 

tumor cells and metastatic cells through receptor-mediated 

endocytosis, and the concentration of targeted SPIO nanopar-

ticles was 12-fold higher than that of SPIO nanoparticles in 

vitro. In vivo data showed that the expression of LHRH-SPIO 

nanoparticles was 7.5-fold higher in tumors and 11-fold higher 

in lung metastatic cells than that of nontargeted nanoparticles. 

After conjugating LHRH to SPIO nanoparticles, in addition to 

receptor targeting, LHRH may render the nanoparticles neutral, 

further increasing their circulation time and decreasing their 

recognition by the RES in vivo. This study demonstrated that 

LHRH-conjugated SPIO nanoparticles could be used as an 

MRI contrast agent to detect metastatic breast cancer cells in 

vivo with high sensitivity (Leuschner et al 2006). One of the 

interesting results was that LHRH-SPIO nanoparticles were 

found by TEM study to accumulate in the cytosol and the 

nucleus in the breast cancer cells; this may be an advantage for 

delivering drug in the future, since it seems this unique targeted 

IO nanoparticle could escape from the endosome.

Angiogenesis plays a critical role in the development of 

tumors; the α
v
ß

3
 integrin is a marker of angiogenesis and 

its expression correlates with tumor grade. Therefore, α
v
ß

3
 

integrin is an ideal target for in vivo tumor imaging since the 

target is present on the surface of the vessels and can directly 

be accessed from the blood. Zhang and colleagues (2007) 

used 3-aminopropyltrimethoxysilane (APTMS) with func-

tional amino groups as a coating material for modifi cation of 

IO nanoparticles. APTMS can form a very thin monolayer 

on the surface and can be used to covalently attach related 

ligands. The Arg-Gly-Asp (RGD) peptide which binds to the 

α
v
ß

3
 integrin receptor was conjugated to APTMS-coated 

USPIO nanoparticles. Following systemic administration of 

the RGD-USPIO nanoparticles in nude mice bearing tumors 

with different levels of α
v
ß

3
 integrin-positive vessels, results 
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showed that RGD-USPIO nanoparticles targeted to the tumor 

vessels and the change in T2 relaxation was related to the 

degree of expression of α
v
ß

3
 integrin detected by 1.5-T MR 

scanner (Zhang et al 2007).

To increase the sensitivity of in vivo tumor imaging of 

nanoparticles, it is necessary to deliver large amounts of 

the nanoparticles not only into the tumor cells but also to 

a tumor mass. Most of the currently used target molecules, 

such as Her-2/neu, α
v
ß

3
 integrin, PMSA and MUC-1, are 

expressed in subpopulations of tumor tissues or specifi c 

tumor types. Recently, Simberg and colleagues (2007) syn-

thesized the tumor-homing peptide CREKA (Cys-Arg-Glu-

Lys-Ala), which can form a distinct meshwork in the tumor 

stroma specifi cally. A CREKA-conjugated nanoparticle 

accumulated in both tumor vessels and stroma, resulting in 

intravascular clotting in tumor blood vessels which attracted 

more nanoparticles into the tumor, amplifying the targeting. 

There are several advantages of such targeted-SPIO nanopar-

ticles, 1) high specifi city for tumor homing, 2) enhanced MR 

imaging in tumor, 3) physical blockade of tumor vessels 

by local embolism. The clotting caused by CREKA-SPIO 

nanoparticles in tumor vessels may improve tumor detection 

by optical imaging techniques. Another potential application 

of the nanoparticle is for constructing drug delivery nanopar-

ticles which can deliver drugs in tumor vessels and slowly 

release them (Simberg et al 2007).

The low molecular weight vitamin folic acid (FA), whose 

receptor is overexpressed on the surface of many human 

tumor cells, has been studied as a targeting agent. The advan-

tages of using FA as a targeting ligand for tumor imaging 

include: 1) relatively higher binding affi nity for its receptor 

(κd = 10−10 M), 2) low cost, easy conjugation with both thera-

peutic and imaging agents, 3) compatibility in both organic 

and aqueous solvents, 4) lack of immunogenicity (Low et al 

2008). Sun and colleagues (2006) used heterobifunctional 

PEG 600 to coat the surface of IO nanoparticles and subse-

quently attached FA to the nanoparticles through an amide 

linkage at the free terminus of PEG. Their results showed 

that folate receptor-positive human cervical carcinoma HeLa 

cells took up about 12-fold more FA-IO nanoparticles than 

nontargeted IO nanoparticles (Sun et al 2006). One recent 

study showed by MRI that SPIO-PEG-FA could target human 

nasopharyngeal epidermoid carcinoma (KB) cells both in 

vitro and in vivo (Chen et al 2007).

In vivo tumor imaging with MRI requires the delivery 

of suffi cient concentrations of IO nanoparticles. Pinkernelle 

and colleagues (2005) reported that single IO nanoparticle-

labeled human colon carcinoma cells can be detected using 

MRI techniques in vitro, the lowest concentration of iron 

needed is about 4–5 μg/106 cells (Pinkernelle et al 2005). For 

imaging by targeted IO nanoparticles, the sensitivity depends 

on the target concentrations in tumor cells, for example, 

some targets are often quite weakly expressed (104 folate 

receptors in brain glioma cells) (Saul et al 2003) while others 

are very highly expressed (3 × 106 epidermal growth factor 

receptors in A431 human squamous carcinoma cells) (Jinno 

et al 1996). In addition, the targeting of IO nanoparticles to 

cells depends on a number of factors including extracellular 

IO nanoparticle concentration, particle size, surface coating, 

and incubation time.

There remain many problems to be addressed in the study 

of IO nanoparticles for tumor imaging, including 1) the 

optimal number of targeted ligands on IO nanoparticles 

must be investigated and determined in each application, 

since excessive amounts of targeting ligands on the IO 

nanoparticles may not necessarily increase binding of the 

IO nanoparticles to specifi c cells, but can increase the size 

of the nanoparticles and further affect the R2 characteristics. 

The ideal ratio of ligands and IO nanoparticles may be depen-

dent on the number of receptors on targeted cells, the binding 

affi nity of ligands to receptors and the molecular weight and 

size of ligands, 2) the fate of targeted IO nanoparticles after 

cell internalization is still controversial, with most reports 

showing that nanoparticles enter into endosomes and are then 

degraded in lysosomes, while other studies have shown that 

they can escape from the endosome and locate in the cyto-

plasm or around the nucleus. It seems that conjugated ligands 

and surface coating affect the distribution of particles within 

the cells, 3) the range of the concentration of IO nanoparticles 

used for animal studies is large, from 1 mg to 250 mg of 

Fe/kg, making it diffi cult to compare results from different 

research groups, 4) the quantifi cation of IO nanoparticle 

levels in vivo is still a challenge. In this case, MRI can be 

combined with other specifi c labeling technologies such as 

radio- and NIR-labeling, which may offer the possibility of 

multimodal imaging for measuring the biodistribution of 

targeted IO nanoparticles.

Strategies to increase sensitivity 
and specifi city of targeted IO 
nanoparticles for in vivo imaging
Although recent advances have demonstrated the feasibility 

of using targeted IO nanoparticles for noninvasive imag-

ing in animal models, one of the main problems is that IO 

nanoparticles are usually taken up by macrophages in the 

liver (Küpffer cells), spleen and bone marrow, thus affecting 
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their specifi city and sensitivity and rendering them less than 

ideal for this application. Previous studies have reported 

the uptake of dextran-coated monocrystalline iron oxide 

nanoparticles (MION) ranging from 0.011 to 0.118 pg of 

iron per cell (1 hr of incubation) by various tumor cells, and 

a maximum load of 0.97 pg in mouse macrophages (Moore 

et al 1997). A biodistribution study of MnMEIO-Herceptin 

conjugates labeled with radioactive 111In by γ-counter analy-

ses showed that in addition to being distributed in the tumor 

(3.4% injected dose (ID)/g), nanoparticles were also found 

in the liver (12.8% ID/g), spleen (8.7% ID/g) and muscle 

(1.0% ID/g) (Lee et al 2007b).

Macrophages are capable of internalizing a wide variety 

of materials including iron oxide nanoparticles. There are 

many different pathways that can regulate the internaliza-

tion of IO nanoparticles by macrophage cells because of the 

diversity in particle size, tendency to aggregate and surface 

coating. Several studies have sought to minimize the non-

specifi c uptake of IO nanoparticles by macrophages (Zhang 

et al 2002; Rogers and Basu 2005; Leuschner et al 2006; 

Lee et al 2006).

Rogers and Basu (2005) reported that pretreatment 

of macrophages with the MG-CoA reductase inhibitor 

lovastatin (1μM) could signifi cantly reduce SPIO uptake by 

activated macrophages to 61% of untreated cells. Lovastatin 

downregulates class A types I and II macrophage scavenger 

receptors, and may bind to other related receptors in 

macrophages and reduce receptor recycling, thus partially 

abolishing IO internalization. The uptake rates of IO 

nanoparticles by liver and spleen can be decreased by limiting 

phagocytosis, leading to longer blood half-lives which provide 

favorable conditions for nanoparticles to reach their targets. 

Pretreatment with lovastatin before the injection of targeted 

IO nanoparticles may provide a new method to decrease 

the nonspecifi c uptake of targeted IO nanoparticles by the 

liver or spleen but increase their concentration in the tumor 

site (Rogers and Basu 2005). Another method to decrease 

nonspecifi c uptake of IO nanoparticles is to eliminate plasma 

opsonins by injecting decoy particles. Simberg and colleagues 

(2007) found that this treatment caused 5-fold prolongation 

in particle half-life and that Ni-liposome pretreatment greatly 

increased tumor homing of the nanoparticles, which primarily 

localized in tumor blood vessels. However, toxicity limits the 

further application of this agent.

In general, positively charged nontargeted IO nanopar-

ticles bind to cells through electrostatic interaction with the 

negatively charged cell membranes and are then internalized 

by cells, while endocytosis of negatively surface-charged 

IO nanoparticles may occur through both protein-mediated 

phagocytosis and diffusion. A change in IO nanoparticle 

surface charge can be induced by covalently coupling dif-

ferent chemical materials such as amino, PEG and carboxyl 

groups. It has been reported that albumin-IO nanoparticles 

with a neutral charge showed a reduced phagocytic uptake 

in comparison with negatively or positively charged particles 

(Roser et al 1998). Fang and colleagues (2006) found that 

the charge of nanoparticles strongly affects both the blood 

circulation time and the bioavailability of particles within 

the body. The surface charge of IO particles should ideally 

be maintained at neutral or close to neutral for imaging and 

drug delivery (Shi et al 2007).

In addition, the size of IO nanoparticles will potentially 

affect their distribution in vivo. Intravenously injected 

nanoparticles with diameters greater than 200 nm are usually 

taken up by the liver and spleen, and are eventually removed 

by the cells of the RES, resulting in decreased blood circula-

tion times (Remsen et al 1996). Smaller particles with diam-

eters less than 5 nm are rapidly removed through the kidney 

(Gupta and Gupta 2005), therefore, IO nanoparticles ranging 

from 5 to 150 nm may offer the most effective distribution 

in certain tissues, especially in tumors.

To develop tumor targeted-IO nanoparticles that have 

both high sensitivity and specifi city remains challenging. 

Despite many recent advances in the development of targeted 

IO nanoparticles for tumor imaging, we are still limited in our 

ability to detect tumors at their early stages of development, 

to monitor their invasion and metastasis and to assess their 

responses to therapy.

Tumor-targeted IO nanoparticles 
as selective drug delivery vehicles
Targeted IO nanoparticles can be used to treat tumors in 

three different ways. Firstly, specifi c antibodies can be 

conjugated to the IO nanoparticles to selectively bind 

to related receptors and inhibit tumor growth (Huh et al 

2005). Secondly, targeted IO nanoparticles can be used 

for hyperthermia for tumor therapy (DeNardo et al 2005; 

Sonvico et al 2005; Jordan et al 2006). Thirdly, drugs can 

be loaded onto the IO nanoparticles for targeted therapy. In 

this review, we focus on selective drug delivery by targeted 

IO nanoparticles.

Increasing evidence shows that the selective delivery of 

therapeutic agents into a tumor mass may minimize toxicity 

to normal tissues and improve bioavailability of cytotoxic 

agents (Shenoy et al 2005; Gang et al 2007; Bae et al 2007; 

Lee et al 2007c).
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There are several strategies to incorporate drugs into 

targeted IO nanoparticles. Drugs can be linked to the carrier 

coating, deposited in the surface layer, or trapped within the 

IO nanoparticles themselves (Chen et al 2007). They can be 

released by diffusion, vehicle rupture, dissolution or endo-

cystosis of the formulation (Lanza et al 2004; Atri 2006). The 

imaging signals produced by IO nanoparticles detected by 

MRI combined with the amount of specifi c drug contained 

per particle can be used to estimate the tissue drug levels. In 

addition, radio- or organic dye-labeled drugs can be loaded 

into the IO nanoparticles for more accurate quantifi cation of 

drug distribution in vivo.

Unfortunately, only a few studies have used targeted IO 

nanoparticles as drug delivery carriers, especially for in vivo 

applications. Methotrexate (MTX) is an analogue of FA, 

which can exhibit both a targeting role as FA and a therapeutic 

effect in cancer cells that overexpress folate receptor on their 

surface. Kohler and colleagues (2005) conjugated MTX to 

IO nanoparticles through amidation between the carboxylic 

acid end groups on MTX and the amine groups on the 

particle surface. Their results showed that cells expressing 

the human folate receptor internalized a higher level of 

MTX-IO nanoparticles than negative control cells. This 

MTX-conjugated IO nanoparticle has several advantages, 

1) high drug loading effi ciency, the average number of MTX 

molecules per IO nanoparticle with a 10 nm diameter was 

about 418.9, 2) selective internalization of the targeted IO 

nanoparticles in tumor cells overexpressing the folate receptor, 

3) MTX released only from the IO nanoparticles within 

lysosomes inside the targeted cells at low pH by cleavage of 

the amide, 4) drug delivery to the tumor sites may be monitored 

in vivo by MRI in real-time (Kohler et al 2005).

Polymeric micelles are self-assembled nanoparticles from 

amphiphilic block copolymers, which have unique charac-

teristics such as high water-solubility, high drug loading 

capacity and low toxicity. Nasongkla and colleagues (2006) 

developed novel multifunctional polymeric micelles by load-

ing SPIO nanoparticles inside the micelles at 6.7 w/w %. 

The chemotherapeutic agent doxorubicin (DOXO) was also 

loaded at 2.7 w/w % in the micelles and could be released 

through a pH-dependent mechanism. One of the advantages 

of the multifunctional nanoparticles is that the encapsulation 

of DOXO and SPIO nanoparticles inside the hydrophobic 

micelle cores can avoid potential exposure of hydrophobic 

SPIO surfaces and adsorption of blood proteins, thus decreas-

ing nonspecifi c uptake by RES. In addition, the cRGD ligand 

that can target α
v
ß

3
 integrins on tumor endothelial cells was 

attached to the micelle surface via a covalent thiol-maleimide 

linkage. Once internalized by targeted cells, high concentra-

tions of DOXO were released in cell nuclei. This integrated 

nanomedicine platform may be an ideal contrast agent for 

targeted tumor therapy and noninvasive imaging in vivo 

(Nasongkla et al 2006).

Yang and colleagues (2007) developed a new multifunc-

tional hybrid nanosystem by combining magnetic nano-

crystals, anticancer drugs and biodegradable amphiphilic 

block copolymers. In this study, there were about 41.7 wt% 

(MnFe
2
O

4
) and 40.9wt% (Fe

3
O

4
) magnetic nanoparticles 

in the multifunctional magneto-polymeric nanohybrids 

(MMPNs), and the amount of DOXO in the HER-MMPNs 

and entrapment effi ciency were 3.3 wt% and 71.4%, respec-

tively. In addition, anti-HER antibody was conjugated to 

the MMPNs by utilizing the carboxyl group on the surface 

of the particles. As shown in Figure 3, the injected HER-

MMPNs were delivered in a target-specific manner to 

overexpressed HER2/neu receptors on NIH3T6.7 cells in 

vivo and were taken up by a receptor-mediated endocytosis 

process. The HER-conjugated MMPNs showed signifi cant 

synergistic effects on inhibition of tumor growth by DOXO. 

The antibody-conjugated nanoparticles also demonstrated 

ultrasensitive targeted detection by MRI in both in vitro and 

in vivo models (Yang et al 2007).

However, there are still many obstacles for successfully 

using tumor-targeted IO nanoparticles as drug carriers in 

vivo, 1) functional group modifi cation of the drugs during 

conjugation may change their chemical properties, 2) lower 

drug loading effi ciency, 3) quick release of conjugated 

or encapsulated drugs from IO nanoparticles in the blood 

before entering into tumor mass, 4) drugs usually released in 

the endosome or lysosome but not in the cytoplasm within 

targeting cells, 5) embedding part of the ligand binding site 

in IO nanoparticles may decrease the targeting ability, 6) loss 

in magnetization of the core magnetic material during multi-

step chemical reaction (Jain et al 2005). IO nanoparticles 

combined with other nanoparticles such as biodegradable and 

biocompatible polymeric micelles may overcome some of the 

above obstacles. Proper surface coating of IO nanoparticles 

and methods for the more effective loading of anticancer 

drugs will facilitate drug release profi les.

Conclusions
Although recent advances have demonstrated the feasibil-

ity of using targeted magnetic IO nanoparticles for tumor 

imaging and therapy, methods and strategies to produce 

tumor-targeted imaging probes with a high specificity 

and sensitivity are still greatly needed. There are many 

Powered by TCPDF (www.tcpdf.org)



International Journal of Nanomedicine 2008:3(3) 319

Iron oxide nanoparticles for tumor imaging and therapy

obstacles encountered to the in vivo application of targeted 

magnetic IO nanoparticles for tumor imaging, including 

heterogeneous expression levels of the targeted receptor in 

human tumor cells, various physiological barriers preventing 

the nanoparticle from reaching the targeted cells, and a lack 

of information on the intratumoral distribution and imaging 

capability of targeted nanoparticles within tumor sites that 

are relevant to the locations of most human primary and 

metastatic tumors.

For tumor-targeted therapy, methods to increase the 

loading capacity of anticancer drugs in the nanoparticles and 

control their release at target cells remain quite challenging. 

Since IO particles have been used in clinical settings for many 

years, there is a high potential that these targeted probes will 

be applicable in clinical applications in the future.
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