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Abstract: Palmitoylethanolamide (PEA) is an endogenous lipid modulator in animals and 

humans, and has been evaluated since the 1970s as an anti-inflammatory and analgesic drug in 

more than 30 clinical trials, in a total of ∼6,000 patients. PEA is currently available worldwide 

as a nutraceutical in different formulations, with and without excipients. Here we describe the 

results of all clinical trials evaluating PEA’s efficacy and safety in nerve compression syndromes: 

sciatic pain and pain due to carpal tunnel syndrome, and review preclinical evidence in nerve 

impingement models. Both the pharmacological studies as well as the clinical trials supported 

PEA’s action as an analgesic compound. In total, eight clinical trials have been published in 

such entrapment syndromes, and 1,366 patients have been included in these trials. PEA proved 

to be effective and safe in nerve compression syndromes. In one pivotal, double blind, placebo 

controlled trial in 636 sciatic pain patients, the number needed to treat to reach 50% pain reduction 

compared to baseline was 1.5 after 3 weeks of treatment. Furthermore, no drug interactions or 

troublesome side effects have been described so far. Physicians are not always aware of PEA as 

a relevant and safe alternative to opioids and co-analgesics in the treatment of neuropathic pain. 

Especially since the often prescribed co-analgesic pregabaline has been proven to be ineffective 

in sciatic pain in a double blind enrichment trial, PEA should be considered as a new and safe 

treatment option for nerve compression syndromes.

Keywords: palmitoylethanolamide, sciatic, nerve compression, analgesics, PPAR alpha, anti-

inflammatory agents, palmidrol

Introduction
Nerve compression syndromes have different clinical manifestations, dependent on 

the localization of the compressed nerve, but they share identical pathogenesis and 

pain symptomatology. We will describe the results of a number of pharmacologi-

cal experiments and clinical trials conducted to evaluate the efficacy and safety of 

palmitoylethanolamide (PEA) in nerve compression syndromes, including sciatic 

pain. We will also review results of trials that were reported as abstracts or as poster 

presentations at neurological congresses, in order to disclose this information to a 

broader scientific public.

We will discuss in more detail the data from a pivotal, double blind placebo 

controlled, dose-finding study in 636 patients, to make the results known to a wider 

scientific community, as the results of this trial have so far only been published in 

the Spanish medical journal, Dolor, while the number needed to treat (NNT) analy-

sis was presented by one of the authors in 2011 at the Italian National Congress of 

Anesthesiology, the SIAARTI.
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Pathogenesis in nerve compression 
syndromes
Nerve pressure induces inflammation of nerves and nerve 

roots, neuritis and radiculitis. Subsequently, neuritis or 

radiculitis progresses into a more chronic pathological state 

due to the induction of a number of cascades of chemical 

inflammatory reactions.1 Inflammatory cells, such as acti-

vated mast cells, play an important role in nerve compression 

syndromes and are one of the sources of pro-inflammatory 

prostaglandins (PG)s and cytokines.2 These compounds trig-

ger the synthesis of nitrogen monoxide, which acts as a strong 

vessel dilator.3 Step-by-step a chronic pathological situation 

emerges. In the next step, pro-inflammatory compounds 

such as metalloproteinases are produced, enzymes inducing 

connective tissue around nerves to expand and to become 

hyperactivated.4 These initial steps are followed by activa-

tion of a number of pro-inflammatory cells, such as mast 

cells, macrophages, fibroblasts, neutrophils, and Schwann 

cells.5 This leads to a release of various pro-inflammatory 

molecules: ATP, cytokines, CCL2, PGs, and various NGFs. 

This complex cascade is followed by abnormal and enhanced 

pain sensitivity in peripheral areas.6 This resulting inflam-

matory state leads to further massive cell migration, edema, 

erythema, pain, hyperalgesia, and allodynia. Glial cells, mast 

cells, and related non-neuronal cells contribute to the nerve 

pain experienced, such as in sciatic compression and carpal 

tunnel syndrome, due to excitation of neurons transmitting 

pain signals and by upregulating pain-circuits in the spinal 

medulla.7,8 In addition to this central windup mechanism, 

biological windup in the periphery occurs, even in the skin, 

including mast cell hyperactivation and NGF activation.9,10 

Such central and peripheral activation related to mast cell, 

glia and astrocyte activation, as well as NGF-related inflam-

mation cascades, can be inhibited by PEA.11 This provides the 

rationale for treating nerve compression syndromes such as 

sciatic pain and carpal tunnel syndrome with PEA.

PEA: anti-inflammatory and 
analgesic mechanism of action
PEA is an endogenous fatty acid amide, first described in 

1957 and evaluated for the treatment of neuropathic and 

chronic pain since 1975.12,13 PEA regulates many physiologi-

cal processes and is effective in a number of animal models 

such as for nerve compression pain, respiratory inflamma-

tion, neuroinflammation, neurotoxicity, and central nervous 

ischemia.14–16 Activation of inflammatory cascades and of 

non-neuronal cells, such as glial cells, astrocytes, and mast 

cells, contributes to the pathogenesis of chronic pain and to 

peripheral and central sensitization.17,18 PEA reduces mast cell 

migration and degranulation and reduces over-activation of 

astrocytes and glial cells.19–22 Both mast cells and glial cells 

shift under influence of PEA from activated immune cells to 

resting phenotypes.23 The mast cell however, is not the main 

pathogenetic factor, and PEA has a number of mechanisms 

of action, probably more important in nerve compression 

and impingement syndromes. On the molecular level PEA 

reduces the activity of the pro-inflammatory enzyme COX, 

as well as eNOS and iNOS.24 PEA has a number of other 

properties, related to its affinity for various receptors: the 

orphan cannabinoid receptors GPR55 and GPR119, the 

vanilloid receptor TRPV1 and the nuclear PPAR-α.25–28 The 

latter is clearly expressed in glial cells and neurons, and 

most probably PEA’s most important mechanism of action. 

These mechanisms of action of PEA are related to its anal-

gesic and anti-inflammatory actions in nerve compression 

syndromes.

PEA: effective in models of nerve 
compression
Fatty acid ethanolamides such as PEA are endogenous 

agonists of PPAR-α and function as lipid messengers in 

the regulation of inflammation and chronic pain. Fatty acid 

ethanolamides are degraded by a number of enzymes, such 

as lysosomal amidases, fatty acid amide hydrolase (FAAH), 

and N-acylethanolamine acid amidase (NAAA).29 Sciatic 

nerve ligation or chemical irritation decreases PEA levels 

in sciatic nerve and the NAAA inhibitor ARN077 reverses 

these biochemical effects.30 PEA administered in such a 

sciatic pain model decreases inflammation and pain. The 

analgesic properties of PEA are dependent on the modula-

tion of non-neuronal cells in a chronic constriction injury 

(CCI) model of neuropathic pain in mice.31 Three to 8 days 

after nerve injury, there was a substantial recruitment and 

activation of mast cells in the damaged nerve, as well as an 

upregulation of activated microglia found in the spinal cord. 

PEA delayed mast cell recruitment and inhibited mast cell 

degranulation, reduced microglia activation in the spinal cord, 

and inhibited the increase of NGF in the sciatic nerve and pre-

served the nerve from degeneration. PEA also significantly 

reduced the expression of COX-2 and iNOS in sciatic nerves 

and restored inflammation-induced reductions of the PPAR-α 

receptor in the dorsal root ganglia.27 PEA further significantly 

decreased neuropathic mechanical hyperalgesia after 7 days 

in a rat unilateral sciatic nerve ligation model.32

In the CCI model of the sciatic nerve in the rat, PEA 

levels were significantly decreased in the spinal cord and 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Pain Research 2015:8 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

731

Palmitoylethanolamide in nerve compression syndromes

other parts of the central nervous system.33 In this CCI 

model, PEA could prevent pain threshold alterations after 

14 days.34 PEA also reduced the presence of intraneural 

edema and macrophage infiltrates, and led to signs of neuro-

regeneration: significantly thicker myelin sheath, increased 

axonal diameter, and increased number of nerve fibers. In 

PPAR-α-deficient mice PEA treatment did not lead to anal-

gesia nor did PEA show any sign of neuro-repair. Based on 

these findings the authors concluded that PEA had disease 

modifying and neuro-protective properties.

URB597, an inhibitor of PEA hydrolysis by FAAH, was 

injected intrathecally in the CCI rat model of the sciatic nerve 

of the CCI rat model.35 URB597 elevated the levels of PEA, 

and fully inhibited thermal and tactile nociception. PEA 

derivatives also reduced hypersensitivity to noxious stimuli 

in the sciatic nerve injury model.36

Data from these pharmacological models support the use 

of PEA in nerve compression syndromes, and the active dose-

range in most of the models was 10–30 mg/kg body weight.

PEA in nerve compression pain: 
efficacy and safety in patients
The vicious circle of inflammation and increasing pain can be 

halted by PEA, as has been shown in different animal models. 

PEA belongs to an entire new class of analgesic products, 

devoid of addiction potential, without central nervous system 

side effects, and without clear dose limiting side effects up 

to a dose of at least 100 mg/kg body weight.37 Drug interac-

tions have so far not been documented, and its use has been 

described together with a number of different analgesics.

PEA has been explored in a number of clinical trials in 

sciatic pain and/or chronic back pain and in compression 

of the median nerve due to carpal tunnel syndrome.11 In 

total, 1,366 patients were entered in eight clinical trials. 

These trials have been published in peer reviewed journals, 

and some additional data were presented at the third Inter-

national Congress on Neuropathic Pain in Athens (2010), 

and at special PEA-dedicated symposia at Perugia, Milan, 

and Naples (Italy). In order to check for completeness, we 

conducted a MEDLINE, EMBASE, and TRIP search with 

the word “palmitoylethanolamide”, and one of the following 

terms: “sciatic”, “hernia”, “nerve”, “compression”, “carpal”, 

“tarsal”, and “compression” from which we extracted all 

clinical trials, retrospective studies, and case reports; double 

reports, as far as being identified as such, were left out. 

 Furthermore, we did a search in the clinical trial database of 

the US National Institutes of Health. The result of our search 

did not identify any new study.

One pivotal study was a double blind, placebo con-

trolled study evaluating two different dosages in a 3-week 

treatment regime.38 The data were presented in the Spanish 

language in the Spanish anesthesiological journal Dolor in 

2010, and the results of this trial as well as an additional 

NNT analysis were discussed further at the Italian National 

 Congress of Anesthesiology, the SIAARTI, in 2011 by Keppel 

Hesselink.39 As these clinical data are a key part of PEA’s 

clinical evidence in nerve compression syndromes we will start 

presenting and discussing these data in more detail.

Results from a pivotal, randomized 
double blind, placebo-controlled 
trial with PEA
In this pivotal trial, two different doses of PEA were 

compared to placebo, 300 and 600 mg daily. Six hundred 

thirty-six patients suffering from pain due to radicular com-

pression of the sciatic nerve, between 18 and 75 years with 

a pain score of $5 on the visual analog scale (VAS) were 

included.38 All patients were allowed to continue their usual 

treatments. Primary endpoint was the VAS score for pain 

intensity and a secondary endpoint was the Roland-Morris 

disability questionnaire (RDQ) to evaluate the quality of life. 

Treatment period was 3 weeks.

At the final follow-up at day 21, all the patients underwent 

a clinical investigation, laboratory tests, evaluation of the 

pain intensity, and quality of life evaluation with the RDQ. 

Patients and physician gave a subjective judgment about the 

treatment efficacy. This evaluation was carried out using a 

4-point scale, with the following descriptions: excellent, good, 

some, and no efficacy, respectively. Safety and tolerability 

were evaluated by means of a full physical investigation, and 

standard hematological, biochemical, and urine tests were 

carried out at baseline and the end of treatment period.

Pre/post evaluation was done with the VAS and RDQ 

between baseline and day 21, using the analysis of variance 

according to the intention-to-treat last observation carried 

forward method. The Scheffé test was used for the mul-

tiple comparisons between groups, and the chi-squared test 

was used to analyze the subjective evaluation, considering 

P,0.05 as statistically significant.

Results of the study: 636 patients entered the study: 

336 males (52.8%) and 300 females (47.2%), between 19 

and 72 years of age (mean 42.8±11.2 years). All treatment 

groups were homogeneous with respect to age, sex, height, 

weight, diagnoses, and severity of pain. None of the dropouts 

were due to adverse events, though mainly due to absence 

of efficacy.
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At the end of the treatment period the reduction in 

pain was significantly different between the three groups  

(P,0.001). The high dose PEA was significantly more 

effective compared to the low dose (P,0.05); while both 

doses of PEA were significantly more effective than placebo 

(P,0.05). The mean decrease on the VAS was largest in the 

high dose group: a reduction from 7.1 to 2.1, which is more 

than 50% pain reduction; this is in general considered as a 

robust clinical response. In the placebo arm the pain VAS 

score decreased from 6.6 to 4.6 (Table 1).

The change in quality of life measured with the RDQ dif-

fered between groups (P,0.001). Again, the improvement 

was significantly greater in the high dose group compared to 

the low dose group and placebo. The improvement in both 

active treatment arms was superior to placebo (P,0.05).

In a separate post hoc (non-protocol defined) analysis, the 

NNT to reach a 50% reduction in pain compared to baseline 

was established. In Figure 1 the NNT for week 2 and 3 for 

both dose arms are depicted.39

The NNT for the PEA 300 mg group was 6.5 and for the 

PEA 600 mg group was 1.5 after 3 weeks treatment. The 

NNT was calculated by subtracting the placebo response 

rate from the PEA 600 mg response. PEA therefore can 

be considered as a potent analgesic in the league table of 

neuropathic analgesics.

Clinical trials of PEA in different 
nerve compression syndromes
Canteri et al40 reported the results of a placebo-controlled, 

double blind, randomized study in 111 patients suffering 

from lumbosciatic pain, following the same protocol as 

Guida et al.38 All patients were allowed to continue their 

established medication; 53 patients were free from anal-

gesics. After 3 weeks there was a significant decrease of 

pain in which the high dose (600 mg PEA/day) was most 

effective (P,0.03) compared to the low dose and placebo 

group. The use of co-analgesics did not change the out-

come. No relevant side effects or drug interactions were 

reported.

Gatti et al performed an observational study with 

610 patients suffering from chronic pain states, among which 

331 patients suffered from sciatic pain.41 Other patients 

were suffering from arthritic pains (n=54), post-herpetic 

neuralgia (n=44), diabetic neuropathic pain (n=32), pain 

after failed back surgery (n=76), oncological pain (n=22), 

and mixed pain states (n=51). Mean VAS was 6.5 at baseline. 

Patients received 600 mg, twice daily for 3 weeks followed 

by single daily dosing for 4 weeks. PEA was added to 

established analgesic therapies, or as single therapy. In total 

46 patients dropped out (7.5%). PEA decreased the mean 

pain on the VAS from 6.4±1.4 to 2.5±1.3 in the patients 

who completed the study. In patients without concomitant 

analgesics, PEA was equally efficacious in reducing chronic 

pain. Neither relevant side effects nor drug-drug interactions 

were observed.

Desio reported the effects of PEA in an open study in 

20 non-responders to previous analgesic pharmacotherapy 

with sciatic pain, low back pain, hernia, and vertebral 

stenosis.42 Treatment regime of 30 days was oxycodone 5 mg 

once daily during the first 5 days; where after 5 mg twice 

daily; together with PEA 600 mg twice daily. This resulted 

in a decrease of pain from mean VAS 7.2 to VAS 2.5 at 

day 30 (P,0.001). No relevant side effects and no drug-drug 

interactions were reported.

Palomba et al described the effects of PEA in 81 neuro-

pathic low back pain patients in an open group comparison 

study. One group (n=41) received PEA on top of standard 

analgesics (pregabalin, gabapentin, amitriptyline, dulox-

etine) and the other group (n=40) received just standard 

analgesics.43 For the first 21 days, the PEA group received 

600 mg PEA twice daily, thereafter 600 mg PEA once daily. 

At endpoint, after 51 days treatment, PEA-treated patients 

Table 1 Mean score values ± SD obtained for the vAS and RDQ 
at T0 and T21

Placebo 300 mg 600 mg P-value

Number of patients 208 210 214
Dropouts 12 4 1
vAS T0 (SD) 6.6 (1.7) 6.5 (1.9) 7.1 (1.8)
vAS T21 (SD) 4.6 (1.7) 3.6 (1.8) 2.1 (1.7)
vAS difference (SD) 2.0 (1.9) 2.9 (2.3) 5.0 (2.5) ,0.05*
RDQ T0 (SD) 11.9 (3.8) 11.7 (4.0) 12.7 (4.1)
RDQ T21 (SD) 8.9 (3.2) 6.7 (3.5) 3.5 (2.7)
vAS difference (SD) 3.0 (3.4) 5.0 (3.3) 9.2 (4.2) ,0.05*

Note: *Comparison among groups, calculated with Scheffe test.
Abbreviations: SD, standard deviation; vAS, visual analog scale; RDQ, Roland-
Morris disability questionnaire.
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Figure 1 NNT of PeA to reach 50% reduction of pain.
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had less pain compared to standard care patients (P,0.05); 

no side effects or drug-drug interactions were observed.

Domenguez et al randomly divided 85 patients suffer-

ing from lumbosciatic pain in to two groups, usual care 

and PEA 300 mg twice daily or usual care.44 The usual care 

group without PEA had a significant pain reduction of 2.69 

compared to baseline (P.0.05), and the PEA group had a 

pain reduction of 3.85 compared to baseline (P.0.05). No 

side effects were reported.

Assini et al investigated the effect of 1,200 mg PEA/day 

in diabetic patients with carpal tunnel syndrome (n=25) and 

compared the effect with a control group (n=25).45 Results: 

significant difference in reduction of pain at endpoint between 

treatment with PEA and control group (P,0.0001). All 

neurophysiological parameters improved. No side effects 

were reported.

Congliaro et al treated 26 patients with carpal tunnel 

syndrome in a group-controlled study of patients suffering 

from carpal tunnel syndrome, with clear neurophysiological 

abnormalities and pain.46 The study had three arms: control 

(standard care), PEA 600 mg/day, PEA 1,200 mg/ day during 

30 days. This resulted in significant improvement in neuro-

physiological parameters, such as distal motor latency after 

PEA treatment, and the higher dose was more effective. No 

side effects were reported. In Table 2 we have summarized 

the number of patients entered in these clinical trials.

Conclusion
PEA has been tested in a variety of animal models for nerve 

compression and has been evaluated in eight different clini-

cal trials in total, in 1,366 patients with nerve compression 

syndromes. Both the preclinical as well as the clinical results 

point in the same direction: PEA acts as a safe analgesic com-

pound in nerve compression. Its safety and efficacy profile 

supports the clinical use of PEA in compression syndromes 

such as sciatic pain and carpal tunnel syndrome. PEA is easy 

to administer. The NNT of PEA for sciatic pain to reach 50% 

pain reduction is 1.5 and the number needed to harm is at least 

in the hundreds, but for the time being not calculable due to 

the absence of serious and troublesome side effects leading 

to dropouts in clinical trials. The risk–benefit balance of PEA 

therefore favors its inclusion in the therapeutic armamentarium 

of chronic pain. PEA can be administered both as a stand-alone 

analgesic as well as part of a multimodal therapy regime.
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